Thinking- Skins
Cyber-physical systems as foundation for intelligent adaptive façades
DOI:
https://doi.org/10.7480/abe.2020.08.5035Abstract
Under the guiding concept of a thinking skin, the research project examines the transferability of cyber-physical systems to the application field of façades. It thereby opens up potential increases in the performance of automated and adaptive façade systems and provides a conceptual framework for further research and development of intelligent building envelopes in the current age of digital transformation.
The project is characterized by the influence of digital architectural design methods and the associated computational processing of information in the design process. The possible establishment of relationships and dependencies in an architecture understood as a system, in particular, are the starting point for the conducted investigation. With the available automation technologies, the possibility of movable building constructions, and existing computer-based control systems, the technical preconditions for the realisation of complex and active buildings exist today. Against this background, dynamic and responsive constructions that allow adaptations in the operation of the building are a current topic in architecture. In the application field of the building envelope, the need for such designs is evident, particularly with regards to the concrete field of adaptive façades. In its mediating role, the façade is confronted with the dynamic influences of the external microclimate of a building and the changing comfort demands of the indoor climate. The objective in the application of adaptive façades is to increase building efficiency by balancing dynamic influencing factors and requirements. Façade features are diverse and with the increasing integration of building services, both the scope of fulfilled façade functions and the complexity of today’s façades increase. One challenge is the coordination of adaptive functions to ensure effective reactions of the façade as a complete system. The ThinkingSkins research project identifies cyber-physical systems as a possible solution to this challenge. This involves the close integration of physical systems with their digital control. Important features are the decentralized organization of individual system constituents and their cooperation via an exchange of information. Developments in recent decades, such as the miniaturisation of computer technology and the availability of the Internet, have established the technical basis required for these developments. Cyber-physical systems are already employed in many fields of application. Examples are decentralized energy supply, or transportation systems with autonomous vehicles. The influence is particularly evident in the transformation of the industrial sector to Industry 4.0, where formerly mechatronic production plants are networked into intelligent technical systems with the aim of achieving higher and more flexible productivity.
In the ThinkingSkins research project it is assumed that the implementation of cyber-physical systems based on the role model of cooperating production plants in IIndustry 4.0 can contribute to an increase in the performance of façades. Accordingly, the research work investigates a possible transfer of cyber-physical systems to the application field of building envelopes along the research question:
How can cyber-physical systems be applied to façades, in order to enable coordinated adaptations of networked individual façade functions?
To answer this question, four partial studies are carried out, which build upon each other. The first study is based on a literature review, in which the understanding and the state-of-the-art development of intelligent façade systems is examined in comparison to the exemplary field of application of cyber-physical systems in the manufacturing industry. In the following partial study, a second literature search identifies façade functions that can be considered as components of a cyber-physical façade due to their adaptive feasibility and their effect on the façade performance. For the evaluation of the adaptive capabilities, characteristics of their automated and adaptive implementation are assigned to the identified façade functions. The resulting superposition matrix serves as an organizational tool for the third investigation of the actual conditions in construction practice. In a multiple case study, realized façade projects in Germany are examined with regard to their degree of automation and adaptivity. The investigation includes interviews with experts involved in the projects as well as field studies on site. Finally, an experimental examination of the technical feasibility of cyber-physical façade systems is carried out through the development of a prototype. In the sense of an internet of façade functions, the automated adaptive façade functions ventilation, sun protection as well as heating and cooling are implemented in decentrally organized modules. They are connected to a digital twin and can exchange data with each other via a communication protocol.
The research project shows that the application field of façades has not yet been exploited for the implementation of cyber-physical systems. With the automation technologies used in building practice, however, many technical preconditions for the development of cyber-physical façade systems already exist. Many features of such a system are successfully implemented within the study by the development of a prototype. The research project therefore comes to the conclusion that the application of cyber-physical systems to the façade is possible and offers a promising potential for the effective use of automation technologies. Due to the lack of artificial intelligence and machine learning strategies, the project does not achieve the goal of developing a façade in the sense of a true ThinkingSkin as the title indicates. A milestone is achieved by the close integration of the physical façade system with a decentralized and integrated control system. In this sense, the researched cyber-physical implementation of façades represents a conceptual framework for the realisation of corresponding systems in building practice, and a pioneer for further research of ThinkingSkins.
References
Addington, M. (2009). Contingent Behaviours. Architectural Design, 79, 12-17. doi:10.1002/ad.882
Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Proceedings of the 4th International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2015), 91, 269-275. doi:10.1016/j.egypro.2016.06.218
Aelenei, L., Brzezicki, M., Knaack, U., Luible, A., Perino, M., & Wellershoff, F. (2015). COST Action TU1403 - Adaptive Facades Network - Europe: TU Delft Open.
Al horr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., & Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5, 1-11. doi:10.1016/j.ijsbe.2016.03.006
Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A pattern language : towns, buildings, construction. New York: Oxford University Press.
Alexander, C., Koolhaas, R., & Obrist, H. U. (2008). Von fließender Systematik und generativen Prozessen [Of fluid systematics and generative processes]. Arch+, 189, 20-25.
Alhammadi, A., Alzaabi, A., Almarzooqi, B., Alneyadi, S., Alhashmi, Z., & Shatnawi, M. (2019). Survey of IoT-Based Smart Home Approaches.2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2019, 1-6. doi:10.1109/ICASET.2019.8714572
Anshuman, S. (2005). Responsiveness and Social Expression, Seeking Human Embodiment in Intelligent Façades. Smart Architecture: Integration of Digital and Building Technologies. Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture (ACADIA), Savannah, Georgia, 2005, 12-23. Retrieved from http://papers.cumincad.org/data/works/att/acadia05_012.content.pdf
Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., & Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165-182. doi:10.1016/j.enbuild.2018.09.017
Bähre, B. (2018). Building Information Modeling: The ’C’ in BIM. In M. Hemmerling & L. Cocchiarella (Eds.), Informed Architecture: Computational Strategies in Architectural Design (pp. 39-52). Cham: Springer International Publishing.
Bai, S. A. (2011). Artificial intelligence technologies in business and engineering.International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011), Chennai, 2011, 856-859. doi:10.1049/cp.2011.0486
Bakker, L. G., Hoes-van Oeffelen, E. C. M., Loonen, R. C. G. M., & Hensen, J. L. M. (2014). User satisfaction and interaction with automated dynamic facades: A pilot study. Building and Environment, 78, 44-52. doi:10.1016/j.buildenv.2014.04.007
Balance: HPP Architekten. (2013). (F. Maier-Solgk & H. H.-P. Partner Eds. Dt. Ausg. ed.). Ostfildern: Hatje Cantz.
Becker, E., Biesenbach, K., Humpert, K., & Schuler, M. (2012). Superferenz (E. Becker, K. Biesenbach, K. Humpert, R. Stegers, & E. Becker_Architekten Eds.). Ostfildern: Hatje Cantz.
Bitan, A. (1988). The methodology of applied climatology in planning and building. Energy and Buildings, 11, 1-10. doi:10.1016/0378-7788(88)90018-7BITKOM, VDMA, ZVEI: Umsetzungsstrategie Industrie 4.0. [Implementation Strategy Industry 4.0.] (2015). Retrieved from https://www.bitkom.org/sites/default/files/file/import/150410-Umsetzungsstrategie-0.pdf
Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira, E., Curado, M., . . . Rana, O. (2018). The Internet of Things, Fog and Cloud continuum: Integration and challenges. Internet of Things, 3-4, 134 - 155. doi:10.1016/j.iot.2018.09.005.
Bitterman, N., & Shach-Pinsly, D. (2015). Smart home - a challenge for architects and designers. Architectural Science Review, 58, 266-274. doi:10.1080/00038628.2015.1034649Blaser, W. (2004). Post tower: Helmut Jahn, Werner Sobek, Matthias Schuler. Basel: Birkhäuser.
Bogner, A., Littig, B., & Menz, W. (2014). Interviews mit Experten [Interviews with experts]. Wiesbaden: Springer VS Fachmedien Wiesbaden.
Böke, J. (2009). SunSys. (BA), Ostwestfalen-Lippe University of Applied Sciences, Detmold (Unpublished bachelor’s thesis).
Böke, J., Knaack, U., & Hemmerling, M. (2018). State-of-the-art of intelligent building envelopes in the context of intelligent technical systems. Intelligent Buildings International, 1-19. doi:10.1080/17508975.2018.1447437
Böke, J., Knaack, U., & Hemmerling, M. (2019). Superposition matrix for the assessment of performance-relevant adaptive façade functions. Journal of Facade Design and Engineering, 7(2), 1-20. doi:10.7480/jfde.2019.2.2463
Böke, J., Knaack, U., & Hemmerling, M. (2020). Automated adaptive façade functions in practice - Case studies on office buildings. Automation in Construction, 113, 103113. doi:10.1016/j.autcon.2020.103113
Brensing, C. (2012). Tief aus der Erde von Hannover. Zentrale des HDI-Gerling Konzerns [Deep from the ground of Hannover. Headquarters of the HDI-Gerling Group]. Bauwelt, 103, 24-29.
Brettel, M. , Friederichsen, N. , Keller, M. , Rosenberg, M. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. World Academy of Science, Engineering and Technology, Open Science Index 85, International Journal of Information and Communication Engineering, 8(1), 37 - 44. doi:10.5281/zenodo.1336426
Broy, M. (2010). Cyber-Physical Systems — Wissenschaftliche Herausforderungen Bei Der Entwicklung [Cyber-Physical Systems - Scientific challenges during the development]. In M. Broy (Ed.), Cyber-Physical Systems (pp. 17-31).
Berlin, Heidelberg: Springer Berlin Heidelberg.Building Information Modeling: Technology Foundations and Industry Practice. (2018). (A. Borrmann, M. König, C. Koch, & J. Beetz Eds.). Cham: Springer International Publishing.
Bullivant, L. (2006). Responsive environments : architecture, art, and design. London New York: V & A Publications ; Distributed in North America by Harry N. Abrams.
Carl, T. (2019). Ecologies of Skin and Depth. Deep Skin Architecture: Design Potentials of Multi-Layered Architectural Boundaries (pp. 13-53). Wiesbaden: Springer Fachmedien Wiesbaden.
Châlons, C., & Dufft, N. (2016). Die Rolle der IT als Enabler für Digitalisierung [The role of IT as an enabler for digitalization]. In F. Abolhassan (Ed.), Was treibt die Digitalisierung? Warum an der Cloud kein Weg vorbeiführt (pp. 27-37). Wiesbaden: Springer Fachmedien Wiesbaden.
Clements-Croome, T. D. J. (1997). What do we mean by intelligent buildings? Automation in Construction, 6, 395-400. doi:10.1016/S0926-5805(97)00018-6Compagno, A. (1999). Intelligente Glasfassaden: Material, Anwendung, Gestaltung [Intelligent glass façades: material, practice, design] (4th, rev. and enlarged ed ed.). Basel ; Boston: Birkhäuser-Verlag.Complex: die Architektur von KSP Engel und Zimmermann [Complex: the architecture by KSP Engel und Zimmermann]. (2004). (I. Flagge, P. Davey, & K. E. u. Z. A. GmbH Eds.). Ostfildern-Ruit: Hatje Cantz.
Çorak, B. H., Okay, F. Y., Güzel, M., Murt, S., & Ozdemir, S. (2018). Comparative Analysis of IoT Communication Protocols. 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, 2018, 1-6. doi:10.1109/ISNCC.2018.8530963
Cudzik, J., Nyka, L., & Iop. (2017). Reasons for Implementing Movement in Kinetic Architecture. World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium - Wmcaus, 245(4). doi: 10.1088/1757-899x/245/4/042073
Czichos, H. (2015). Mechatronik: Grundlagen und Anwendungen technischer Systeme [Mechatronics: Fundamentals and applications of technical systems] (3., überarb. u. erw. Aufl. 2015 ed.). Wiesbaden: Springer Fachmedien Wiesbaden GmbH.Dahl, T. (2010). Climate and architecture (1st ed ed.). Milton Park, Abingdon, Oxon ; New York, N.Y: Routledge.
Datta, S., & Sarkar, S. (2018). Automation, security and surveillance for a smart city: Smart, digital city. Proceedings of the 2017 IEEE Calcutta Conference, CALCON 2017. doi:10.1109/CALCON.2017.8280689
Davies, M. (1981). A Wall for All Seasons. RIBA Journal-Royal Institute of British Architects, 88(2), 55-57.
Dawson, L. (2011, 2011). Oval Offices, Cologne - Sauerbruch Huttom. ARCHITECTURAL RECORD, 199; Jg. 2011, 84-87.
Del Grosso, A. E., & Basso, P. (2010). Adaptive building skin structures. Smart Materials and Structures, 19. doi:10.1088/0964-1726/19/12/124011
Deplazes, A. (2013). Constructing architecture : materials, processes, structures : a handbook (Third, extended edition. ed.). Basel: Birkhäuser.
Design Methodology for Intelligent Technical Systems. (2014). (J. Gausemeier, F. J. Rammig, & W. Schäfer Eds.). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg.
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, (2010). Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32010L0031
Disch R. (1995). Heliotrope in Freiburg by Rolf Disch [Photograph]. Retrieved from http://www.rolfdisch.de/media-de/bildarchiv/#heliotrop
Domingues, P., Carreira, P., Vieira, R., & Kastner, W. (2016). Building automation systems: Concepts and technology review. Computer Standards & Interfaces, 45, 1-12. doi:10.1016/j.csi.2015.11.005
Douglas, J. (1996). Building performance and its relevance to facilities management. Facilities, 14, 23-32. doi:10.1108/02632779610112508
Drossel, W.-G., Kunze, H., Bucht, A., Weisheit, L., & Pagel, K. (2015). Smart3 – Smart Materials for Smart Applications. Procedia CIRP, 36, 211-216. doi:10.1016/j.procir.2015.01.055
Dumitrescu, R., Jürgenhake, C., & Gausemeier, J. (2012). Intelligent Technical Systems OstWestfalenLippe. Paper presented at the 1stJoint International Symposium on System-Integrated Intelligence 2012: New Challenges for Product and Production Engineering, Hannover. Retrieved from http://www.2012.sysint-conference.org/fileadmin/SysInt_Files/SysInt2012/Session1/Intelligent_Technical_Systems_OstWestfalenLippe_168_kui_schw_he.pdfEl-
Khoury, R., Marcopoulos, C., Moukheiber, C., & Adams, D. (2012). Make alive: protoypes for responsive architectures. Hong Kong: Oscar Riera Ojeda Publishers.
Elkhateeb, A. M., Fikry, M. A., & Mansour, A. A. (2018). Dynamic building and its impact on sustainable development. Alexandria Engineering Journal, 57(4), 4145-4155. doi:10.1016/j.aej.2018.10.016
Everything under control: building with biology. (2013). Amsterdam: Stichting Archis.Fassaden: best of Detail -Facades. (2015). (C. Schittich, S. Lenzen, & I. f. I. Architektur-Dokumentation Eds. 1. Aufl ed.). München: Inst. für Internationale Architektur-Dokumentation.Fassaden: Gebäudehüllen für das 21. Jahrhundert [Facades: Building envelopes for the 21st century]. (2010). (D. U. Hindrichs & W. Heusler Eds. 3., erw. Aufl ed.). Basel: Birkhäuser.
Favoino, F., Goia, F., Perino, M., & Serra, V. (2016). Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Solar Energy, 133, 226-248. doi:10.1016/j.solener.2016.03.044
Favoino, F., Jin, Q., & Overend, M. (2014). Towards an Ideal Adaptive Glazed Façade for Office Buildings. 6th International Conference on Sustainability in Energy and Buildings, SEB-14, 62, 289-298. doi:10.1016/j.egypro.2014.12.390
Fortmeyer, R. M., & Linn, C. D. (2014). Kinetic architecture : designs for active envelopes. Mulgrave, Victoria: Images Publishing Group.
Frazer, J. (1995). An evolutionary architecture. London: Architectural Association.From machine-to-machine to the Internet of things: introduction to a new age of intelligence. (2014). (J. Höller Ed.). Amsterdam: Elsevier Academic Press.
García-Gil, D., Luengo, J., García, S., & Herrera, F. (2019). Enabling Smart Data: Noise filtering in Big Data classification. Information Sciences, 479, 135-152. doi:10.1016/j.ins.2018.12.002
Gausemeier, J., Anacker, H., Czaja, A. M., Wassmann, H., & Dumitrescu, R. (2013). Auf dem Weg zu intelligenten technischen Systemen [On the way to intelligent technical systems]. In 9. Paderborner Workshop Entwurf mechatronischer Systeme, 310, Paderborn: Verlagsschriftenreihe des Heinz Nixdorf Instituts.
Givoni, B. (1976). Man, climate and architecture. London: Applied Science Publishers
González, B., Holl, C., Fuhrhop, D., & Dale, M. (2010). KfW Westarkade Frankfurt am Main: energy-efficient office building. Berlin: Stadtwandel-Verlag.
Görz, G., & Schneeberger, J. (2003). Handbuch der künstlichen Intelligenz [Artificial intelligence manual]. München: De Gruyter Oldenbourg.
Granzer, W., Praus, F., & Kastner, W. (2010). Security in Building Automation Systems. IEEE Transactions on Industrial Electronics, 57(11), 3622-3630. doi:10.1109/TIE.2009.2036033
Gruber, P., & Gosztonyi, S. (2010). Skin in architecture: towards bioinspired facades. Paper presented at the DESIGN AND NATURE 2010. doi:10.2495/DN100451
Gruber, T. (2009). Ontology. In L. Liu & M. T. ÖZsu (Eds.), Encyclopedia of Database Systems (pp. 1963-1965). Boston, MA: Springer US.
Gudivada, V. N. (2016). Chapter 1 - Cognitive Computing: Concepts, Architectures, Systems, and Applications. In V. N. Gudivada, V. V. Raghavan, V. Govindaraju, & C. R. Rao (Eds.), Handbook of Statistics(Vol. 35, pp. 3-38): Elsevier. doi:10.1016/bs.host.2016.07.004
Haake, A., Scott, G. A., & Holbrook, K. A. (2001). Structure and function of the skin: overview of the epidermis and dermis. In R.K. Freinkel & D.T. Woodley (Eds.), The biology of the skin. 19-45. New York: Parthenon Pub. Group.
Hartkopf, V., & Loftness, V. (1999). Global relevance of total building performance. Automation in Construction, 8 (4), 377-393. doi:10.1016/S0926-5805(98)00085-5
Hasselaar, B. (2013). The comfort unit: developed as part of a climate adaptive skin (Doctoral thesis). Retrieved from https://repository.tudelft.nl/islandora/object/uuid:83f692c1-38a5-4fbf-8138-d78346d046db. doi:10.4233/uuid:83f692c1-38a5-4fbf-8138-d78346d046db
Hauschild, M., & Karzel, R. (2010). Digitale Prozesse: Planung, Gestaltung, Fertigung [Digital processes: Planning, design, production] (1. Aufl ed.). München: Inst. für Internat. Architektur-Dokumentation.
Hausladen, G., de Saldanha, M., Liedl, P., & Sager, C. (2005). Climate design: solutions for buildings that can do more with less technology. Basel, Switzerland: Birkhäuser.
Hausladen, G., Liedl, P., & Saldanha, M. d. d. (2012). Klimagerecht bauen: ein Handbuch [Building to Suit the Climate: A Handbook]. Basel: Birkhäuser.
Hausladen, G., Saldanha, M. d., & Liedl, P. (2008). Climateskin: concepts for building skins that can do more with less energy. Basel; Boston: Birkhäuser.
Haykin, S., Amiri, A., & Fatemi, M. (2014). Cognitive control in cognitive dynamic systems: A new way of thinking inspired by the brain.2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Orlando, FL, 2014. 1-7. doi:10.1109/ADPRL.2014.7010623
Hemmerling, M. (2018). Informed Architecture. In M. Hemmerling & L. Cocchiarella (Eds.), Informed Architecture: Computational Strategies in Architectural Design (pp. 3-10). Cham: Springer International Publishing.
Hemmerling, M., & Böke, J. (2014). SunSys - A Case Study on Geometric Complexity in Computational Design. Paper presented at the 16th International Conference on Geometry and Graphics, Innsbruck, 2014.
Hemmerling, M., Nether, U., & Böke, J. (2018). SunSys. In M. Hemmerling & L. Cocchiarella (Eds.), Informed Architecture (pp. 129-138). Cham: Springer International Publishing.
Herwan, J., Kano, S., Oleg, R., Sawada, H., & Kasashima, N. (2018). Cyber-physical system architecture for machining production line. 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, 2018, 387-391. doi:10.1109/ICPHYS.2018.8387689
Herzog, T., Krippner, R., & Lang, W. (2004). Facade construction manual. Basel; Boston: Birkhauser-Publishers for Architecture.Hicks, M. (2006). Milwaukee art museum by Santiago Calatrava [Photograph]. Retrieved from https://upload.wikimedia.org/wikipedia/commons/7/79/Milwaukee_Art_Museum_1_%28Mulad%29.jpg
Hoffmann, D., Folkmer, B., & Manoli, Y. (2010). Multi-parameter optimization of electrostatic micro-generators using design optimization algorithms. Smart Materials and Structures, 19(11).doi:10.1088/0964-1726/19/11/115016
Hu, L., Xie, N., Kuang, Z., & Zhao, K. (2012). Review of cyber-physical system architecture. 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Shenzhen, Guangdong, 2012. 25-30. doi:10.1109/ISORCW.2012.15ICD University of Stuttgart (2012). HygroScope: Meteorosensitive Morphology [Photograph]. Retrieved from https://www.icd.uni-stuttgart.de/projects/hygroscope-meteorosensitive-morphology/
Inhabitat (2014). Responsive façade of the Al Bahr towers in Abu Dhabi by Aedas Architects [Photograph]. Retrieved from https://www.flickr.com/photos/inhabitat/12330988375/sizes/l/Intelligent - definition of intelligent in English | Oxford Dictionaries. (2017). Oxford Dictionaries | English.
Interactive architecture: adaptive world. (2016). (M. Fox Ed. First edition ed.). New York: Princeton Architectural Press.Jencks, C. (1997). Nonlinear Architecture. In M. Carpo (Ed.), The Digital Turn in Architecture 1992-2012 (pp. 80-107). Hoboken, NJ, USA: John Wiley & Sons, Inc.
Joncas, R. MQTT and CoAP, IoT Protocols | The Eclipse Foundation. Retrieved November 11, 2019, from https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
Kaelbling, L. P. (1987). An architecture for intelligent reactive systems. Reasoning about actions and plans, 1(2), 395-410.
Kagermann, H., Wahlster, W., & Helbig, J. ( 2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Final report of the Industrie 4.0 Working Group. Retrieved from: https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
Karanouh, A., & Kerber, E. (2015). Innovations in dynamic architecture. Journal Of Facade Design And Engineering, 3(2), 185-221. doi:10.7480/jfde.2015.2.1017
Kast, F. E., & Rosenzweig, J. E. (1972). General Systems Theory: Applications for Organization and Management. The Academy of Management Journal, 15(4), 447-465. doi:10.2307/255141
Kastner, W., Neugschwandtner, G., Soucek, S., & Newman, H. M. (2005). Communication systems for building automation and control. Proceedings of the IEEE, 93(6), 1178-1203. doi:10.1109/Jproc.2005.849726
Kawaguchi, R., & Bandai, M. (2019). A Distributed MQTT Broker System for Location-based IoT Applications. 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, 1-4. doi:10.1109/ICCE.2019.8662069
Kirste, M., & Schürholz, M. (2019). Einleitung: Entwicklungswege zur KI [Introduction: Development paths to AI]. In V. Wittpahl (Ed.), Künstliche Intelligenz: Technologie | Anwendung | Gesellschaft (pp. 21-35). Vieweg, Berlin, Heidelberg: Springer.
Klein, T. (2013). Integral Facade Construction: Towards a new product architecture for curtain walls (Doctoral thesis). Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3Af90c1c7e-b6b3-42de-8f17-22cc23981de7
Knaack, U., Hildebrand, L., Ashour, A., Pottgiesser, U., Böke, J., & Ernst, M. (2016). Prototyping efnMobile. Rotterdam: Nai010 Publishers.
Knaack, U., Klein, T., Bilow, M., & Auer, T. (2014). Façades: principles of construction (Second and revised edition ed.). Basel: Birkhäuser.
Kolarevic, B. (2003). Architecture in the digital age : design and manufacturing. New York, NY: Spon Press.Kolarevic, B. (2015). Towards Architecture of Change. In B. Kolarevic & V. Parlac (Eds.), Building dynamics : exploring architecture of change (pp. 2-16). London ; New York: Routledge.
Kretzer, M., & Hovestadt, L. (2014). Alive : advancements in adaptive architecture. Basel: Birkäuser.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016 - 1022. doi:10.1016/j.ifacol.2018.08.474
Kroner, W. M. (1997). An intelligent and responsive architecture. Automation in Construction, 6(5-6), 381-393. doi:10.1016/S0926-5805(97)00017-4
Kucera, A., & Pitner, T. (2016). Semantic BMS: Ontology for Analysis of Building Automation Systems Data. Technological Innovation for Cyber-Physical Systems, 470, 46-53. doi:10.1007/978-3-319-31165-4_5
Le Corbusier, Cohen, J.-L., & Goodman, J. (2007). Toward an architecture. Los Angeles, Calif.: Getty Research Institute.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539
Lee, E. A. (2008). Cyber Physical Systems: Design Challenges. 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC) 2008, 363-369. doi:10.1109/ISORC.2008.25
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. doi:10.1016/j.mfglet.2014.12.001
Lee, S., Kim, H., Hong, D., & Ju, H. (2013). Correlation analysis of MQTT loss and delay according to QoS level. The International Conference on Information Networking 2013 (ICOIN), Bangkok, 2013, 714-717. doi:10.1109/ICOIN.2013.6496715
Lexcellent, C. (2019). Artificial Intelligence. In C. Lexcellent (Ed.), Artificial Intelligence versus Human Intelligence: Are Humans Going to Be Hacked? (pp. 5-21). Cham: Springer International Publishing.
Lignarolo, L. E. M., Lelieveld, C. M. J. L., & Teuffel, P. (2011). Shape morphing wind-responsive facade systems realized with smart materials. Paper presented at the Adaptive Architecture: An International Conference London, UK. Retrieved from http://resolver.tudelft.nl/uuid:be165d55-9acb-4f1a-9cc1-5685d33676f1
Loonen, R.C.G.M., Trcka, M., Costla, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable & Sustainable Energy Reviews, 25, 483-493. doi:10.1016/j.rser.2013.04.016
Loonen, R. C. G. M., Favoino, F., Hensen, J. L. M., & Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205-223. doi:10.1080/19401493.2016.1152303
Loonen, R. C. G. M., Rico-Martinez, J. M., Favoino, F., Brzezicki, M., Menezo, C., La Ferla, G., & Aelenei, L. (2015). Design for façade adaptability: Towards a unified and systematic characterization. Paper presented at the 10th Conference on Advanced Building Skins, Bern, Switzerland.1284-1294. Munich: Economic Forum. Retrieved from https://pure.tue.nl/ws/portalfiles/portal/8287122/15_abs_loonen.pdf
Macias-Escriva, F. D., Haber, R., del Toro, R., & Hernandez, V. (2013). Self-adaptive systems: A survey of current approaches, research challenges and applications. Expert Systems with Applications, 40, 7267-7279. doi:10.1016/j.eswa.2013.07.033
Maeda, J. (2019). How to speak machine : computational thinking for the rest of us. New York: Portfolio.
Mathews, S. (2005). The Fun Palace: Cedric Price’s experiment in architecture and technology. Technoetic Arts, 3(2), 73-92. doi:10.1386/tear.3.2.73/1
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12. doi: 10.1609/aimag.v27i4.1904
Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4(2), 159-165. doi:10.1016/j.foar.2015.03.002
Menges, A., & Ahlquist, S. (2011). Computational design thinking: computation design thinking: John Wiley & Sons.
Menges, A., Reichert, S., & Krieg, O. D. (2014). Meteorosensitive Architectures. In M. Kretzer & L. Hovestadt (Eds.), Meteorosensitive Architectures. ALIVE: Advancements in adaptive architecture (pp. 39–42). Basel: Birkäuser.
Merz, H., Hansemann, T., & Hubner, C. (2009). Introduction to Building Automation. Building Automation, 1-25. doi:10.1007/978-3-540-88829-1_1
Möllering, C. (2017). A platform for autonomous, facade integrated room control (Doctoral thesis). Aachen: Apprimus Verlag.
Moloney, J. (2011). Designing Kinetics for Architectural Facades: State Change. Abingdon, Oxon: Routledge.
Monedero, J. (2000). Parametric design: a review and some experiences. Automation in Construction, 9(4), 369-377. doi:10.1016/S0926-5805(99)00020-5
Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9-13. doi:10.1016/j.procir.2014.03.115
Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., . . . Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals - Manufacturing Technology, 65(2), 621-641. doi:10.1016/j.cirp.2016.06.005mppf - The multifunctional plug&play approach in facade technology. (2015). (T. Mach, M. Grobbauer, W. Streicher, & M. J. Müller Eds.). Graz: Verlag der Technischen Universität Graz.
MQTT Version 5.0. (15 May 2018). Retrieved from http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
Murphy, I. (1990). Intelligent Buildings. ARCH+, 104, 26-31.
Negri, E., Fumagalli, L., & Macchi, M. (2017). A Review of the Roles of Digital Twin in CPS-based Production Systems. 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30 June 2017, Modena, Italy, 11, 939-948. doi:10.1016/j.promfg.2017.07.198
Ochoa, C. E., & Capeluto, I. G. (2008). Strategic decision-making for intelligent buildings: Comparative impact of passive design strategies and active features in a hot climate. Building and Environment, 43, 1829-1839. doi:10.1016/j.buildenv.2007.10.018
OECD (2018), OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption. Paris: OECD Publishing. doi:10.1787/sti_in_outlook-2018-en.
Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, 121-139. doi:10.1016/j.compind.2016.09.006
Ott P. (2007). Kiefer Technic Showroom [Photograph]. Retrieved from https://www.graz-cityofdesign.at/images_dynam/image_zoomed/paul-ott_detail02.jpg
Oxman, R. (2017). Parametric design thinking. Design Studies, 52, 1-3. doi:10.1016/j.destud.2017.07.001Pask, G. (1969). The architectural relevance of cybernetics. Architectural Design, 39(9), 494-496.
Plotczyk, M., & Higgins, C. A. (2019). 1 - Skin biology. In E. García-Gareta (Ed.), Biomaterials for Skin Repair and Regeneration (pp. 3-25): Woodhead Publishing.
Preston, J. (2012). What Are Computers (If They’re not Thinking Things)?. In Cooper S.B., Dawar A., Löwe B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, 7318. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-30870-3_61Projects 2010 / KSP Jürgen Engel Architekten. (2010). (KH & L. O. Stapler Eds.). Braunschweig: Ruth Printmedien GmbH.
Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next computing revolution. Proceedings of the 47th Design Automation Conference, DAC ’10 (pp. 731-736). doi: 10.1145/1837274.1837461
Ranft, F., & Frohn, B. (2004). Natürliche Klimatisierung [Natural climatisation]. Basel: Birkhäuser.
Raskin, V. (2015). Theory, Methodology, and Implementation of Robotic Intelligence and Communication. Procedia Computer Science, 56, 508-513. doi:10.1016/j.procs.2015.07.243
Reas, C., McWilliams, C., & LUST. (2010). Form+code in design, art, and architecture (1st ed.). New York: Princeton Architectural Press.
Ritter, A. (2007). Smart Materials in Architektur, Innenarchitektur und Design [Smart materials in architecture, interior architecture and design]. Basel: Birkhäuser - Verlag für Architektur.
Romano, R., Aelenei, L., Aelenei, D., & Mazzucchelli, E. S. (2018). What is an adaptive façade? Analysis of recent terms and definitions from an international perspective. Journal of Facade Design and Engineering, 6(3), 065-076. doi:10.7480/jfde.2018.3.2478
Rösing, I., Price, D. J. S., & International Council for Science Policy Studies. (1977). Science, technology, and society: A cross-disciplinary perspective. London: SAGE Publications.
Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value. Systems Engineering, 11, 246-262. doi:10.1002/sys.20098
Sala, M. (1994). The intelligent envelope: The current state of the art. Renewable Energy, 5(5–8), 1039-1046. doi:10.1016/0960-1481(94)90131-7
Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019). State of the Art in Building Façades. In A. Sandak, J. Sandak, M. Brzezicki, & A. Kutnar (Eds.), Bio-based Building Skin (pp. 1-26). Singapore: Springer Singapore.
Schittich, C., Staib, G., Balkow, D., Schuler, M., & Sobek, W. (1998). Glasbau Atlas [Glass construction manual]. München: Institut für internationale Architektur-Dokumentation.
Schumacher, M., Schaeffer, O., & Vogt, M.-M. (2009). Move: dynamic components and elements in architecture. Basel: Birkhäuser.
Schumacher, P. (2009). Parametricism: A New Global Style for Architecture and Urban Design. Architectural Design, 79(4), 14-23. doi:10.1002/ad.912
Senagala, M. (2006). Rethinking Smart Architecture: Some Strategic Design Frameworks. International Journal of Architectural Computing, 4(3), 33-46. doi:10.1260/147807706778658838
Sher, E., Chronis, A., & Glynn, R. (2014). Adaptive behavior of structural systems in unpredictable changing environments by using self-learning algorithms: A case study. Simulation-Transactions of the Society for Modeling and Simulation International, 90, 991-1006. doi:10.1177/0037549714543090
Sobek, W., & Teuffel, P. (2001). Adaptive systems in architecture and structural engineering. Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials, 2001, Newport Beach, CA, United States. doi:10.1117/12.434141
Song, N., & Ma, Y. (2010). Discussion on research and development of artificial intelligence. 2010 IEEE International Conference on Advanced Management Science (ICAMS 2010), Chengdu, 2010, 110-112. doi:10.1109/ICAMS.2010.5553039
Sovacool, B. K., & Furszyfer Del Rio, D. D. (2020). Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and Sustainable Energy Reviews, 120, 109663. doi:10.1016/j.rser.2019.109663
Stake, R. E. (2005). Multiple Case Study Analysis. New York: Guilford Publications.Statik. (n.d.). In Duden online. Retrieved August 07, 2019 from https://www.duden.de/node/172919/revision/172955
Sutherland, I. E. (1964). Sketchpad a Man-Machine Graphical Communication System. SIMULATION, 2(5), R-3-R-20. doi:10.1177/003754976400200514
Tekic, Z., & Koroteev, D. (2019). From disruptively digital to proudly analog: A holistic typology of digital transformation strategies. Business Horizons, 62(6), 683-693. doi:10.1016/j.bushor.2019.07.002
Terzidis, K. (2006). Algorithmic architecture (1st ed.). Amsterdam ; Boston: Architectural Press.
Toro, C., Barandiaran, I., & Posada, J. (2015). A Perspective on Knowledge Based and Intelligent Systems Implementation in Industrie 4.0. Proceedings of Knowledge-Based and Intelligent Information & Engineering Systems 19th Annual Conference, KES-2015, Singapore, September 2015, 60, 362-370. doi:10.1016/j.procs.2015.08.143
Trummer, P. (2011). Associative Design: From Type to Population. In A. Menges & S. Ahlquist (Eds.), Computational Design Thinking (pp. 179-197). London: Wiley.
Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. doi:10.1093/mind/LIX.236.433
van den Dobbelsteen, A., van Timmeren, A., & van Dorst, M. (2009). Smart Building in a Changing Climate. Amsterdam: Techne Press.
Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., . . . Abogharaf, A. (2016). Machine-to-Machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83-105. doi:10.1016/j.jnca.2016.02.016
Wang, L., Torngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527. doi:10.1016/j.jmsy.2015.04.008
Wang, Y., & Zatarain, O. A. (2018). Design and Implementation of a Knowledge Base for Machine Knowledge Learning.2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Berkeley, CA, 2018, 70-77. doi:10.1109/ICCI-CC.2018.8482034
Wegner, P., & Goldin, D. (2003). Computation beyond turing machines. Communications of the ACM, 46(4), 100–102. doi:10.1145/641205.641235
Weiss, K.-D. (2010). Gatermann + Schossig: Raum Kunst Technik [Gatermann + Schossig: Space Art Technology]. Basel: Birkhäuser.
Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0 - Standardization as the crucial challenge for highly modular, multi-vendor production systems.15th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2015, 48, 579-584. doi:10.1016/j.ifacol.2015.06.143
Wiedermann J. (2012) On the Road to Thinking Machines: Insights and Ideas. In: Cooper S.B., Dawar A., Löwe B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-30870-3_74
Wigginton, M., & Harris, J. (2002). Intelligent Skins. Oxford: Butterworth-Heinemann.
Winterstetter, T., & Sobek, W. (2013). Innovative and energy-efficient Façade technology for the KfW Westarkade Highrise in Frankfurt/Main. Stahlbau, 82, 35-46. doi:10.1002/stab.201390076
Wolf, M. (2012). Chapter 1 - Embedded Computing. In M. Wolf (Ed.), Computers as Components (Third Edition) (pp. 1-50). Boston: Morgan Kaufmann.
Wong, J. K. W., Li, H., & Wang, S. W. (2005). Intelligent building research: a review. Automation in Construction, 14, 143-159. doi:10.1016/j.autcon.2004.06.001
Woodbury, R. (2010). Elements of parametric design. London ; New York, NY: Routledge.
Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE Access, 6, 78238-78259. doi:10.1109/ACCESS.2018.2884906
Yang, J., & Peng, H. (2001). Decision support to the application of intelligent building technologies. Renewable Energy, 22(1–3), 67-77. doi:10.1016/S0960-1481(00)00085-9
Yang, S., & Chen, Y. (2013). The M2M Connectivity Framework: Towards an IoT Landscape.2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, 2013, pp. 572-579. doi:10.1109/GreenCom-iThings-CPSCom.2013.108
Yaqoob, I., Ahmed, E., Hashem, I. A. T., Ahmed, A. I. A., Gani, A., Imran, M., & Guizani, M. (2017). Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE wireless communications, 24(3), 10-16. doi:10.1109/MWC.2017.1600421
Yiannoudes, S. (2016). Architecture and adaptation: from cybernetics to tangible computing. New York: Routledge, Taylor & Francis Group.
Yin, R. K. (2017). Case Study Research and Applications: Design and Methods (6th edition ed.). Los Angeles: Sage Publications Ltd.
Yu, L., Kin-Fai, T., Xiangdong, Q., Ying, L., & Xuyang, D. (2017). Wireless Mesh Networks in IoT networks.2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, 2017, pp. 183-185. doi:10.1109/iWEM.2017.7968828
Zacchia Lun, Y., D’Innocenzo, A., Smarra, F., Malavolta, I., & Di Benedetto, M. D. (2019). State of the art of cyber-physical systems security: An automatic control perspective. Journal of Systems and Software, 149, 174-216. doi:10.1016/j.jss.2018.12.006
Zaera-Polo, A., Trüby, S., Koolhaas, R., Boom, I., & AMO Harvard Graduate School of Design. (2014). Façade. (Elements. a series of 15 books accompanying the exhibition elements of architecture at the 2014 Venice Architecture Biennale.)
Zhaoguang, H. (1999). Intelligent space.FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), Seoul, South Korea, 1999, 3, 1621-1625. doi:10.1109/FUZZY.1999.790147