Gear shift optimization for off-road construction vehicles
DOI:
https://doi.org/10.18757/ejtir.2014.14.3.3031Abstract
This paper explores the possibility of using recorded road slope data in order to reduce fuel consumption for off-road construction vehicles such as articulated haulers. Road gradients have strong influence on the fuel consumption of a vehicle. This effect is even more significant on construction vehicles due to their large mass and heavy load. In this study, a control algorithm based on model predictive control and dynamic programming is formulated and solved to find an optimal gear shift sequence and time of shifting. The fuel consumption model of an articulated hauler is formulated with a dynamic model and used together with the travel time in the objective function to balance the trade-off between these two aspects. The proposed control algorithm is simulated on a typical road stretch on the construction work site with frequent steep up- and downhill. Simulation shows that both fuel consumption and travel time can be reduced simultaneously. In addition, the optimal gear shift sequence resembles the behaviour of an experienced driver.