Using spatial indicators to predict ventilation and energy performance: Correlation analysis for an apartment building in five Chinese cities

  • Xiaoyu Du TU Delft, Architecture and the Built Environment
  • Regina Bokel TU Delft, Architecture and the Built Environment
  • Andy van den Dobbelsteen TU Delft, Architecture and the Built Environment


In the early design stages, architects are in constant search of a design direction that can determine the success or failure of the final design. However, in real design practice, most of the prediction methods for building performances, in this paper energy and thermal comfort, are utilised in the later design stages. Spatial configuration is one of the most important issues for architectural design in the early design stage. This study investigates the correlations between the spatial indicators connected with architectural design and the building physics indicators ventilation performance and energy performance. The main objective is to explore the potential of applying spatial indicators using space syntax to predict ventilation performance and energy performance in order to support architects for the evaluation of their concept and schemes in early design stage. The layout of a high-rise apartment in China in five different cities is chosen as a case study. The results show that the selected three indicators: connectivity value, air change rate and annual cooling saving ratio are linearly correlated, not just at building level but also at room level. R2, the correlation coefficient of determination, is between 0.53 and 0.90 (except for the case of Chongqing at building level).


AIA. (2012). An architect’s guide to integrating energy modeling in the design process. The American Institute of Architecture

AlAnzi, A., Seo, D., & Krarti, M. (2009). Impact of building shape on thermal performance of office buildings in Kuwait. Energy Conversion and Management, 50(3), 822-828. doi: 10.1016/j.enconman.2008.09.033

Appleton, J. (1975). The Experience of Landscape London: John Wiley and Sons.

Attia, S., Gratia, E., De Herde, A., & Hensen, J. L. M. (2012). Simulation-based decision support tool for early stages of zero-energy building design. Energy and Buildings, 49, 2-15. doi: 10.1016/j.enbuild.2012.01.028

Benedikt, M. L. (1979). To take hold of space: isovists and isovist fields. Environment and planning B, 6, 47-65.

Chen, Q. (2009). Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment, 44(4), 848-858. doi: 10.1016/j.buildenv.2008.05.025

Choi, A., Kim, Y., Oh, E., & Kim, Y. (2006). Application of the space syntax theory to quantitative street lighting design. Building and Environment, 41(3), 355-366. doi: 10.1016/j.buildenv.2005.01.026

Choi, Y. (2013). Comparative Evaluation of Unit Layout Alternatives in Plan-Extension Remodeling of

Domestic Korean Apartment. Journal of Asian Architecture and Building Engineering, 12(2), 205-212.

Cooper, V. A. (1998). Occupancy Comfort and Energy Consumption in Naturally Ventilated and Mixed Mode Office Buildings UMIST.

Dawes, M. J., & Ostwald, M. J. (2014). Prospect-Refuge theory and the textile-block houses of Frank Lloyd Wright: An analysis of spatio-visual characteristics using isovists. Building and Environment, 80, 228-240. doi: 10.1016/j.buildenv.2014.05.026

Depecker, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. Building and Environment, 36, 627–635.

Dursun, P. (2007). SPACE SYNTAX IN ARCHITECTURAL DESIGN. Paper presented at the 6th International Space Syntax Symposium, İstanbul.

Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272-288. doi:

Franz, G., & Wiener, J. M. (2008). From space syntax to space semantics: a behaviorally and perceptually oriented methodology for the efficient description of the geometry and topology of environment. Environment and Planning B:Planning and Design, 35, 574-592.

Hillier, B. (1999). The hidden geometry of deformed grids or, why space syntax works, when it looks as though it shouldn’t. Environment and Planning 26, 169-191.

Hillier, B. (2009). Spatial Sustainability in Cities Organic Patterns and Sustainable Forms. Paper presented at the The 7th International Space Syntax Symposium, Stockholm.

Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge Cambridge University Press.

Hillier, B., Hanson, J., & Graham, H. (1987). Ideas are in things: an application of the space syntax method to discovering house genotypes. Environment and Planning 14, 363-385.

Hillier, B., & Shinichi, I. (2005). Network and Psychological Effects in Urban Movement. In G. C. Anthony & M. M. David (Eds.), Spatial Information Theory (pp. 475–490). Ellicottville: Springer.

Hiyama, K., & Glicksman, L. (2015). Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States. Energy, 89, 655-666. doi: 10.1016/

Julienne, H. (1998). Decoding houses and homes. Cambridge Cambridge University Press.

Li, Y., & Li, X. (2014). Natural ventilation potential of high-rise residential buildings in northern China using coupling thermal and airflow simulations. Building Simulation, 8(1), 51-64. doi: 10.1007/s12273-014-0188-1

Liu, L., Lin, B., & Peng, B. (2015). Correlation analysis of building plane and energy consumption of high-rise office building in cold zone of China. Building Simulation, 8(5), 487-498. doi: 10.1007/s12273-015-0226-7

Mishra, A. K., & Ramgopal, M. (2013). Field studies on human thermal comfort — An overview. Building and Environment, 64, 94-106. doi: 10.1016/j.buildenv.2013.02.015

Schulze, T., & Eicker, U. (2013). Controlled natural ventilation for energy efficient buildings. Energy and Buildings, 56, 221-232. doi: 10.1016/j.enbuild.2012.07.044

Wang, W., Rivard, H., & Zmeureanu, R. (2006). Floor shape optimization for green building design. Advanced Engineering Informatics, 20(4), 363-378. doi: 10.1016/j.aei.2006.07.001

Wiener, J. M., & Franz, G. (2005). Isovists as a means to predict spatial experience and behavior Spatial Cognition IV. Reasoning, Action, Interaction (pp. 42-57): Springer.

Yi, Y. K., & Malkawi, A. M. (2009). Optimizing building form for energy performance based on hierarchical geometry relation. Automation in Construction, 18(6), 825-833. doi: 10.1016/j.autcon.2009.03.006

Zhang, H., Arens, E., Fard, S. A., Huizenga, C., Paliaga, G., Brager, G., & Zagreus, L. (2007). Air movement preferences observed in office buildings. [Research Support, Non-U.S. Gov’t

Research Support, U.S. Gov’t, Non-P.H.S.]. Int J Biometeorol, 51(5), 349-360. doi: 10.1007/s00484-006-0079-y

Zhang, M. (2010). Analysis of the potential of building annual energy-saving using natural ventilation. Paper presented at the the 7th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Syracuse, USA.

Author Biography

Xiaoyu Du, TU Delft, Architecture and the Built Environment

Xiaoyu Du obtained his MSc in Building Technology at Chongqing University, China. From 2002 to present, he taught at the department of building technology, Faculty of Architecture and Urban Planning, Chongqing University. He is an associate professor in Chongqing university currently. He has a long experience of teaching in multidisciplines related to architectural design and designing practice. He teaches complex building design, building construction, detailed design and green building innovation related technologies for undergraduate and graduate students. He participated and finished some education and research projects, and published papers and book chapters. He also finished many design projects for residential communities and public buildings in China. He joined the faculty of architecture and the built environment, TU Delft as a guest researcher in 2011.


How to Cite
DU, Xiaoyu; BOKEL, Regina; VAN DEN DOBBELSTEEN, Andy. Using spatial indicators to predict ventilation and energy performance. A+BE | Architecture and the Built Environment, [S.l.], n. 10, p. 207-238, nov. 2019. ISSN 2214-7233. Available at: <>. Date accessed: 25 feb. 2020. doi: