
Gamma-range oscillations evoked by Optogenetic 
stimulation - an in silico study 

 

Meriam MALEKZADEH 
University of Antwerp 

Meriam.Malekzadeh@student.uantwerpen.be  

Supervisor: Prof. Dr. Michele GIUGLIANO 

University of Antwerp  

michele.giugliano@uantwerpen.be 

 
 

ABSTRACT 

Gamma-range oscillations are repetitive neuronal 

activation in various regions of the brain, displaying 

prominent energy distribution in the 30-90 Hz frequency 

band. It is shown that these oscillations emerge through 

excitatory-inhibitory neuronal interplay, but their 

mechanisms and functions remain unknown. Therefore, it 

is necessary to simplify the in vivo complexity. This has 

been accomplished by the host laboratory, which 

reproduced these rhythms in an in vitro model of cortical 

microcircuitry using Optogenetic tools and suggested a 

simple firing-rate mathematical model. Since Optogenetics 

influences synaptic efficacy, I propose an extension of this 

mathematical model by dynamical properties of synaptic 

transmission. 
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INTRODUCTION 

Neuronal signals in the gamma frequency band (30-90 Hz) 

started to attract considerable attention in neurosciences 

since it was demonstrated to correlate with perceptual 

binding. Intriguingly, gamma-range oscillations (GROs) 

are often observed during waking and sleep states, but their 

function and mechanisms remain unknown despite a large 

amount of published studies. They have been reported in 

many regions of the neocortex1-4, olfactory bulb5, 

entorhinal cortex6, hippocampus7,8, amygdala9,10, 

striatum11,12, thalamus13, and other regions; and they are 

evoked or induced by various stimuli or tasks. Diverse 

gamma-band oscillatory processes are involved in different 

functions, including but not limited to, perceptual binding2, 

attention14,15, arousal16, object recognition17,18 and language 

perception19,20. So GROs are not highly specific correlates 

of a single process, but rather linked with multiple 

functions. Hence, GROs might be important building 

blocks of brain’s electrical activity and probably serve as an 

universal code of CNS communication21. Furthermore, 

gamma activity is altered in some diseases such as 

schizophrenia22,23 and bipolar disorder24. Since GROs seem 

to be a fundamental and elementary process in the whole-

brain operation, and affected in some neuropsychiatric 

disorders; it is of great importance to understand and predict 

the generation of gamma rhythms (GGR).  

Besides controversies and debates on the mechanistic 

explanation of GROs’ emergence, there is an agreement on 

the excitatory-inhibitory interplay (EII) and on the need to 

unravel it by simplifying the in vivo complexity. In vitro 

experimental  preparations  have  been  thus considered, but 
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for many years it has not been clear how to reproduce GROs 

in an in vitro reduced model of the brain circuits. Recently, 

the host laboratory showed that brief wide-field photostimuli 

evoke and modulate oscillatory activity in cortical neurons. 

These robust reverberating spiking responses contained 

prominent oscillations in the gamma frequency band. By 

electrophysiology, pharmacology, and mathematical 

modelling, it was concluded that GROs emerge, as in vivo, 

from the EII and that the photostimuli can briefly facilitate 

the excitatory synaptic transmission. Furthermore, their 

mathematical model is a starting point for studying in silico 

the emergence of similar network-level phenomena25. 

Interestingly, Giugliano-Pulizzi model (GPM) is simple 

enough to explain emergence of GROs by EII, but synaptic 

short-term plasticity (STP), which is experimentally shown 

to be affected by optogenetics, was not included in the model 

and the model does not explain the spontaneous episodic 

synchronization of neurons across the network. In other 

words, the original model includes static and not dynamical 

synaptic transmission properties.  

However, Tsodyks-Markram model (TMM) is capturing 

with great accuracy the phenomenon of synaptic STP. 

According to TMM , synaptic efficacy (SE) changes over 

time, reflecting earlier presynaptic activity. It induces 

temporary modification to the SE. Thus, if there was no 

presynaptic activity, the synaptic strength will quickly return 

to its resting value. This TMM contains 3 states, describing 

the conditions of the resources for neurotransmission at each 

synaptic boutons: effective (E), inactive (I) and recovered 

(R). Each presynaptic action potential activates a certain 

fraction of the R-state. Then, this E-state gets inactivated. 

Thereafter, the process of recovery takes place. All these 

transitions happen with a certain timescale (TS) (i.e. e, i, 

r). Since the  E-state is caused by influx of Ca2+ into the axon 

terminal, the variable e is dependent on Ca2+  26.  

Furthermore, ChR2 LC-TC (used variant of opsin for 

evoking GROs) has an enhanced Ca2+ selectivity in 

comparison to its wild type. The host laboratory observed an 

increase in presynaptic release probability after light 

stimulation, which was linearly correlated at its peak with the 

light pulse duration. This is reminiscent of Ca2+ accumulation 

in the presynaptic terminal, thus altering the SE. 

Consequently, Optogenetic stimulation has an unexpected 

impact on the strength of recurrent connectivity, so that in 

experimental design and interpretation one must consider a 

modulatory effect on synaptic physiology in addition to 

neuronal physiology25. Therefore, I propose an extension of 

GPM by dynamical properties of synaptic transmission as a 

first step to investigate the action of ChR2 LC-TC and 

involvement of dynamical SE in GGR in cortical circuits. 
 
MATERIALS AND METHODS 

Inspired by the TMM and by a model proposed recently by 

Masquelier and Deco (MDM), I considered again a Wilson-

Cowan-like set of equations as in the paper by Gigante et al.  
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Table 1: Network parameters (NP) 

Parameter Value 
ne / ni 1600 / 400 

c 0.2500 
𝝉̃𝑬 / 𝝉̃𝑰 10 / 2 ms 
𝝉𝑬 = 𝝉𝑰 20 ms 

𝑱𝒆𝒆  ± 𝝈𝑱𝒆𝒆
 16.1800 ± 4.0400 mV 

𝑱𝒆𝒊  ± 𝝈𝑱𝒆𝒊
 -6.8000 ± 1.7000 mV 

𝑱𝒊𝒆  ± 𝝈𝑱𝒊𝒆
 24.6000 ± 6.1400 mV 

𝑱𝒊𝒊  ± 𝝈𝑱𝒊𝒊
 -7.1600 ±1.7880 mV 

𝑱𝒆𝒙𝒕  ± 𝝈𝑱𝒆𝒙𝒕
 8.3200 ± 2.0800 mV 

𝒗𝒆𝒙𝒕 1.2500 kHz 
dt 0.25 ms 

Vreset / Vthresh -70 / -55 mV 
Rm 1 

𝝉𝒗 /𝝉𝒓𝒆𝒇𝒓𝒂𝒄𝒕 20 / 2 ms 

T 60 000 ms 
U 0.025 

This table shows all the fixed NP during simulations run in MATLAB. 

(GEAM), to be extended with short-term facilitation (STF) 

between excitatory-excitatory (EE) neurons27-29. 

Furthermore, the suggestion of Gigante and colleagues was 

taken into account to include spike-frequency adaptation 

(SFA) in the model. This led to a model assuming the 

following form for the mean and the variance of the 

excitatory current IE (while the expression for the inhibitory 

current remained the same II as proposed by GEAM27). 

(Since I propose an extension of an existing model, only 

novel equations and variables are described here, for others 

consult27.) 

𝜇𝑒 = 𝑐𝑛𝑒𝑣̃𝑒𝑤𝑒𝑥𝑐𝐽𝐸𝐸𝑟𝑒𝜏𝑆𝑇𝐹(𝑢𝑒 (1 − 𝑈) + 𝑈) + 𝑐𝑛𝑖𝑣̃𝑖𝑤𝑖𝑛ℎ 𝐽𝐸𝐼

+ 𝑣𝑒𝑥𝑡𝐽𝑒𝑥𝑡 − 𝑔𝑆𝐹𝐴𝑐𝑒(𝑡)               (1) 

𝜎𝑒
2 = 𝑐𝑛𝑒𝑣̃𝑒𝑤𝑒𝑥𝑐

2 (𝐽𝐸𝐸
2 + 𝜎𝐽𝐸𝐸

2 )𝑟𝑒
2𝜏𝑆𝑇𝐹(𝑢𝑒(1 − 𝑈) + 𝑈)

+ 𝑐𝑛𝑖𝑣̃𝑖𝑤𝑖𝑛ℎ
2 (𝐽𝐸𝐼

2 + 𝜎𝐽𝐸𝐼

2 )

+ 𝑣𝑒𝑥𝑡(𝐽𝑒𝑥𝑡
2 + 𝜎𝐽𝑒𝑥𝑡

2 )      (2) 

where c is the probability of two neurons being synaptically 

connected; ne and ni are the number of neurons respectively 

in excitatory and inhibitory population; and 𝑣̃𝑒  and 𝑣̃𝑖 
denote the instantaneous firing rates. Furthermore, JEE (JEI) 

is the average SE from an excitatory (inhibitory) pre-

synaptic neuron to an excitatory one, and 𝜎𝐽
2

 represents the 

variance of the J-distribution, while wexc and winh indicate 

synaptic connection weights respectively for excitatory and 

inhibitory neurons. Moreover, 𝜏𝑆𝑇𝐹  is the TS needed to 

transition from R to E. In addition, there is external current 

assumed with spike rate of vext and SE of Jext. In this 

equation, re (0 < re < 1) represents the available fraction of 

synaptic resources for the response of an excitatory synapse 

to a pre-synaptic spike. This fraction is time-dependent and 

evolves following dynamics of STP: 

 𝑟̇𝑒 =  
(1 − 𝑟𝑒)

𝜏𝑆𝑇𝐷
− 𝑟𝑒𝑣̃𝑒(𝑢𝑒(1 − 𝑈) + 𝑈)          (3) 

where 𝜏𝑆𝑇𝐷 denotes TS needed to transition from I to R. 

Most importantly, ue denotes the running value of SE while 

U is SE belonging to the first action potential in a spike 

train. The dynamics of ue can be described as follows: 

𝑢̇𝑒 =  
−𝑢𝑒

𝜏𝑆𝑇𝐹
+ 𝑈(1 − 𝑢)𝑣̃𝑒         (4) 

Finally, the last term in eq. 1 is caused by SFA, whereby 

gSFA represents conductance; while ce can be interpreted as 

the cytoplasmatic [Ca2+] and can be described as follows: 

𝜏𝑆𝐹𝐴

𝑑𝑐𝑒

𝑑𝑡
=  − 𝑐𝑒 +  𝑣𝑛𝑒

             (5) 

whereby 𝜏𝑆𝐹𝐴 can be interpreted as TS needed for cellular 

recovery and 𝑣𝑛𝑒
 is caused by a random process using a 

Poisson-distributed random variable, capturing the finite-

size network effects. Table 1 shows all the fixed parameters 

used during simulations in MATLAB. The aim is to find 

the  right  set  of  modifiable  parameters  to  mimic  in  vitro 

GROs (burst frequency (BF) = [0.5-1 burst/s] and burst 

duration (BD) = [0.1-0.4s]), so that eventually the effect of 

optogenetics in GGR can be studied by altering U and ue. 
 
RESULTS 
Examining the effect of gSFA using MDM’s parameters for 
TSs   (𝝉𝑺𝑻𝑫 <  𝝉𝑺𝑻𝑭 <  𝝉𝑺𝑭𝑨) 

MDM assumes for network spontaneous “bursting” events 

the following conditions on the kinetic parameters: 
𝜏𝑆𝑇𝐷 (800 𝑚𝑠) <  𝜏𝑆𝑇𝐹  (1600 𝑚𝑠) <   𝜏𝑆𝐹𝐴 (4000 𝑚𝑠). Noteworthy, 

only excitatory neurons were included in their model29. In the 

beginning, I used these constants to study the effect of other 

modifiable parameters. For the sake of simplicity, wexc and 

winh are set to 1. In this procedure, gSFA is changed stepwise 

(Fig. 1 shows only some of the outputs). It seems like there 

is a threshold value for gSFA needed to simulate repetitive 

bursts. When gSFA is below this threshold, BD is too long. 

Increasing above threshold gSFA leads to shorter BD and 

longer inter-burst-intervals (IBIs).  

  

  
Figure 1: The effect of gSFA. Time course of network firing rate is 
represented. A burst is a sudden increase in the firing rate. To examine the 

effect of gSFA on the firing rate all parameters are kept constant, while 

changing gSFA. Increasing gSFA leads to shorter BD and longer IBIs. A) gSFA 
= 50 B) gSFA = 100 C) gSFA = 200 D) gSFA = 500. 

Lowering the numerical value of 𝝉𝑺𝑭𝑨 

Importantly, it was experimentally shown that GABAA 

receptors are necessary for the evoked GROs25, so that one 

cannot ignore inhibition in GGR as MDM does. In MDM, 

SFA is the only mechanism ending the bursts19. But in my 

model, inhibition is taken into account. Therefore, 𝜏𝑆𝐹𝐴 has 

been systematically lowered in its numerical value while 

keeping other parameters constant. This results in longer BD 

and shorter IBIs. Also, when 𝜏𝑆𝐹𝐴 is below a certain value 

(dependent on used parameters), the BD lasts too long 

compared to typical experimental recordings (not shown). 

The effect of remaining modifiable parameters 

To investigate the individual impact of remaining modifiable 

parameters, i.e. wexc, winh, 𝜏𝑆𝑇𝐹, 𝜏𝑆𝑇𝐷, all parameters are kept 

constant (wexc = 1, winh = 1, gSFA = 1000, 

𝜏𝑆𝑇𝐷 = 800 ms, 𝜏𝑆𝑇𝐹 = 1600 ms, 𝜏𝑆𝐹𝐴 = 400 ms)  while 

increasing one of the modifiable parameters at a time. First, 

strengthening wexc causes longer BD while IBIs remain 

almost the same, hence lower BF. Furthermore, enhancing 

winh  results in shorter BD and shorter IBIs, hence higher BF. 

In addition, augmenting 𝜏𝑆𝑇𝐹 leads to longer BD and longer 

IBIs, hence lower BF. Finally, increasing 𝜏𝑆𝑇𝐷  induces 

shorter BD and shorter IBIs, hence higher BF (not shown). 

Relative TSs combined with other modifiable parameters 

Since the aim is to mimic experimentally observed GROs 

with the dynamical noisy mean-field model (DNMFM), the 

set of parameters are searched to simulate bursts with BF = 

[0.5-1 burst/s] and BD = [0.1-0.4 s], so that this could be used 

A B 

C D 



as baseline for simulations. By logical reasoning, there are 

six possibilities to set the TSs: (1) 𝜏𝑆𝑇𝐷 <  𝜏𝑆𝑇𝐹 <  𝜏𝑆𝐹𝐴, 

(2) 𝜏𝑆𝑇𝐷 <  𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐹, (3) 𝜏𝑆𝑇𝐹  <  𝜏𝑆𝑇𝐷 <  𝜏𝑆𝐹𝐴, 

(4) 𝜏𝑆𝑇𝐹 <  𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐷, (5) 𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐷 <  𝜏𝑆𝑇𝐹, 

(6) 𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐹 <  𝜏𝑆𝑇𝐷 .  Given Table 2 and the in vitro 

observations of GROs, one can figure out that there is a 

need of relatively high 𝜏𝑆𝑇𝐷  and relatively low 𝜏𝑆𝑇𝐹, 

meaning 𝜏𝑆𝑇𝐹 <  𝜏𝑆𝑇𝐷. Hence, possibility 1, 2 and 5 can be 

ruled out. First of all, case 1 cannot be assumed in my 

model, because although it is possible to match the required 

BD, it is impossible to meet the required BF. The latter 

requires a lot of inhibition in the model which ultimately is 

impossible to reach with reasonable high amount of winh 

(Fig. 2A-B). One can argue that augmenting 𝜏𝑆𝑇𝐷 will 

probably help, but even then, it is impossible within the 

boundaries defined by possibility 1. Also, possibility 2 can 

be ruled out, because this case demands very strong 

inhibition and it does not fulfil the requirement of long-TS 

short-term depression (STD) (Fig. 2C-D), otherwise BD 

would be too long (not shown). The same applies to 

possibility 5 (not shown). To prove this, some simulations 

are run. 

   

   

  
Figure 2: Ruled out cases: One representative of multiple simulations for 

each case is shown. Possibility (1): 𝛕𝐒𝐓𝐃 <  𝛕𝐒𝐓𝐅 <  𝛕𝐒𝐅𝐀. This case 

cannot be assumed in my model, because although it is possible to match 
the required BD, it is impossible to meet the required BF, even not when 

winh is massively increased and  τSTD augmented within the boundaries 

defined by possibility 1. A) The simulation is run with: 

τSTD = 1500 ms < τSTF = 1600 ms < τSFA= 2000 ms, gSFA = 100, wexc = 1, 

winh = 100,. B) Zoom of the second burst of A. Possibility (2): 𝝉𝑺𝑻𝑫 <
 𝝉𝑺𝑭𝑨 <  𝝉𝑺𝑻𝑭. This case can be ruled out, because it demands immensely 

high inhibition and it does not fulfil the requirement of long TS STD. C) 

The  simulation is run with: 𝜏𝑆𝑇𝐷 = 1400 ms < 𝜏𝑆𝐹𝐴= 1500ms < 

𝜏𝑆𝑇𝐹= 1600 ms, wexc  = 1, winh = 100, gSFA = 100. D) Zoom of the second 

burst of C. Possibility (3): 𝝉𝑺𝑻𝑭 <   𝝉𝑺𝑻𝑫 <   𝝉𝑺𝑭𝑨. This case can be ruled 

out because the criteria, as well as for BD as for BF, cannot be met. 

Interestingly, NSs within the burst are declining really subtle. E) The  

simulation is run with: 𝜏𝑆𝑇𝐹= 1000ms < 𝜏𝑆𝑇𝐷 = 2400 ms < 𝜏𝑆𝐹𝐴 = 3000ms, 

wexc = 1, winh = 1, gSFA = 25. F) Zoom of the second burst of E. 

So far, the remaining possibilities are 3, 4 and 6. 

Furthermore, the relative amount of 𝜏𝑆𝐹𝐴 and gSFA cannot be 

predicted based on Table 2, but it is clear that when one is 

increased the other must be decreased. So, further 

investigation is realised with case 3 (Fig. 2E-F). In this 

case, the criteria  as well as for BD as for BF cannot be met. 

Interestingly, network spikes (NSs) within the burst are 

declining  really  subtle.  Then,  possibility  4  is  examined. 

Intriguingly, when BD meets the criteria, the BF does not. 

More importantly, bursts are fading out gradually over time 

(Fig. 3A-B). This is required to simulate GROs. 

Furthermore, when BD is longer than desired, some 

oscillations are observed (Fig. 3C-D). Finally, possibility 6 

is studied (Fig. 3E-F). To this endeavour, 𝜏𝑆𝑇𝐹  and 𝜏𝑆𝑇𝐷 are 

set to relatively low values. After trial-and-error, the 

parameters required to meet the given criteria are found, they 

lead to 44 bursts/60s = 0.73 Hz lasting ~0.4s. Next, 𝜏𝑆𝑇𝐹  and 

𝜏𝑆𝑇𝐷 are modified together with winh and wexc. Again, after 

trial-and-error, the combination of parameters leading to 

oscillations are established. However, the problem this time 

is, the inability to gradually fade out the bursts. 

   

  

  
Figure 3: Remaining cases:  Some representatives of multiple simulations 

for each case is shown. Possibility (4): 𝝉𝑺𝑻𝑭 <  𝝉𝑺𝑭𝑨 <  𝝉𝑺𝑻𝑫. In this case, 

when BD meets the criteria, the BF does not. More importantly, bursts are 

fading out gradually over time. Furthermore, when BD is longer than desired, 
some oscillations are observed. A) The  simulation is run with: 

𝜏𝑆𝑇𝐹= 325 ms < 𝜏𝑆𝐹𝐴 = 600 ms < 𝜏𝑆𝑇𝐷 = 2400 ms, wexc = 2, winh = 1, gSFA = 80. 

B) Zoom of the first burst of A. C) The  simulation is run with: 𝜏𝑆𝑇𝐹= 340 ms 

< 𝜏𝑆𝐹𝐴 = 450 ms < 𝜏𝑆𝑇𝐷 = 2450 ms, wexc = 3, winh = 2, gSFA = 85. D) Zoom of 

the fifth burst of  C. Possibility (6): 𝝉𝑺𝑭𝑨 <   𝝉𝑺𝑻𝑭 <  𝝉𝑺𝑻𝑫. In this case, it is 

possible to simulate oscillations; but impossible to gradually fade them out as 
in the experiments.  E) The  simulation is run with: wexc = 2, winh = 0.8, 

gSFA  = 1000, 𝜏𝑆𝐹𝐴 = 200 ms < 𝜏𝑆𝑇𝐹= 660 ms < 𝜏𝑆𝑇𝐷 = 800 ms. F) Zoom of the 

fourth last burst of E. 

 
Table 2: The effect of all modifiable parameters  

 BD  IBIs BF 

gSFA ↑ ↓ ↑ ↓ 
𝝉𝑺𝑭𝑨 ↑ ↓ ↑ ↓ 
wexc ↑ ↑ / ↓ 

winh ↑ ↓ ↓ ↑ 
𝝉𝑺𝑻𝑫 ↑ ↓ ↓ ↑ 

𝝉𝑺𝑻𝑭 ↑ ↑ ↑ ↓ 
This table summarises the effect of every modifiable parameter which is 

mentioned above. ↑ indicates  the increase of the parameter, while ↓ 

denotes the decrease of it. / means it does not affect the variable.  

 
DISCUSSION 

Ideally, to simulate GROs, a regime between possibilities 4 

and 6 is needed. In case 4 (𝜏𝑆𝑇𝐹 <  𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐷), the bursts 

are fading out gradually, which is a condition necessary to 

mimic the in vitro observed GROs. However to generate 

oscillations, longer BD is required, compared with case 6. 

Furthermore, oscillations of case 6 do not fade out gradually 

as in vitro data. Rather, it is as if they are reaching an 

equilibrium, and then finally, they end abruptly. In contrast 

to  possibility 4,  it  is  impossible  to  gradually  fade  out  the  
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bursts in case 6 ( 𝜏𝑆𝐹𝐴 <  𝜏𝑆𝑇𝐹 <   𝜏𝑆𝑇𝐷). But in this 

condition, it is possible to generate oscillations within 

shorter BD compared to case 4. In both conditions, low-

frequency delta (2-3,33 Hz) oscillations are generated 

(Fig. 3). Thus, my model offers a possible mechanism for 

delta oscillations.  

However, because of the lack of time it was not possible to 

exhaustively study my model. But, my findings suggest that 

the following criteria must be met to possibly generate 

(gamma) oscillations: (I) the product of gSFA and  𝜏𝑆𝐹𝐴 must 

be low to meet the required BF and BD, whereby  𝜏𝑆𝐹𝐴 is 

long enough to gradually fade out the bursts. Hence,  𝜏𝑆𝐹𝐴 

is accompanied by weak gSFA. (II) On the one hand, there 

are two mechanisms promoting bursts: recurrent excitation 

and STF. On the other hand, there are five mechanisms to 

quench or silence bursts: mutual inhibition, reciprocal 

excitation and inhibition, STD and SFA. Hence, wexc must 

be bigger than winh. (III) As a result, there is need of 

relatively long-TS STD and short-TS STF. This is 

incongruent with MDM, because MDM ignores inhibition29 

whereas my model takes inhibition into account which is 

experimentally shown to be necessary in GGR25.  

My observations can be due to different reasons. First of all, 

the model has been extended and studied in very short 

amount of time (9 days). Therefore, it was impossible to 

perform exhaustive research on both cases. As it can be 

insinuated, the output of simulations are determined by 

combination of parameters. Since there are a lot of 

simultaneously modifiable parameters, it is hard to predict 

the output of the simulation. This reflects the need of 

exhaustive in silico research. Secondly, my model does not 

only deal with the EII; but it also takes dynamical 

processes, such as STP and SFA, into account. 

Consequently, this results in a complex model yet 

considering the reality; so that once the right set of 

modifiable parameters are found, one can study the effect 

of optogenetics in GGR, by altering U and ue. Thirdly, the 

extension was inspired by MDM, TMM and GEAM27-29. In  

other words, it is a generalization of MDM. But clearly, 

further investigation and/or extension is required to mimic 

GROs. Now, there is STP between EE neurons, but there is 

no STP between EI neurons, which may have an impact on 

GROs. This can be the reason for not observing oscillations 

and gradually fading out of bursts simultaneously. 

However, my model is already complex the way it is; 

including extra dynamical forces will make it even more 

complex to predict the output by reasoning. This will 

require even more exhaustive research on the modifiable 

parameters. Nonetheless, this approach will be more 

accurate than mine. Even though it seems more complex, 

one could go even further by including STP between 

inhibitory-inhibitory neurons. Therefore, there is a need of 

heuristic approach instead of exhaustive. Once, one 

succeeds to mimic experimentally observed GROs, one 

could examine the effect of optogenetics on SE in GGR by 

altering U and ue.. Therefore, there is a need on 

mathematical dynamical firing-rate model for GROs; 

hence, further investigation and/or extension of my 

DNMFM. 
 

CONCLUSION 

The current observations suggest that creating possibly 

oscillations in silico, embedded in each spontaneous burst 

requires (I) medium-TS 𝜏𝑆𝐹𝐴 with weak gSFA, whereby 

gSFA . 𝜏𝑆𝐹𝐴 is low; (II) wexc must be bigger than winh, (III) a 

relatively short-TS STF and long-TS STD. These findings 

are incongruent with the MDM29. My mathematical 

DNMFM must be further investigated and/or extended (as 

described before in discussion) to completely capture GROs 

as occurring spontaneously in the bursting activity of the 

network. Eventually, this can be used to study the effect of 

optogenetics on GROs by altering U and ue. This is important 

to understand and predict the GGR which seems to be a 

fundamental and elementary process in the whole-brain 

operation; and affected in some neuropsychiatric disorders.  
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