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ABSTRACT 
Active Inference provides a framework for perception, 
action and learning, where the optimization is done by 
minimizing the Free-Energy of a system. This paper 
explores whether active inference can be used for closed-
loop control of a 1 degree of freedom robot arm.  This is 
done by implementing variational message passing on 
Forney-style factor graphs; a probabilistic programming 
framework. We show that an active inference controller 
with variational message passing can perform state 
estimation and control at the same time. 
Keywords 
Factor graphs, free-energy principle, active inference, 
closed-loop control, variational message passing 
 

I. INTRODUCTION 
The Free Energy Principle (FEP) has been proposed to 
provide a unified theory of the brain [1], providing an 
explanation for how cognitive functions such as 
perception, action and model learning are achieved [2]. It 
claims that in order for an intelligent agent to persist in a 
time-varying environment, it must minimize 'surprise' (the 
atypicality of an event). This is done by minimizing an 
upper bound called 'Free Energy', as organisms can not 
directly minimize surprisal. 

 
Active Inference, corollary to the FEP, states that 
biological agents act to fulfill prior beliefs about preferred 
future observations. Desired behaviour is then achieved by 
minimizing Free Energy with respect to a generative 
model of the environment [3]. This generative model is an 
internal model of the environment that is used to produce 
actions and estimate posterior states. 

 
There have been a few attempts of implementing active 
inference in robot control. In [4], a PR2  (Personal  Robot2, 
a human-like robot) robot, simulated in Robot 
OperatingSystem (ROS, the open source robotic 
middleware), is con-trolled by open-loop Active 
Inference.Lanillos et al. [5] use concepts from Active 
Inference for sensor data fusion for an interactive robot. 
 
The main contribution of this paper is to provide an online 
Active Inference implementation for control of a 1 degree 
of freedom (DoF) robot arm. The system is modeled as a 
stochastic State-Space Model implemented as Forney-
Style Factor Graphs (FFG) [6]. A  factor  graph  is  a  tool  
that  is used  in  probability  theory  to  enable  efficient  
computations.The  performance  of  this  controller  is  
tested  for  common control tasks. This contribution aims 
to clarify the potential of closed-loop robot control with 
active inference. 
 
 
 

 

II. Background on the Free Energy principle and 
Active Inference 

This section offers a short technical recap of Active 
Inference and Factor graphs. The concepts will be 
introduced with the application, provided in III, in mind: a 
torque controlled robot arm equipped with proprioceptive 
sensors. 

Variational free energy 
The Free Energy Principle postulates that well-adapted 
biological agents maintain a probabilistic model of their 
typical environment (including their bodies). In order to 
persist in a time-varying environment, these agents attempt 
to minimize the occurrence of events which are atypical in 
such an environment as estimated by their internal model. 
The atypicality of an event can be quantified by the negative 
logarithm of the probability of its sensory data P(x), also 
known as 'surprise'. It is argued in the FEP that organisms 
can not minimize surprisal directly [7]. Instead they achieve 
this by minimizing an upper bound called the 'Free Energy'. 

 
To see this into practice, let us consider a robot arm which 
receives sensor data x about the value of its state and it tries 
to infer its actual hidden state z. This could be formulated 
by Bayes' theorem as: 

In equation 1, p(x|z) is the sensory consequence of being in 
a physical state z and p(z) is the prior belief of the 
environmental states. The marginalization of the likelihood 
over all the possible states is computationally tough. In this 
case, we can apply Variational Free Energy approximation 
[7]. The core idea is to minimize Kullback-Leibler (KL) 
divergence between a distribution q(z) that is encoded in the 
agent and the true posterior p(z|x). Meaning, the true 
posterior distribution (p(z|x)) is often intractable for all 
different values so it is approximated with a distribution q(z) 
that has a standard shape (for example a normal 
distribution).  

𝐾𝐿#𝑞(𝑧), 𝑝(𝑧|𝑥), = .𝑞(𝑧) ln
𝑞(𝑧)
𝑝(𝑧|𝑥) 𝑑𝑧

=.𝑞(𝑧)(ln 𝑞(𝑧)

− ln𝑝(𝑧, 𝑥))𝑑𝑧 + ln	 	𝑝(𝑥)
= 𝐹 + ln	 	𝑝(𝑥) 
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𝒑(𝒛|𝒙) =

𝒑(𝒛)𝒑(𝝓|𝒛)
𝒑(𝝓)  

 

 
(1) 



 
 
The Kullback-Leibler is in essence a measure for 
dissimilarity between two distributions. Note that if q(z) 
and p(z|x) were identical their ratio would be 1 and its 
logarithm would be 0. This would mean the integral 
evaluates to 0 and thus there is no dissimilarity.  
 
From equation (2) it is noted that minimizing F directly 
reduces KL since the term ln p(x) does not depend on q(z).  
Instead of approximating p(z|x) with the whole q(z) 
distribution, the agent model is a delta distribution 𝛿(𝑧 −
𝑠) that makes s the mean of the approximating density as 
done in section 3 of [3]. So z is the actual physical state of 
the robot and s is the estimation of this physical state which 
is encoded in the brain dynamics. Thus, we can remove the 
integrals simplifying the Variational Free Energy equation 
to: 
 

𝐹 = − ln𝑝(𝑠, 𝑥) = − ln𝑝(𝑥|𝑠) − ln 𝑝(𝑠) 
 

(3) 

For further reading and full derivations see [3], [5] and [7]. 

Active inference 
The minimization of VFE does not just account for 
perceptual inference but also for actions within the same 
framework. This means that while the beliefs are updated 
to better predict sensory data, actions are simultaneously 
executed on the environment to alter the sensory input and 
make these coincide with the sensory predictions [7]. This 
would mean that the true posterior p(z|x) is extended to p(z, 
u|x) where u are the actions. Subsequently, q(z) is extended 
to q(z, u). 
 
This process can be represented by the schematic in figure 
1. The agent and the environment are two statistically 
separated nodes, shown in blue and red respectively. These 
can interact with each other through a Markov Blanket [8]. 
A Markov blanket only contains the variables that a node 
uses to interact with the outside world, isolating the 
dynamics within that node from the outside. 
 
Instead of knowing the dynamics of the environment and 
its states exactly, the agent estimates the states and 
dynamics using an internal recognition model q. The agent 
furthermore observes the state output y from the 
environment imprecisely to some extent in the triangular 
node. Secondly, the control signal u and the environmental 
action a are linked in the square node. This control signal 
and the corresponding environmental action are generated 
by the agent, using observations of the states. 
 
 

 

III. METHOD 
 
To research the feasibility of closed-loop AIC with FFG, a 
simulation of a 1 DoF robotic arm is set up. The robotic arm 
that is simulated can be seen in figure 2. 

The link can move relative to the ‘fixed’ world in point A. 
Point B marks the end-effector position. The state of the 
robotic arm can be changed by the motor in A with torque 𝜏. 
The sensor used is a proprioceptive sensor in A. 
The proprioceptive sensor outputs measurements of the angle 
and angular velocity between the robot arm and the horizontal 
axis (𝜙, �̇�). 𝜙, �̇� are sensor data that are captured in a 
probability function 𝑝(𝒙𝒕|𝒔𝒕). Be aware that 𝜙 and  �̇� are not 
necessarily identical to the real angle and angular velocity 𝜃, �̇� 
as they include sensor noise. 

Environment setup 
The robotic arm operates in the horizontal plane, therefore the 
gravitational force has no influence on the motion dynamics. 
To simulate the saturation of the motor, the torque applied to 
the robot arm is limited to 10 Nm in both directions, for all 
possible control signals by equation 4. 
 

 𝜏(𝑎C) = 10 ∗ tanh	(𝑎C) (4) 
 

The environment is updated by Euler integration, as in 
equation 5. Equation 5b is the short vector notation of 5a. 

 
J�̇�𝑡
𝜃𝑡
L = M 1 0

𝑑𝑡 1N J
�̇�𝑡−1
𝜃𝑡−1

L + O
𝜏(𝑎𝑡) ∗ 𝑑𝑡

𝐼𝐴
0

R			 

 

 
(5a) 

 𝒛𝒕 = 𝒈 ∗ 𝒛𝒕−𝟏 + 𝒉(𝑎𝑡) 
 

(5b) 

Where 𝐼V is the mass moment of inertia around point A. 
To simulate the sensor data used in the AIC, Gaussian white 
noise is added to the real robot state values, with standard 
deviations 𝜎X, 𝜎Ẋ. The output vector 𝑦C will contain the real 
(hidden) angle and angular velocity values 𝜃, �̇� similar to 
figure 1. The torque 𝜏 is given as a function of the action 𝑎C . 
The control signal 𝑢C from the agent generates these actions. 
Internal (agent) model 
In order to estimate the posterior states, the agent uses a 
stochastic state-space model. The execution of the generative 
model 𝑝C is done with a factor graph represented in figure 3. 
The factorization of this factor graph is given by: 
 

 
 
 
 

𝑝𝑡(𝒙, 𝒔, 𝒖)

∝ 𝑝(𝒔𝒕−𝟏)]𝑝(𝒙𝒏|𝒔𝒏)	_`a`b
observation

𝑝(𝒔𝒏|𝒔𝒏−𝟏, 𝑢𝑛)_`̀`a`̀`b
state	transition

𝑝(𝑢𝑛)_ab
control

𝑝l(𝒙𝒏)_ab
𝑡𝑎𝑟𝑔𝑒𝑡

	
𝑡+𝑇

𝑛=𝑡

 

 

 
 
(6) 

Fig. 1. Schematic of agent-environment interaction 

Fig. 2. Schematic of simulated robotic arm 



Where the probability functions represent the model for the 
observation, state transition, control and target; which will 
be explained one by one. Note that now ‘n’ is used to 
indicate a specific timestep, all variables that vary for each 
timestep will therefore be denoted with an ‘n’ as subscript. 

The agent's target state is defined as 𝒙𝒓𝒆𝒇 = #𝜃tuv, �̇�tuv, =
(2.0, 0.0). T is the number of steps that the algorithm will 
look ahead ("lookahead" parameter), so the factor graph will 
be generated for T timesteps in the future on each iteration. 
The target prior is defined as a normal distribution, marked 
as  𝑝l(𝒙𝒏), to clearly distinguish it from the observation 
model notation. For timesteps before the first lookahead, this 
target prior has a large variance of 10yz to make a change in 
state have almost no effect on the Free Energy, allowing for 
unrestricted state changes, because the controller is not yet 
expected to have reached 𝒙𝒓𝒆𝒇. For 𝑡 ≥ 𝑇𝑑𝑡, The target prior 
is set to 𝒙𝒓𝒆𝒇, with a small variance, 10|} in this case, to 
make sure the robot arm reaches this state with high 
precision (equation 7). 
 

𝒑l(𝒙𝒏) = {
𝑵(𝒙𝒏|𝟎, 𝟏𝟎𝟏𝟐)												𝒊𝒇	𝒕 < 𝑻𝒅𝒕
	𝑵#𝒙𝒏�𝒙𝒓𝒆𝒇, 𝟏𝟎−𝟒,						𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆	

 
 

(7) 

 
Furthermore, the agent has a transition model that captures 
the state dynamics for the estimated robot states s. The AIC 
uses this transition model, as defined in equation 8 to infer 
the environmental dynamics. 

𝑝(𝒔𝒏|𝒔𝒏|𝟏, 𝑢�) = 𝑁(𝒔𝒏|𝑝(𝒔𝒏|𝟏, 𝑢�), Γ) (8) 

Here Γ is the state transition variance. The value for Γ is 
chosen according to the belief of the accuracy of the 
generative model 𝑝(𝒔, 𝒙, 𝑢). For instance, if a non-linear 
system is approximated by a linear model, you would resort 
to a higher variance. For the presented results, Γ was chosen 
to be 10|}. 
The generative model is represented by 𝑝(𝒔�|y, 𝑢�) and 
closely resembles the environmental dynamics. This is 
indicated in figure 5 within the dashed box. In this case 𝒈 
and 𝒉 are the same functions as in 5b. 
The internal model uses an observation model, defined in 
equation 9, to predict the sensory outputs. 

𝑝(𝒙𝒏|𝒔𝒏) = 𝑁(𝒙𝒏|𝒔𝒏, 𝛼) (9) 
Here, 𝛼 is the observation variance. The value of the 
observation variance is encoded in the agent, which 
resembles its belief about how noisy the observations of the 
environment are. For the results presented in this paper, 𝛼 
was set to 10|}. 
Finally, the internal model has a state prior and control prior 
as defined in equations 10a and 10b respectively. 
 
 

 𝑝(𝑠�) = 𝑁(𝑠�|(0.0,0.0), 𝜎��
z ) (10a) 

 𝑝(𝑢�) = 𝑁(𝑢�|0.0,10yz) (10b) 
 
Where 𝜎��

z  is defined dependent on how well the initial state 
of the robot arm is known. In our experiments, the AIC is 
given the assumption that the brain state perfectly matches the 
initial hidden state (i.e. the initial state is known), so the 
variance is small: 𝜎��

z = 10|yz. The control prior is given a 
large variance of 10yz to allow the controller to conduct a 
large range of control signals. 

 

Control loop 
The algorithm loops through the functions act, execute, 
observe, infer and slide respectively, similar to [9], assuming 
we start at step n and simulate T timesteps, as in fig. 4. These 
functions are defined as follows: 

1. Act: The act-function simply converts the control 
signal u, generated by the agent, into the action a, 
making their values equivalent. This action a will be 
applied to the environment. This is illustrated in 
figure 5 by the label 1.  

2. Execute: Next up, the action a is used to calculate a 
certain torque, which will move the robot arm. The 
angle and angular speed of the robot are updated as 
described in equation 5. This way, the action is used 
to change the environment. So Execute happens in 
the environment as labelled by 2 in figure 5. 

3. Observe: As the environment changes in the execute 
step, the angle and angular speed of the robot arm 
change. These new angles will be observed by the 
sensors as 𝒙. This value is clamped as indicated by 3 
in figure 5. 

4. Infer: In the infer-function, VMP is used to calculate 
a new control signal u by minimizing VFE. The input 
for the VMP is the action a and observed x generated 
in the steps before. Subsequently, the next state and 
control action are inferred. This is shown in figure 4 
by 4.  

5. Slide: The last part of the algorithm is to remove the 
first time step from the factor graph, and to add one 
time step at 𝑛 + 𝑡 + 1. This is shown in figure 4, 
where the first step (encircled) is removed and the 
last step is added. 

 
IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the AIC, a number of 
experiments were conducted. As a proof of concept, the 
controller was instructed to go from an initial state to a target 
state, in this case from 𝜃�C�tC = 0 rad to 𝜃tuv = 2 rad. 
Secondly, noise was added to the sensors. In all experiments 
listed below, a timestep of 0.2 seconds and a lookahead of 5 
timesteps are used. 

No noise 
Figure 6 show the smooth convergence towards its target 
state. The results show that the rise time and settling time of 
the controller are both approximately 15 seconds for an error 
band of 5%. This response is used as a benchmark to test the 
effect of noise and disturbances. 

Fig. 3. Schematic of agent-environment interaction 



With noise 
Figure 7 shows the controllers' response with Gaussian 
white noise on the sensors (𝜎Xz = 0.02 rad). The AIC's 
shows minor oscillations around the target state in both 
cases. The rise time and overshoot are  
comparable to the no-noise experiment. The required input 
torque is minimal. Finally, the estimated state is very smooth 
compared to the observations. 
 

V. CONCLUSION 

In this paper we have presented a closed-loop Active 
Inference controlled (AIC) robot simulation, using a Factor 
Graph implementation. This controller is able to 
simultaneously update its beliefs about its state and 
perform actions on this environment, based on sensory 
input. The AIC was used to control a 1DoF robot arm in 
the horizontal plane. The results have shown that the 
controller is able to steer the robot arm to an arbitrary target 
position. The controller shows the ability to reach and 
maintain the desired position when disturbances are 
applied. An implementation with more complicated 
disturbances such as gravitational forces has not yet been 
successful. Further research into the tuning methods for the 
AIC is required to fully understand and improve this 
control method. Altogether, we can conclude that the 
proposed Active Inference controller provides a way to 
control a robot that is robust to various disturbances and, 
with some extensions, shows promise for the future of 
robot control. 
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Fig. 4. Factor graph showing the slide function of the algorithm. The infer function is indicated with a 4. 

Fig. 5. Factor graph showing one timestep of the algorithm. 

Fig. 7. Performance of the AIC with minor Gaussian white noise 
𝜎Xz = 0.02	 on the sensor 

Fig. 6. Performance of the AIC with the standard settings and 
without any noise. 



 


