COOLFACADE: Architectural Integration of Solar Cooling Technologies in the Building Envelope

  • Alejandro Prieto Hoces


The thesis ‘COOLFACADE – Architectural integration of solar cooling strategies in the building envelope’ aims to shed light on the possibilities and constraints for architectural integration of solar cooling systems in façades, in order to support the design of climate responsive architectural products for office buildings as self-sufficient alternatives to conventional air-conditioning systems. Increasing cooling needs in the built environment present an important and complex challenge for the design of sustainable buildings and cities. Even though the first course of action should always aim to reduce energy consumption through saving measures and passive design, this is often not enough to avoid mechanical equipment altogether, particularly in the case of office buildings in warm climate contexts.

Solar cooling technologies have been increasingly explored, as an environmentally friendly alternative to harmful refrigerants used within vapour compression systems; while also being driven by solar, thus, renewable energy. The principles behind some of these technologies have been researched for over a century, reaching mature solutions and components, and being recognised as promising alternatives to common  air-conditioning units. Nonetheless, building application remains mostly limited to demonstration projects and pilot experiences. Recently, façade integrated concepts have been explored, as a way to promote widespread application throughout the development of multifunctional building components. However, while these are regarded as relevant and promising standalone concepts, further research is still needed to assess the integration potential of diverse solar cooling technologies, and identify barriers to overcome, in order to promote the widespread application of solar cooling components in the built environment.

The aim of this research project is to explore the possibilities and constraints for architectural integration of solar cooling strategies in façades, in order to support the design of climate responsive architectural products for office buildings, without compromising the thermal comfort of users. The underlying hypothesis then is that self-sufficient solar cooling integrated facades may be a promising alternative to conventional centralised air-conditioning systems widely used in office buildings in warm climates. Most research efforts on solar cooling currently deal with the optimisation of the systems in terms of their performance, testing new materials and simplifying their operation to increase reported efficiencies. However, there is a lack of knowledge on the requirements and current limits for widespread façade application.

In order to achieve the research goal and comprehensively assess the façade integration potential of solar technologies and discuss current barriers, different aspects must be acknowledged. These distinct aspects are addressed through several research questions, which in turn define the different chapters of the dissertation. Introduction and conclusions aside, the research body is structured on three sequential parts, with 2-3 chapters each. The first part deals with the state-of-the-art in the field and the theoretical framework, laying the groundwork for the following sections. The second part explores different aspects required as input for façade integration; while the third part comprises the evaluation of solar cooling technologies in terms of current possibilities and constraints for the development of integrated façades, based on the inputs identified in the second part. Furthermore, all chapters were published or submitted for publication as scientific articles in peer review academic journals.

The first part considers two chapters that lay the foundations for the research project, The first chapter after the introduction expands the background of the dissertation by identifying knowledge gaps and research trends while contributing to the generation of a reference database of research experiences, throughout a systematic literature review of cooling research in office buildings during the last 25 years. On the other hand, the following chapter delves specifically in the main themes addressed within the dissertation, proposing a framework for the understanding of solar cooling integrated façades. This considers the theoretical discussion of the concept of architectural façade integration; and the identification of the main working principles and technical components from most common solar cooling technologies, based on a state-of-the-art review.

The second part explores different required inputs for façade integration. Design and construction requirements for façade integration are explored; while the response from façade design parameters to various climate conditions is assessed in parallel. The exploration of design and construction requirements is conducted through the identification of the main perceived problems for the façade integration of building services and solar technologies, by means of a survey addressed to façade professionals. On the other hand, a separate chapter explores the relation between climate conditions and cooling requirements in office buildings, evaluating the potential impact of several passive cooling strategies in various warm climates, as a first step before considering further technologies. This was conducted through the statistical analysis of reported research experiences, and dynamic energy simulations of a base scenario using specialised software.

The third part of the dissertation consists of two chapters that incorporate previous outcomes for the evaluation of selected solar cooling technologies in terms of current possibilities and constraints for the development of integrated façades. The first of these chapters showcases a qualitative evaluation of the façade integration potential of several solar cooling technologies, based on a comprehensive review of key aspects of each technology and their prospects to overcome the identified barriers for façade integration. This is complemented by a feasibility assessment of integrated concepts in several climates, throughout numerical calculations based on climate data and building scenarios simulated with specialised software; showcased in the following and final chapter.

The driving force of the research project is the intention to test the limits of solar cooling integration in façades, showcasing current possibilities while identifying technical constrains and barriers to overcome for the widespread application of integrated façade concepts. Although interesting prospects were identified in this dissertation, important technical constraints need to be solved to conceive a façade component fail-tested for application in buildings. Furthermore, several barriers related to the façade design and development process would need to be tackled in order to introduce architectural products such as these into the building market. The identification and discussion of these barriers, along with the definition of technology driven development paths and recommendations for the generation of distinct architectural products, are regarded as the main outcomes of this dissertation, serving as a compass to guide further explorations in the topic, under an overall environmentally conscious design approach.



Abdallah, A. S. H., Yoshino, H., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2013). Integration of evaporative cooling technique with solar chimney to improve indoor thermal environment in the New Assiut City, Egypt. International Journal of Energy and Environmental Engineering, 4(1), 1-15.
Abdel-Salam, A. H., Ge, G., & Simonson, C. J. (2013). Performance analysis of a membrane liquid desiccant air-conditioning system. Energy and Buildings, 62(0), 559-569. doi:
Abdel-Salam, A. H., Ge, G., & Simonson, C. J. (2014). Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Solar Energy, 102, 56-73. doi: 10.1016/j.solener.2013.12.036
Abdel-Salam, A. H., & Simonson, C. J. (2016). State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews, 58, 1152-1183. doi: 10.1016/j.rser.2015.12.042
Abdullah, A. H., Meng, Q., Zhao, L., & Wang, F. (2009). Field study on indoor thermal environment in an atrium in tropical climates. Building and Environment, 44(2), 431-436. doi: 10.1016/j.buildenv.2008.02.011
Abu Khadra, A., & Chalfoun, N. (2014). Development of an integrated passive cooling façade technology for office buildings in hot arid regions. WIT Transactions on Ecology and the Environment, 190 VOLUME 1, 521-534.
Advantix announces exclusive Rep. agreement with Trane in Southeast. (2014). ACHR News. [accessed on Dec 13th 2017]
Advantix Systems' Dehumidification & Cooling System reduces energy consumption in schools by more than 40 percent. (2010). Business Wire. [accessed on Dec 13th 2017]
Agyenim, F., Knight, I., & Rhodes, M. (2010). Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy, 84(5), 735-744. doi: 10.1016/j.solener.2010.01.013
Ahmed, N. A., & Wongpanyathaworn, K. (2012). Optimising Louver Location to Improve Indoor Thermal Comfort based on Natural Ventilation. Procedia Engineering, 49, 169-178. doi: 10.1016/j.proeng.2012.10.125
Ala-Juusela, M. e. (2003). LowEx guidebook: low-exergy systems for heating and cooling of buildings. Guidebook to IEA ECBCS annex 37. Birmingham, UK: ECBCS Bookshop.
Alahmer, A. (2016). Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning. Applied Thermal Engineering, 98, 1273-1285. doi: 10.1016/j.applthermaleng.2015.12.059
Alahmer, A., Wang, X., Al-Rbaihat, R., Amanul Alam, K. C., & Saha, B. B. (2016). Performance evaluation of a solar adsorption chiller under different climatic conditions. Applied Energy, 175, 293-304. doi: 10.1016/j.apenergy.2016.05.041
Aldawoud, A. (2013a). Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy and Buildings, 59(0), 104-110. doi:
Aldawoud, A. (2013b). The influence of the atrium geometry on the building energy performance. Energy and Buildings, 57(0), 1-5. doi:
Aliane, A., Abboudi, S., Seladji, C., & Guendouz, B. (2016). An illustrated review on solar absorption cooling experimental studies. Renewable and Sustainable Energy Reviews, 65, 443-458. doi: 10.1016/j.rser.2016.07.012
Allouhi, A., Kousksou, T., Jamil, A., Bruel, P., Mourad, Y., & Zeraouli, Y. (2015). Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews, 44, 159-181. doi: 10.1016/j.rser.2014.12.014
Allouhi, A., Kousksou, T., Jamil, A., El Rhafiki, T., Mourad, Y., & Zeraouli, Y. (2015). Optimal working pairs for solar adsorption cooling applications. Energy, 79, 235-247. doi: 10.1016/
Amos-Abanyie, S., Akuffo, F. O., & Kutin-Sanwu, V. (2011). Parametric study of effect of thermal mass, window size and night-time ventilation on peak indoor temperature in the warm-humid climate of Ghana. Paper presented at the 7th International Symposium on Heating, Ventilating and Air Conditioning - Proceedings of ISHVAC 2011.
Anand, S., Gupta, A., & Tyagi, S. K. (2015). Solar cooling systems for climate change mitigation: A review. Renewable and Sustainable Energy Reviews, 41(0), 143-161. doi:
Angrisani, G., Minichiello, F., Roselli, C., & Sasso, M. (2010). Desiccant HVAC system driven by a micro-CHP: Experimental analysis. Energy and Buildings, 42(11), 2028-2035. doi:
Angrisani, G., Minichiello, F., & Sasso, M. (2016). Improvements of an unconventional desiccant air conditioning system based on experimental investigations. Energy Conversion and Management, 112, 423-434. doi: 10.1016/j.enconman.2016.01.013
Appelfeld, D., McNeil, A., & Svendsen, S. (2012). An hourly based performance comparison of an integrated micro-structural perforated shading screen with standard shading systems. Energy and Buildings, 50(0), 166-176. doi:
Arenas, A., Palacios, R., Rodriguez-Pecharroman, R., & Pagola, F. (2008). Full-size prototype of active thermal windows based on thermoelectricity. Paper presented at the ECT2008 - 6th European Conference on Thermoelectrics, Paris, France.
Argiriou, A. A., Balaras, C. A., Kontoyiannidis, S., & Michel, E. (2005). Numerical simulation and performance assessment of a low capacity solar assisted absorption heat pump coupled with a sub-floor system. Solar Energy, 79(3), 290-301. doi:
Artmann, N., Manz, H., & Heiselberg, P. (2007). Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Applied Energy, 84(2), 187-201. doi:
ASHRAE. (2010). ANSI/ASHRAE Standard 55-2010. Atlanta, USA: ASHRAE.
ASHRAE. (2011). Advanced Energy Design Guide for Small to Medium Office Buildings. Atlanta, USA.
Assem, E. O., & Al-Mumin, A. A. (2010). Code compliance of fully glazed tall office buildings in hot climate. Energy and Buildings, 42(7), 1100-1105. doi:
Aste, N., Compostella, J., & Mazzon, M. (2012). Comparative energy and economic performance analysis of an electrochromic window and automated external venetian blind. Energy Procedia, 30(0), 404-413. doi:
Audah, N., Ghaddar, N., & Ghali, K. (2011). Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs. Applied Energy, 88(11), 3726-3736. doi: 10.1016/j.apenergy.2011.04.028
Avesani, S. (2016). Design of a solar façade solution with an integrated sorption collector for the systemic retrofit of the existing office buildings. (Doctoral thesis), Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria.
Avesani, S., Hallstrom, O., & Fuldner, G. (2014). Integration of sorption collector in office curtain wall: Simulation based comparison of different system configurations. Paper presented at the Eurosun 2014, Aix-les-Bains, France.
Azcarate-Aguerre, J., Klein, T., & den Heijer, A. (2016). A business-oriented roadmap towards the implementation of circular integrated facades: Merging the interests of suply and demand stakeholders in the construction industry through long-term collaboration models. Paper presented at the 9th International Conference Improving Energy Efficiency in Commercial Buildings and Smart Communities, Frankfurt, Germany.
Badache, M., Rousse, D. R., Hallé, S., & Quesada, G. (2013). Experimental and numerical simulation of a two-dimensional unglazed transpired solar air collector. Solar Energy, 93(0), 209-219. doi:
Bahaj, A. S., James, P. A. B., & Jentsch, M. F. (2008). Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energy and Buildings, 40(5), 720-731. doi:
Bakker, E. J., & de Boer, R. (2010). Development of a new 2,5kW adsorption chiller for heat driven cooling. The Netherlands: ECN.
Balaras, C. A., Grossman, G., Henning, H.-M., Infante Ferreira, C. A., Podesser, E., Wang, L., & Wiemken, E. (2007). Solar air conditioning in Europe—an overview. Renewable and Sustainable Energy Reviews, 11(2), 299-314. doi: 10.1016/j.rser.2005.02.003
Baldinelli, G. (2009). Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system. Building and Environment, 44(6), 1107-1118. doi:
Baldwin, C. Y., & Clark, K. B. (2004). Modularity in the Design of Complex Engineering Systems: Division of Research, Harvard Business School.
Banham, R. (2013). The Architecture of the Well-Tempered Environment: Elsevier Science.
Baniyounes, A. M., Ghadi, Y. Y., Rasul, M. G., & Khan, M. M. K. (2013). An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia. Renewable and Sustainable Energy Reviews, 26, 781-804. doi: 10.1016/j.rser.2013.05.053
Baniyounes, A. M., Liu, G., Rasul, M. G., & Khan, M. M. K. (2013). Comparison study of solar cooling technologies for an institutional building in subtropical Queensland, Australia. Renewable and Sustainable Energy Reviews, 23, 421-430. doi: 10.1016/j.rser.2013.02.044
Bansal, V., Mishra, R., Agarwal, G. D., & Mathur, J. (2012). Performance analysis of integrated earth–air-tunnel-evaporative cooling system in hot and dry climate. Energy and Buildings, 47(0), 525-532. doi:
Bataineh, K., & Taamneh, Y. (2016). Review and recent improvements of solar sorption cooling systems. Energy and Buildings, 128, 22-37. doi: 10.1016/j.enbuild.2016.06.075
BBVA. (2016). Emerging and Growth Leading Economies (EAGLEs). Economic Outlook. Annual Report 2016: BBVA.
Belarbi, R., & Allard, F. (2001). Development of feasibility approaches for studying the behavior of passive cooling systems in buildings. Renewable Energy, 22(4), 507-524. doi:
Bell, L. (2008). Addressing the challenges of commercializing new thermoelectric materials. Paper presented at the International conference on thermoelectrics, Oregon, USA.
Belleri, A., Lollini, R., & Dutton, S. M. (2014). Natural ventilation design: an analysis of predicted and measured performance. Building and Environment(0). doi:
Bellia, L., De Falco, F., & Minichiello, F. (2013). Effects of solar shading devices on energy requirements of standalone office buildings for Italian climates. Applied Thermal Engineering, 54(1), 190-201. doi: 10.1016/j.applthermaleng.2013.01.039
Ben-David, T., & Waring, M. S. (2016). Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building and Environment, 104, 320-336. doi: 10.1016/j.buildenv.2016.05.007
Bergero, S., & Chiari, A. (2011). On the performances of a hybrid air-conditioning system in different climatic conditions. Energy, 36(8), 5261-5273. doi:
Blackman, C., Hallstrom, O., & Bales, C. (2014). Demonstration of Solar Heating and Cooling System using Sorption Integrated Solar Thermal Collectors. Paper presented at the EuroSun, Aix-les-Bains, France.
Blismas, N., Pendlebury, M., Gibb, A., & Pasquire, C. (2005). Constraints to the use of off-site production on construction projects. Architectural Engineering and Design Management, 1(3), 153-162.
Bluyssen, P. M. (2009). The Indoor Environment Handbook: How to Make Buildings Healthy and Comfortable: Earthscan LLC.
Bolocan, S., Chiriac, F., Serban, A., Dragomir, G., & Nastase, G. (2015). Development of a Small Capacity Solar Cooling Absorption Plant. Energy Procedia, 74, 624-632. doi: 10.1016/j.egypro.2015.07.796
Bonato, P., D'Antoni, M., & Fedrizzi, R. (2016). Integration of a sorption collector coupled with a decentralized mechanical ventilation unit in curtain wall module. Paper presented at the Advance Building Skins, Bern, Switzerland.
Bong, T., Ng, K., & Tay, A. (1987). Performance study of a solar-powered air-conditioning system. Solar Energy, 39(3), 173-182.
Bongs, C., Morgenstern, A., & Henning, H.-M. (2012). Advanced performance of an open desiccant cycle with internal evaporative cooling. Energy Procedia, 30, 524-533. doi: 10.1016/j.egypro.2012.11.062
BP. (2016). BP Energy Outlook, 2016 edition. London, United Kingdom.
Brinkmann, P. (2012). Growing Advantix Systems relocates HQ to Sunrise. South Florida Business Journal. [accessed on Dec 13th 2017]
Broad. (n.d.). BROAD Group. Retrieved April 6th, 2018, from
Brown, D. R., Fernandez, N., Dirks, J. A., & Stout, T. B. (2010). The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications. USA: Pacific Northwest National Laboratory (PNNL). Prepared for the U.S. DOE under contract DE-AC05-76RL01830.
Brown, J. S., & Domanski, P. A. (2014). Review of alternative cooling technologies. Applied Thermal Engineering, 64(1-2), 252-262. doi: 10.1016/j.applthermaleng.2013.12.014
Buker, M. S., Mempouo, B., & Riffat, S. B. (2015). Experimental investigation of a building integrated photovoltaic/thermal roof collector combined with a liquid desiccant enhanced indirect evaporative cooling system. Energy Conversion and Management, 101, 239-254. doi: 10.1016/j.enconman.2015.05.026
Buker, M. S., & Riffat, S. B. (2015). Recent developments in solar assisted liquid desiccant evaporative cooling technology—A review. Energy and Buildings, 96, 95-108. doi: 10.1016/j.enbuild.2015.03.020
Bustamante, W., Vera, S., Prieto, A., & Vasquez, C. (2014). Solar and Lighting Transmission through Complex Fenestration Systems of Office Buildings in a Warm and Dry Climate of Chile. Sustainability, 6(5), 2786-2801. doi: 10.3390/su6052786
Buyadgie, D., Nichenko, S., & Schenyh, V. (2010). Solar Ejector Refrigerating And Air-Conditioning System (SERAS) Working on Zeotropic Mixtures. International Refrigeration and Air-Conditioning Conference.
Campaniço, H., Hollmuller, P., & Soares, P. M. M. (2014). Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation. Applied Energy, 134(0), 426-438. doi:
Cândido, C., de Dear, R., & Lamberts, R. (2011). Combined thermal acceptability and air movement assessments in a hot humid climate. Building and Environment, 46(2), 379-385. doi:
Cappel, C., Streicher, W., Lichtblau, F., & Maurer, C. (2014). Barriers to the Market Penetration of Façade-integrated Solar Thermal Systems. Energy Procedia, 48, 1336-1344. doi: 10.1016/j.egypro.2014.02.151
Carrier. (n.d.). Carrier. Retrieved April 6th, 2018, from
Castro, J., Oliva, A., Perez-Segarra, C. D., & Oliet, C. (2008). Modelling of the heat exchangers of a small capacity, hot water driven, air-cooled H2O–LiBr absorption cooling machine. International Journal of Refrigeration, 31(1), 75-86. doi: 10.1016/j.ijrefrig.2007.05.019
Cejudo, J. M., Fernández, F., Domínguez, F., & Carrillo, A. (2013). The optimization of the operation of a solar desiccant air handling unit coupled with a radiant floor. Energy and Buildings, 62(0), 427-435. doi:
Chaiwiwatworakul, P., Matuampunwong, D., & Chirarattananon, S. (2012). Energy Saving Potential from daylighting through External Multiple-Slat Shaded Window in the Tropics. International Journal of Renewable Energy Research, 2(3).
Chan, H. Y., Zhu, J., & Riffat, S. (2012). Solar facade for space cooling. Energy and Buildings, 54, 307-319. doi: 10.1016/j.enbuild.2012.07.033
Chan, Y.-C., & Tzempelikos, A. (2013). Efficient venetian blind control strategies considering daylight utilization and glare protection. Solar Energy, 98, Part C(0), 241-254. doi:
Chang, W. S., Wang, C. C., & Shieh, C. C. (2009). Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller. Applied Thermal Engineering, 29(10), 2100-2105. doi: 10.1016/j.applthermaleng.2008.10.021
Chekirou, W., Boukheit, N., & Karaali, A. (2016). Performance improvement of adsorption solar cooling system. International Journal of Hydrogen Energy, 41(17), 7169-7174. doi: 10.1016/j.ijhydene.2016.02.140
Chen, Z., Zhu, J., & Bai, H. (2017). Performance assessment of a membrane liquid desiccant dehumidification cooling system based on experimental investigations. Energy and Buildings, 139, 665-679. doi: 10.1016/j.enbuild.2017.01.046
Chen, Z., Zhu, J., Bai, H., Yan, Y., & Zhang, L. (2017). Experimental study of a membrane-based dehumidification cooling system. Applied Thermal Engineering, 115, 1315-1321. doi: 10.1016/j.applthermaleng.2016.10.153
Cheng, Q., & Zhang, X. (2013). Review of solar regeneration methods for liquid desiccant air-conditioning system. Energy and Buildings, 67, 426-433. doi: 10.1016/j.enbuild.2013.08.053
Cheng, T.-C., Cheng, C.-H., Huang, Z.-Z., & Liao, G.-C. (2011). Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications. Energy, 36(1), 133-140. doi: 10.1016/
Chiesa, G., & Grosso, M. (2015). Geo-climatic applicability of natural ventilative cooling in the Mediterranean area. Energy and Buildings. doi:
Choudhury, B., Saha, B. B., Chatterjee, P. K., & Sarkar, J. P. (2013). An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Applied Energy, 104, 554-567. doi:
Chunnanond, K., & Aphornratana, S. (2004). Ejectors: applications in refrigeration technology. Renewable and Sustainable Energy Reviews, 8(2), 129-155. doi:
CIBSE. (2012). Guide F: Energy Efficiency in Buildings. UK: CIBSE.
CICA. (2002). Industry as a partner for sustainable development-Refrigeration: Confederation of International Contractors' Associations.
Clausse, M., Alam, K. C. A., & Meunier, F. (2008). Residential air conditioning and heating by means of enhanced solar collectors coupled to an adsorption system. Solar Energy, 82(10), 885-892. doi: 10.1016/j.solener.2008.04.001
ClimaSol. (2002). ClimaSol - Promoting Solar Air Conditioning: Technical overview of active techniques. ALTENER Project Number 4.1030/Z/02-121/2002.
Compagno, A. (2002). Intelligent Glass Facade: Birkhauser.
Cool innovation: an upstart hopes to make rival cooling companies sweat. (2012). The Economist.
Corgnati, S. P., & Kindinis, A. (2007). Thermal mass activation by hollow core slab coupled with night ventilation to reduce summer cooling loads. Building and Environment, 42(9), 3285-3297. doi:
Cosnier, M., Fraisse, G., & Luo, L. (2008). An experimental and numerical study of a thermoelectric air-cooling and air-heating system. International Journal of Refrigeration, 31(6), 1051-1062. doi: 10.1016/j.ijrefrig.2007.12.009
Crofoot, L., & Harrison, S. (2012). Performance Evaluation of a Liquid Desiccant Solar Air Conditioning System. Energy Procedia, 30, 542-550. doi: 10.1016/j.egypro.2012.11.064
CustomChill. (n.d.). CustomChill - Innovative cooling solutions. Retrieved April 6th, 2018, from
Daniels, K. (2003). Advanced Building Systems: A Technical Guide for Architects and Engineers: Birkhäuser.
Daou, K., Wang, R., & Xia, Z. (2006). Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Reviews, 10(2), 55-77. doi: 10.1016/j.rser.2004.09.010
Das, R. S., & Jain, S. (2017). Experimental investigations on a solar assisted liquid desiccant cooling system with indirect contact dehumidifier. Solar Energy, 153, 289-300. doi: 10.1016/j.solener.2017.05.071
De Boer, R., Smeding, S. F., & Mola, S. (2009). Silicagel-water adsorption cooling prototype system for mobile air conditioning. Paper presented at the Heat Powered Cycles Conference '09. 7-9 September 2009., Berlin.
de Lieto Vollaro, R., Botta, F., de Lieto Vollaro, A., & Galli, G. (2014). Solar cooling system for buildings: Thermal analysis of solid absorbents applied in low power adsorption system. Energy and Buildings, 80, 436-440. doi: 10.1016/j.enbuild.2014.05.039
DehuTech. (n.d.). DehuTech AB. Retrieved April 6th, 2018, from
Deng, Y., Zhao, Y., Wang, W., Quan, Z., Wang, L., & Yu, D. (2013). Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC). Applied Thermal Engineering, 54(2), 440-449. doi:
Desideri, U., Proietti, S., & Sdringola, P. (2009). Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications. Applied Energy, 86(9), 1376-1386. doi: 10.1016/j.apenergy.2009.01.011
Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1-2), 86-95. doi: 10.1016/j.resconrec.2008.09.008
DOE. (n.d.). U.S. Department of Energy. Retrieved Sept 13th, 2016, from
DOE/EIA. (2016). International Energy Outlook 2016. Washington, DC, USA: US Energy Information Administration, US Department of Energy.
Eames, P. C. (2008). Vacuum glazing: Current performance and future prospects. Vacuum, 82(7), 717-722. doi:
Ebbert, T. (2010). Re-Face: Refurbishment Strategies for the Technical Improvement of Office Façades. (PhD), Delft University of Technology, Delft, The Netherlands.
ECN. (n.d.). SmartBox: Energy facade. Retrieved March 3rd, 2017, from
ECOHEATCOOL. (2006). The European cold market, final report. Ecoheatcool and Euroheat & Power 2005-2006. Brussels.: Euroheat & Power.
Egan, J. (1998). Rethinking Construction: The Report of the Construction Task Force to the Deputy Prime Minister. London.
EIA. (2015). EU F-Gas Regulation Handbook: Keeping ahead of the curve as Europe phases down HFCs. London, UK: Environmental Investigation Agency.
Eicker, U., Colmenar-Santos, A., Teran, L., Cotrado, M., & Borge-Diez, D. (2014). Economic evaluation of solar thermal and photovoltaic cooling systems through simulation in different climatic conditions: An analysis in three different cities in Europe. Energy and Buildings, 70, 207-223. doi: 10.1016/j.enbuild.2013.11.061
Eicker, U., & Dalibard, A. (2011). Photovoltaic–thermal collectors for night radiative cooling of buildings. Solar Energy, 85(7), 1322-1335. doi:
Eicker, U., Pietruschka, D., Haag, M., & Schmitt, A. (2014). Energy and Economic Performance of Solar Cooling Systems World Wide. Energy Procedia, 57(0), 2581-2589. doi:
Eicker, U., Pietruschka, D., Haag, M., & Schmitt, A. (2015). Systematic design and analysis of solar thermal cooling systems in different climates. Renewable Energy, 80, 827-836. doi:
Eicker, U., Schneider, D., Schumacher, J., Ge, T., & Dai, Y. (2010). Operational experiences with solar air collector driven desiccant cooling systems. Applied Energy, 87(12), 3735-3747. doi:
El-Sharkawy, I. I., AbdelMeguid, H., & Saha, B. B. (2014). Potential application of solar powered adsorption cooling systems in the Middle East. Applied Energy, 126, 235-245. doi: 10.1016/j.apenergy.2014.03.092
El Fadar, A. (2016). Novel process for performance enhancement of a solar continuous adsorption cooling system. Energy, 114, 10-23. doi: 10.1016/
Elmer, T., Worall, M., Wu, S., & Riffat, S. (2016). An experimental study of a novel integrated desiccant air conditioning system for building applications. Energy and Buildings, 111, 434-445. doi: 10.1016/j.enbuild.2015.11.065
Enteria, N., & Mizutani, K. (2011). The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable and Sustainable Energy Reviews, 15(4), 2095-2122. doi: 10.1016/j.rser.2011.01.013
European Commission. DIRECTIVE 2002/91/EC: EUR-Lex (2002).
European Commission. DIRECTIVE 2010/31/EU: Energy Performance of Buildings - Recast (2010) (2010).
Escarré, J., Li, H.-Y., Sansonnens, L., Galliano, F., Cattaneo, G., Heinstein, P., . . . Perret-Aebi, L.-E. (2015). When PV modules are becoming real building elements: White solar module, a revolution for BIPV. Paper presented at the Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, New Orleans, LA.
Eskin, N., & Türkmen, H. (2008). Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey. Energy and Buildings, 40(5), 763-773. doi:
Evident. (n.d.). Evident Thermoelectrics. Retrieved April 6th, 2018, from
Ezzeldin, S., & Rees, S. J. (2013). The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates. Energy and Buildings, 65(0), 368-381. doi:
Fadar, A. E., Mimet, A., & Pérez-García, M. (2009). Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector. Solar Energy, 83(6), 850-861. doi:
Fahrenheit. (n.d.). FAHRENHEIT. Retrieved April 6th, 2018, from
Farkas, K., & Horvat, M. (2012). T.41.A.1: Building integration of Solar Thermal and Photovoltaics - Barriers, Needs and Strategies: IEA SHC Task 41: Solar Energy and Architecture.
Fasfous, A., Asfar, J., Al-Salaymeh, A., Sakhrieh, A., Al_hamamre, Z., Al-bawwab, A., & Hamdan, M. (2013). Potential of utilizing solar cooling in The University of Jordan. Energy Conversion and Management, 65, 729-735. doi: 10.1016/j.enconman.2012.01.045
Fathoni, A. M., Chaiwiwatworakul, P., & Mettanant, V. (2016). Energy analysis of the daylighting from a double-pane glazed window with enclosed horizontal slats in the tropics. Energy and Buildings, 128, 413-430. doi: 10.1016/j.enbuild.2016.06.034
Favoino, F., Overend, M., & Jin, Q. (2015). The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Applied Energy, 156, 1-15. doi:
Fazilati, M. A., Alemrajabi, A. A., & Sedaghat, A. (2017). Liquid desiccant air conditioning system with natural convection. Applied Thermal Engineering, 115, 305-314. doi: 10.1016/j.applthermaleng.2016.12.111
Fernández-Hernández, F., Cejudo-López, J. M., Domínguez-Muñoz, F., & Carrillo-Andrés, A. (2015). A new desiccant channel to be integrated in building façades. Energy and Buildings, 86(0), 318-327. doi:
Ferrari, S., & Zanotto, V. (2012). Office Buildings Cooling Need in the Italian Climatic Context: Assessing the Performances of Typical Envelopes. Energy Procedia, 30(0), 1099-1109. doi:
Fiaschi, D., & Manfrida, G. (2013). Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors. Energy, 58(0), 28-35. doi:
Finocchiaro, P., Beccali, M., Brano, V. L., & Gentile, V. (2016). Monitoring Results and Energy Performances Evaluation of Freescoo Solar DEC Systems. Energy Procedia, 91, 752-758. doi: 10.1016/j.egypro.2016.06.240
Finocchiaro, P., Beccali, M., Calabrese, A., & Moreci, E. (2015). Second Generation of Freescoo Solar DEC Prototypes for Residential Applications. Energy Procedia, 70, 427-434. doi: 10.1016/j.egypro.2015.02.144
Finocchiaro, P., Beccali, M., & Gentile, V. (2016). Experimental results on adsorption beds for air dehumidification. International Journal of Refrigeration, 63, 100-112. doi: 10.1016/j.ijrefrig.2015.10.022
Fischer, S., Tomlinson, P., & Hughes, P. (1994). Energy and global warming impacts of not-in-kind and next generation CFC and HCFC alternatives: ORNL.
Fong, K. F., Chow, T. T., Lee, C. K., Lin, Z., & Chan, L. S. (2010a). Comparative study of different solar cooling systems for buildings in subtropical city. Solar Energy, 84(2), 227-244. doi: 10.1016/j.solener.2009.11.002
Fong, K. F., Chow, T. T., Lee, C. K., Lin, Z., & Chan, L. S. (2010b). Solar hybrid air-conditioning system for high temperature cooling in subtropical city. Renewable Energy, 35(11), 2439-2451. doi:
Fong, K. F., Chow, T. T., Lee, C. K., Lin, Z., & Chan, L. S. (2011). Solar hybrid cooling system for high-tech offices in subtropical climate – Radiant cooling by absorption refrigeration and desiccant dehumidification. Energy Conversion and Management, 52(8-9), 2883-2894. doi: 10.1016/j.enconman.2011.04.005
Franchini, G., Notarbartolo, E., Padovan, L. E., & Perdichizzi, A. (2015). Modeling, Design and Construction of a Micro-scale Absorption Chiller. Energy Procedia, 82, 577-583. doi: 10.1016/j.egypro.2015.11.874
Franzke, U., Heidenreich, R., Ehle, A., & Ziller, F. (2003). Comparison between decentralised and centralised air conditioning systems. Dresden, Germany: ILK Dresden.
Freewan, A. A. Y. (2014). Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy, 102(0), 14-30. doi:
Frontini, F. (2011). Daylight and solar control in building: A new angle selective see-thorough PV-façade for solar control. Paper presented at the PLEA 2011 - Architecture and Sustainable Development, Conference Proceedings of the 27th International Conference on Passive and Low Energy Architecture.
Fung, T. Y. Y., & Yang, H. (2008). Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy and Buildings, 40(3), 341-350. doi:
Gang, W., Wang, S., Xiao, F., & Gao, D.-c. (2016). District cooling systems: Technology integration, system optimization, challenges and opportunities for applications. Renewable and Sustainable Energy Reviews, 53, 253-264. doi: 10.1016/j.rser.2015.08.051
Gasparella, A., Cappelletti, F., Pernigotto, G., & Romagnonj, P. (2012). Long-term evaluation of internal thermal comfort with different kinds of glazing systems and window sizes: From energetic considerations to users' comfort. Paper presented at the ASHRAE Transactions.
Ge, G., Xiao, F., & Xu, X. (2011). Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery. Applied Energy, 88(11), 4180-4190. doi:
Ge, T. S., Dai, Y. J., Wang, R. Z., & Li, Y. (2008). Experimental investigation on a one-rotor two-stage rotary desiccant cooling system. Energy, 33(12), 1807-1815. doi: 10.1016/
Ge, T. S., Li, Y., Wang, R. Z., & Dai, Y. J. (2009). Experimental study on a two-stage rotary desiccant cooling system. International Journal of Refrigeration, 32(3), 498-508. doi: 10.1016/j.ijrefrig.2008.07.001
Ge, T. S., Ziegler, F., Wang, R. Z., & Wang, H. (2010). Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling). Applied Thermal Engineering, 30(6-7), 724-731. doi: 10.1016/j.applthermaleng.2009.12.002
Gea. (2012). Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.
Geetha, N. B., & Velraj, R. (2012). Passive cooling methods for energy efficient buildings with and without thermal energy storage – A review. Energy Education Science and Technology Part A: Energy Science and Research, 29(2), 913-946.
Geros, V. S., M; Tsangrasoulis, A; Guarracino, G. (1999). Experimental evaluation of night ventilation phenomena. Energy and Buildings, 29, 141-154.
Gibson, M. (2008). The Active Thermal Manifold Skin: Feasibility, Prototyping, and Performance Studies of a Wall System Integrating Distributed Solid State, Solar Powered Cooling and Heating Technology. Collegue of Architecture and Planning, Ball State University. Muncie, IN, USA.
Givoni, B. (1994). Passive Low Energy Cooling of Buildings: Wiley.
Goetzler, W., Zogg, R., Young, J., & Johnson, C. (2014). Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies. USA: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office.
Goia, F. (2016). Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy, 132, 467-492. doi: 10.1016/j.solener.2016.03.031
Goldsworthy, M., & White, S. (2011). Optimisation of a desiccant cooling system design with indirect evaporative cooler. International Journal of Refrigeration, 34(1), 148-158. doi: 10.1016/j.ijrefrig.2010.07.005
Gommed, K., & Grossman, G. (2007). Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy, 81(1), 131-138. doi: 10.1016/j.solener.2006.05.006
Goulding, J. S., Pour Rahimian, F., Arif, M., & Sharp, M. D. (2014). New offsite production and business models in construction: priorities for the future research agenda. Architectural Engineering and Design Management, 11(3), 163-184. doi: 10.1080/17452007.2014.891501
Gratia, E., & De Herde, A. (2004a). Natural ventilation in a double-skin facade. Energy and Buildings, 36(2), 137-146. doi:
Gratia, E., & De Herde, A. (2004b). Optimal operation of a south double-skin facade. Energy and Buildings, 36(1), 41-60.
Gratia, E., & De Herde, A. (2007a). Greenhouse effect in double-skin facade. Energy and Buildings, 39(2), 199-211.
Gratia, E., & De Herde, A. (2007b). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy, 81(4), 435-448.
Gratia, E., & De Herde, A. (2007c). The most efficient position of shading devices in a double-skin facade. Energy and Buildings, 39(3), 364-373. doi: 10.1016/j.enbuild.2006.09.001
Haase, M., & Amato, A. (2006). Ventilated façade design in hot and humid climate. Paper presented at the PLEA 2006 - 23rd International Conference on Passive and Low Energy Architecture, Conference Proceedings.
Haase, M., Andresen, I., & Helge Dokka, T. (2009). The role of advanced integrated facades in the design of sustainable buildings. Journal of Green Buildings, 4(1), 76-98.
Habib, K., Saha, B. B., & Koyama, S. (2014). Study of various adsorbent–refrigerant pairs for the application of solar driven adsorption cooling in tropical climates. Applied Thermal Engineering, 72(2), 266-274. doi: 10.1016/j.applthermaleng.2014.05.102
Hallström, O. (2016). Design Optimization of a Sorption Integrated Sydney Type Vacuum Tube Collector. Journal of Solar Energy Engineering, 139(2), 021007. doi: 10.1115/1.4034912
Hallstrom, O., & Füldner, G. (2015). Integration of Sorption Modules in Sydney Type Vacuum Tube Collector with Air as Heat Transfer Fluid. Energy Procedia, 70, 445-453. doi: 10.1016/j.egypro.2015.02.146
Hallström, O., Füldner, G., Spahn, H.-J., Schnabel, L., & Salg, F. (2014). Development of Collector Integrated Sorption Modules for Solar Heating and Cooling: Performance Simulation. Energy Procedia, 48, 67-76. doi: 10.1016/j.egypro.2014.02.009
Hammad, F., & Abu-Hijleh, B. (2010). The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings, 42(10), 1888-1895. doi:
Hamza, N. (2008). Double versus single skin facades in hot arid areas. Energy and Buildings, 40(3), 240-248. doi:
Hanby, V. I., & Smith, S. T. (2012). Simulation of the future performance of low-energy evaporative cooling systems using UKCP09 climate projections. Building and Environment, 55(0), 110-116. doi:
He, W., Zhou, J., Chen, C., & Ji, J. (2014). Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes. Energy Conversion and Management, 84(0), 41-49. doi:
He, W., Zhou, J., Hou, J., Chen, C., & Ji, J. (2013). Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar. Applied Energy, 107, 89-97. doi: 10.1016/j.apenergy.2013.01.055
Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., & Sopian, K. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42(0), 323-343. doi:
Hellmann, H.-M., & Grossman, G. (1995). Simulation and analysis of an open-cycle dehumidifier-evaporator-regenerator (DER) absorption chiller for low-grade heat utilization. International Journal of Refrigeration, 18(3), 177-189.
Henning, H.-M. (2007). Solar assisted air conditioning of buildings – an overview. Applied Thermal Engineering, 27(10), 1734-1749. doi:
Henning, H.-M., & Döll, J. (2012). Solar Systems for Heating and Cooling of Buildings. Energy Procedia, 30, 633-653. doi: 10.1016/j.egypro.2012.11.073
Henning, H.-M., Erpenbeck, T., Hindenburg, C., & Santamaria, I. S. (2001). The potential of solar energy use in desiccant cooling cycles. International Journal of Refrigeration, 24, 220-229.
Hepbasli, A. (2012). Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renewable and Sustainable Energy Reviews, 16(1), 73-104. doi: 10.1016/j.rser.2011.07.138
Herzog, T., Krippner, R., & Lang, W. (2004). Facade Construction Manual: Birkhauser.
Hitachi. (n.d.). Hitachi Group. Retrieved April 6th, 2018, from
Hollmuller, P., & Lachal, B. (2014). Air–soil heat exchangers for heating and cooling of buildings: Design guidelines, potentials and constraints, system integration and global energy balance. Applied Energy, 119(0), 476-487. doi:
Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qual Health Res, 15(9), 1277-1288. doi: 10.1177/1049732305276687
Huang, B. J. C., J.M.; Petrenko, V.A.; Zhuk, K.B. (1998). A solar ejector cooling system using refrigerant R141b. Solar Energy, 64(4-6), 223-226.
Huang, K. T., & Lin, H. T. (2007). Development of simplified estimation method of chiller energy use for office buildings in Taiwan. Paper presented at the ASHRAE Transactions.
Huang, Y., & Niu, J.-l. (2015). Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load. Energy(0). doi:
Hwang, R.-L., Cheng, M.-J., Lin, T.-P., & Ho, M.-C. (2009). Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment, 44(6), 1128-1134. doi:
Hwang, R.-L., & Shu, S.-Y. (2011). Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Building and Environment, 46(4), 824-834. doi: 10.1016/j.buildenv.2010.10.009
Ibañez-Puy, M., Martín-Gómez, C., Bermejo-Busto, J., Sacristán, J. A., & Ibañez-Puy, E. (2018). Ventilated Active Thermoelectric Envelope (VATE): Analysis of its energy performance when integrated in a building. Energy and Buildings, 158, 1586-1592. doi: 10.1016/j.enbuild.2017.11.037
Ibáñez-Puy, M., Martín-Gómez, C., Vidaurre-Arbizu, M., & Sacristán-Fernández, J. A. (2014). Theoretical Design of an Active Façade System with Peltier Cells. Energy Procedia, 61, 700-703. doi: 10.1016/j.egypro.2014.11.946
Ibáñez-Puy, M., Sacristán-Fernández, J. A., & Martín-Gómez, C. (2013). Construction of an Active Facade Envelope with Peltier Cells. Paper presented at the 39th World Congress on Housing Science - Changing Needs, Adaptive Buildings, Smart Cities, Milan, Italy.
Ibáñez-Puy, M., Sacristán Fernández, J. A., Martín-Gómez, C., & Vidaurre-Arbizu, M. (2015). Development and construction of a thermoelectric active facade module. Journal of Facade Design and Engineering, 3(1), 15-25. doi: 10.3233/fde-150025
IEA-SHC. (2016). IEA Solar Heating & Cooling Programme. Retrieved Sept 13th, 2016, from
Infante Ferreira, C., & Kim, D.-S. (2014). Techno-economic review of solar cooling technologies based on location-specific data. International Journal of Refrigeration, 39, 23-37. doi: 10.1016/j.ijrefrig.2013.09.033
InvenSor. (n.d.). InvenSor. Retrieved April 6th, 2018, from
IPCC/TEAP. (2005). Special Report: Safeguarding the Ozone Layer and the Global Climate System.
Irshad, K., Habib, K., Basrawi, F., & Saha, B. B. (2017). Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate. Energy, 119, 504-522. doi: 10.1016/
Islam, M. P., & Morimoto, T. (2016). Thermodynamic performances of a solar driven adsorption system. Solar Energy, 139, 266-277. doi: 10.1016/j.solener.2016.09.003
Izquierdo, M., Marcos, J. D., Palacios, M. E., & González-Gil, A. (2012). Experimental evaluation of a low-power direct air-cooled double-effect LiBr–H2O absorption prototype. Energy, 37(1), 737-748. doi: 10.1016/
Jaehnig, D. (2009). D-A1: Market available components for systems for Solar Heating and Cooling with a Cooling Capacity <20 kW / A technical report of subtask A of IEA SHC Task 38: Solar Air-Conditioning and Refrigeration. Austria: AEE Intec.
Jain, S., Tripathi, S., & Das, R. S. (2011). Experimental performance of a liquid desiccant dehumidification system under tropical climates. Energy Conversion and Management, 52(6), 2461-2466. doi:
Jakob, U., & Mittelbach, W. (2008). Development and investigation of a compact silica gel/water adsorption chiller integrated in solar cooling systems. Paper presented at the VII Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources”, Minsk, Belarus.
James, P. A. B., & Bahaj, A. S. (2005). Smart glazing solutions to glare and solar gain: a ‘sick building’ case study. Energy and Buildings, 37(10), 1058-1067. doi:
Jani, D. B., Mishra, M., & Sahoo, P. K. (2016). Solid desiccant air conditioning – A state of the art review. Renewable and Sustainable Energy Reviews, 60, 1451-1469. doi: 10.1016/j.rser.2016.03.031
Jeong, E. S. (2014). A new approach to optimize thermoelectric cooling modules. Cryogenics, 59, 38-43. doi: 10.1016/j.cryogenics.2013.12.003
Ji, Y., Lomas, K. J., & Cook, M. J. (2009). Hybrid ventilation for low energy building design in south China. Building and Environment, 44(11), 2245-2255. doi: 10.1016/j.buildenv.2009.02.015
Jia, C. X., Dai, Y. J., Wu, J. Y., & Wang, R. Z. (2007). Use of compound desiccant to develop high performance desiccant cooling system. International Journal of Refrigeration, 30(2), 345-353. doi: 10.1016/j.ijrefrig.2006.04.001
Jiru, T. E., Tao, Y.-X., & Haghighat, F. (2011). Airflow and heat transfer in double skin facades. Energy and Buildings, 43(10), 2760-2766. doi:
Jochem, E., & Schade, W. (2009). 2-degree scenario for Europe - policies and impacts. ADAM: Adaptation and mitigation strategies: supporting European climate policy. Karlsruhe, Germany: Fraunhofer Institute for Systems and Innovation Research (Fraunhofer-ISI).
Joly, M., Antonetti, Y., Python, M., Gonzalez, M., Gascou, T., Scartezzini, J.-L., & Schüler, A. (2013). Novel black selective coating for tubular solar absorbers based on a sol–gel method. Solar Energy, 94(0), 233-239. doi:
Kabeel, A. E. (2007). Solar powered air conditioning system using rotary honeycomb desiccant wheel. Renewable Energy, 32(11), 1842-1857. doi: 10.1016/j.renene.2006.08.009
Kaiser, A. S., Zamora, B., Mazón, R., García, J. R., & Vera, F. (2014). Experimental study of cooling BIPV modules by forced convection in the air channel. Applied Energy, 135(0), 88-97. doi:
Kalogirou, S. A. (2013). Solar Energy Engineering: Processes and Systems: Elsevier Science.
Kalz, D., & Pfafferott, J. (2014). Thermal Comfort and Energy-Efficient Cooling of Nonresidential Buildings: Springer International Publishing.
Kathabar. (n.d.). Alfa Laval Kathabar. Retrieved April 6th, 2018, from
KeepCool. (2005). Service buildings KeepCool: Promotion of sustainable cooling in the service building sector. Final Report. In F. Unterpertinger (Ed.). Vienna, Austria: Austrian Energy Agency.
Keniar, K., Ghali, K., & Ghaddar, N. (2015). Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces. Applied Energy, 138(0), 121-132. doi:
Khattab, N. M., Sharawy, H., & Helmy, M. (2012). Development of Novel Solar Adsorption Cooling Tube. Energy Procedia, 18, 709-714. doi: 10.1016/j.egypro.2012.05.086
Khire, R. A., Messac, A., & Van Dessel, S. (2005). Design of thermoelectric heat pump unit for active building envelope systems. International Journal of Heat and Mass Transfer, 48(19–20), 4028-4040. doi:
Kim, M. K., Leibundgut, H., & Choi, J.-H. (2014). Energy and exergy analyses of advanced decentralized ventilation system compared with centralized cooling and air ventilation systems in the hot and humid climate. Energy and Buildings, 79(0), 212-222. doi:
Klein, T. (2013). Integral Facade Construction: Towards a new product architecture for curtain walls: TU Delft.
Knaack, U., Klein, T., Bilow, M., & Auer, T. (2007). Facades: Principles of Construction: Birkhauser Verlag GmbH.
Kohlenbach, P., & Jakob, U. (2014). Solar Cooling: The Earthscan Expert Guide to Solar Cooling Systems: Taylor & Francis.
Kolokotroni, M., & Aronis, A. (1999). Cooling-energy reduction in air-conditioned offices by using night ventilation. Applied Energy, 63(4), 241-253. doi:
Kolokotroni, M., Giannitsaris, I., & Watkins, R. (2006). The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 80(4), 383-392. doi:
Kolokotroni, M., Webb, B. C., & Hayes, S. D. (1998). Summer cooling with night ventilation for office buildings in moderate climates. Energy and Buildings, 27(3), 231-237. doi:
Konis, K. (2013). Evaluating daylighting effectiveness and occupant visual comfort in a side-lit open-plan office building in San Francisco, California. Building and Environment, 59(0), 662-677. doi:
Kozubal, E., Woods, J., Burch, J., Boranian, A., & Merrigan, T. (2011). Desiccant enhanced evaporative air-conditioning (DEVap): evaluation of a new concept in ultra efficient air conditioning. Colorado, US: National Renewable Energy Laboratory (NREL).
Kuhn, T. E. (2017). State of the art of advanced solar control devices for buildings. Solar Energy, 154, 112-133. doi: 10.1016/j.solener.2016.12.044
Kuhn, T. E. (2013). Cost-Effective - Deliverable D0.1.4: Final summary report.
La, D., Dai, Y. J., Li, Y., Wang, R. Z., & Ge, T. S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews, 14(1), 130-147. doi: 10.1016/j.rser.2009.07.016
Labus, J., Bruno, J. C., & Coronas, A. (2013). Performance analysis of small capacity absorption chillers by using different modeling methods. Applied Thermal Engineering, 58(1–2), 305-313. doi:
Lam, J. C., & Hui, S. C. M. (1995). Outdoor design conditions for HVAC system design and energy estimation for buildings in Hong Kong. Energy and Buildings, 22(1), 25-43. doi:
Lam, J. C., Li, D. H. W., & Cheung, S. O. (2003). An analysis of electricity end-use in air-conditioned office buildings in Hong Kong. Building and Environment, 38(3), 493-498. doi:
Lapisa, R., Bozonnet, E., Salagnac, P., & Abadie, M. O. (2018). Optimized design of low-rise commercial buildings under various climates – Energy performance and passive cooling strategies. Building and Environment, 132, 83-95. doi: 10.1016/j.buildenv.2018.01.029
Lau, A. K. K., Salleh, E., Lim, C. H., & Sulaiman, M. Y. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia. International Journal of Sustainable Built Environment, 5(2), 387-399. doi: 10.1016/j.ijsbe.2016.04.004
Lazzarin, R. M. (2014). Solar cooling: PV or thermal? A thermodynamic and economical analysis. International Journal of Refrigeration, 39, 38-47. doi: 10.1016/j.ijrefrig.2013.05.012
Le Pierrès, N., Cosnier, M., Luo, L., & Fraisse, G. (2008). Coupling of thermoelectric modules with a photovoltaic panel for air pre-heating and pre-cooling application; an annual simulation. International Journal of Energy Research, 32(14), 1316-1328. doi: 10.1002/er.1439
Lechner, N. (2014). Heating, Cooling, Lighting: Sustainable Design Methods for Architects: Wiley.
Ledbetter, S. (2001). Barriers to the integration of cladding and building services. Paper presented at the 22nd Annual AIVC Conference, Bath, UK.
Lee, E., Selkowitz, S., Bazjanac, V., Inkarojrit, V., & Kohler, C. (2002). High Performance Commercial Building Facades. Berkeley, USA: LBNL, University of California.
Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. doi: 10.1016/j.renene.2012.07.029
Leenknegt, S., Wagemakers, R., Bosschaerts, W., & Saelens, D. (2012). Numerical sensitivity study of transient surface convection during night cooling. Energy and Buildings, 53(0), 85-95. doi:
Li, D. H. W., Lam, J. C., Lau, C. C. S., & Huan, T. W. (2004). Lighting and energy performance of solar film coating in air-conditioned cellular offices. Renewable Energy, 29(6), 921-937. doi:
Li, D. H. W., Lam, T. N. T., Chan, W. W. H., & Mak, A. H. L. (2009). Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy, 86(5), 722-729.
Li, D. H. W., Lam, T. N. T., Wong, S. L., & Tsang, E. K. W. (2008). Lighting and cooling energy consumption in an open-plan office using solar film coating. Energy, 33(8), 1288-1297. doi:
Li, H., Yu, Y., Niu, F., Shafik, M., & Chen, B. (2014). Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney. Renewable Energy, 62, 468-477. doi: 10.1016/j.renene.2013.08.008
Li, Z., Ye, X., & Liu, J. (2014). Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city. Energy Conversion and Management, 85(0), 302-312. doi:
Liu, Z., Zhang, L., & Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87(0), 559-565. doi:
Liu, Z., Zhang, L., Gong, G., & Han, T. (2015). Experimental evaluation of an active solar thermoelectric radiant wall system. Energy Conversion and Management, 94(0), 253-260. doi:
Liu, Z., Zhang, L., Gong, G., Li, H., & Tang, G. (2015). Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy and Buildings(102), 207-216. doi:
Lizarte, R., Izquierdo, M., Marcos, J. D., & Palacios, E. (2012). An innovative solar-driven directly air-cooled LiBr–H 2 O absorption chiller prototype for residential use. Energy and Buildings, 47, 1-11. doi: 10.1016/j.enbuild.2011.11.011
Lof, G. O. G. (1955). Cooling with solar energy. Paper presented at the Congress on Solar Energy, Tucson, Arizona, USA.
Loncour, X., Deneyer, A., Blasco, M., Flamant, G., & Wouters, P. (2004). Ventilated Double Facades. Classification & illustration of facade concepts. Belgium: Belgian Building Research Institute (BBRI).
Loonen, R. C. G. M., Trčka, M., Cóstola, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483-493. doi: 10.1016/j.rser.2013.04.016
López-Villada, J., Ayou, D. S., Bruno, J. C., & Coronas, A. (2014). Modelling, simulation and analysis of solar absorption power-cooling systems. International Journal of Refrigeration, 39, 125-136. doi: 10.1016/j.ijrefrig.2013.11.004
Lorenz, W. (1998). Design guidelines for a glazing with a seasonally dependent solar transmittance. Solar Energy, 63(2), 79-96. doi:
Louajari, M., Mimet, A., & Ouammi, A. (2011). Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon–ammonia pair. Applied Energy, 88(3), 690-698. doi:
Lowenstein, A., Slayzak, S., & Kozubal, E. (2006). A zero carryover liquid-desiccant air conditioner for solar applications. Paper presented at the ISEC2006 ASME International Solar Energy Conference, Denver, CO, USA.
Lu, Z., Wang, R., Xia, Z., & Gong, L. (2013). Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol. Energy Conversion and Management, 65, 430-437. doi: 10.1016/j.enconman.2012.09.018
Luo, H., Wang, R., & Dai, Y. (2010). The effects of operation parameter on the performance of a solar-powered adsorption chiller. Applied Energy, 87(10), 3018-3022. doi: 10.1016/j.apenergy.2010.03.013
Luo, Y., Zhang, L., Liu, Z., Wang, Y., Meng, F., & Wu, J. (2016). Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system. Applied Energy, 177, 25-39. doi: 10.1016/j.apenergy.2016.05.087
Luo, Y., Zhang, L., Liu, Z., Wu, J., Zhang, Y., & Wu, Z. (2018). Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates. Energy, 142, 384-399. doi: 10.1016/
Luo, Y., Zhang, L., Liu, Z., Wu, J., Zhang, Y., Wu, Z., & He, X. (2017). Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China. Energy, 140, 584-600. doi: 10.1016/
Ma, Y., Saha, S., Miller, W., & Guan, L. (2017). Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings. Energies, 10(10), 1463. doi: 10.3390/en10101463
Mach, T., Grobbauer, M., Streicher, W., & Müller, M. J. (2015). MPPF - The multifunctional plug & play approach in facade technology: Verlag d. Technischen Universität Graz.
Maerefat, M., & Haghighi, A. P. (2010). Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renewable Energy, 35(10), 2316-2324. doi: 10.1016/j.renene.2010.03.003
Maestre, I. R., Blázquez, J. L. F., Gallero, F. J. G., & Cubillas, P. R. (2015). Influence of selected solar positions for shading device calculations in building energy performance simulations. Energy and Buildings, 101, 144-152. doi: 10.1016/j.enbuild.2015.05.004
Mahesh, A. (2017). Solar collectors and adsorption materials aspects of cooling system. Renewable and Sustainable Energy Reviews, 73, 1300-1312. doi: 10.1016/j.rser.2017.01.144
Mahler, B., & Himmler, R. (2008). Results of the evaluation study DeAL - Decentralized facade integrated ventilation systems. Paper presented at the 8th International Conference for Enhanced Building Operations, Berlin, Germany.
Makaremi, N., Salleh, E., Jaafar, M. Z., & Ghaffarian, A. H. (2012). Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment, 48, 7-14. doi: 10.1016/j.buildenv.2011.07.024
Mallick, T. K., Eames, P. C., Hyde, T. J., & Norton, B. (2004). The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK. Solar Energy, 77(3), 319-327. doi:
Mandalaki, M., Zervas, K., Tsoutsos, T., & Vazakas, A. (2012). Assessment of fixed shading devices with integrated PV for efficient energy use. Solar Energy, 86(9), 2561-2575. doi:
Manzan, M. (2014). Genetic optimization of external fixed shading devices. Energy and Buildings, 72, 431-440. doi: 10.1016/j.enbuild.2014.01.007
Marc, O., Praene, J.-P., Bastide, A., & Lucas, F. (2011). Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors. Applied Thermal Engineering, 31(2-3), 268-277. doi: 10.1016/j.applthermaleng.2010.09.006
Mathiesen, B. V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P. A., Möller, B., . . . Hvelplund, F. K. (2015). Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, 139-154. doi: 10.1016/j.apenergy.2015.01.075
Maurer, C., Gasnier, D., Pflug, T., Plešec, P., Hafner, J., Jordan, S., & Kuhn, T. E. (2014). First Measurement Results of a Pilot Building with Transparent Façade Collectors. Energy Procedia, 48, 1385-1392. doi: 10.1016/j.egypro.2014.02.156
Maurer, C., Pflug, T., Di Lauro, P., Hafner, J., Knez, F., Jordan, S., . . . Kuhn, T. E. (2012). Solar Heating and Cooling with Transparent Façade Collectors in a Demonstration Building. Energy Procedia, 30(0), 1035-1041. doi:
Mayring, P. (2014). Qualitative content analysis. Theoretical foundation, basic procedures and software solution. Klagenfurt, Austria.
McNevin, C., & Harrison, S. J. (2017). Multi-stage liquid-desiccant air-conditioner: Experimental performance and model development. Building and Environment, 114, 45-55. doi: 10.1016/j.buildenv.2016.12.011
Mei, L., Infield, D., Eicker, U., Loveday, D., & Fux, V. (2006). Cooling potential of ventilated PV façade and solar air heaters combined with a desiccant cooling machine. Renewable Energy, 31(8), 1265-1278. doi:
Melendo, J. M. A., & La Roche, P. (2008). Effects of window size in daylighting and energy performance in buildings. Paper presented at the American Solar Energy Society - SOLAR 2008, Including Proc. of 37th ASES Annual Conf., 33rd National Passive Solar Conf., 3rd Renewable Energy Policy and Marketing Conf.: Catch the Clean Energy Wave.
Mirzaei, P. A., Paterna, E., & Carmeliet, J. (2014). Investigation of the role of cavity airflow on the performance of building-integrated photovoltaic panels. Solar Energy, 107(0), 510-522. doi:
Monné, C., Alonso, S., Palacín, F., & Serra, L. (2011). Monitoring and simulation of an existing solar powered absorption cooling system in Zaragoza (Spain). Applied Thermal Engineering, 31(1), 28-35. doi: 10.1016/j.applthermaleng.2010.08.002
Montagnino, F. M. (2017). Solar cooling technologies. Design, application and performance of existing projects. Solar Energy. doi: 10.1016/j.solener.2017.01.033
Moretti, E., & Belloni, E. (2015). Evaluation of energy, thermal, and daylighting performance of solar control films for a case study in moderate climate. Building and Environment. doi:
Morgado, I., Melero, S., Neila, J., & Acha, C. (2011). Evaporative cooling efficiency according to climate conditions. Procedia Engineering, 21, 283-290. doi: 10.1016/j.proeng.2011.11.2016
Mujahid Rafique, M., Gandhidasan, P., Ibrahim, N. I., & Bahaidarah, H. M. (2017). Recent Developments in Liquid Desiccant-Based Cooling Systems. 441-453. doi: 10.1016/b978-0-12-409548-9.10146-0
Mujahid Rafique, M., Gandhidasan, P., Rehman, S., & Al-Hadhrami, L. M. (2015). A review on desiccant based evaporative cooling systems. Renewable and Sustainable Energy Reviews, 45, 145-159. doi: 10.1016/j.rser.2015.01.051
MultiChill. (n.d.). MultiChill Technologies Inc. Retrieved April 7th, 2018, from
Munari-Probst, M. C., Roecker, C., & Schueler, A. (2005). Architectural integration of solar thermal collectors: results of a european survey. Paper presented at the ISES Solar World Congress, Orlando, USA.
Munari-Probst, M. C., & Roecker, C. e. (2012). Solar energy systems in architecture. Report T.41.A.2 IEA SHC Task 41 Solar energy and Architecture.
Munari Probst, M. C., & Roecker, C. (2007). Towards an improved architectural quality of building integrated solar thermal systems (BIST). Solar Energy, 81(9), 1104-1116. doi: 10.1016/j.solener.2007.02.009
Munters. (n.d.-a). DesiCool air conditioning - product brochure. Retrieved March 15th, 2018, from
Munters. (n.d.-b). Munters. Retrieved April 6th, 2018, from
Nadim, W., & Goulding, J. S. (2009). Offsite Production in the UK: The Construction Industry and Academia. Architectural Engineering and Design Management, 5(3), 136-152. doi: 10.3763/aedm.2008.0094
Nakahara, N., Miyakawa, Y., & Yamamoto, M. (1977). Experimental study on house cooling and heating with solar energy using flat plate collector. Solar Energy, 19, 657-662.
Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive Thermal Comfort: Principles and Practice: Taylor & Francis.
NIOSH. (n.d.). The National Institute for Occupational Safety and Health (NIOSH). Retrieved November 16th 2017, from
Nkwetta, D. N., & Smyth, M. (2012). Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors. Applied Energy, 98(0), 22-32. doi:
Noro, M., & Lazzarin, R. M. (2014). Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions. Energy(0). doi:
NREL. (n.d.-a). EnergyPlus. Retrieved September 16th, 2016, from
NREL. (n.d.-b). System advisor model (SAM). Retrieved January 24th, 2018, from
OECD/IEA. (2012). Technology Roadmap - Solar Heating and Cooling.
OECD/IEA. (2014). Technology Roadmap - Solar Photovoltaic Energy.
OECD/IEA. (2015). Energy and climate change / World Energy Outlook Special Report. Paris, France: IEA - International Energy Agency.
Olgyay, V., & Olgyay, A. (1963). Design With Climate: Bioclimatic Approach to Architectural Regionalism: Princeton University Press.
Orel, B., Spreizer, H., Šurca Vuk, A., Fir, M., Merlini, D., Vodlan, M., & Köhl, M. (2007). Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II). Solar Energy Materials and Solar Cells,
How to Cite
PRIETO HOCES, Alejandro. COOLFACADE. A+BE | Architecture and the Built Environment, [S.l.], n. 29, p. 304, nov. 2018. ISSN 2214-7233. Available at: <>. Date accessed: 17 jan. 2019. doi: