
Active inference for Robot control: A Factor Graph
Approach

ABSTRACT
Active Inference provides a framework for perception,
action and learning, where the optimization is done by
minimizing the Free-Energy of a system. This paper
explores whether active inference can be used for closed-
loop control of a 1 degree of freedom robot arm. This is
done by implementing variational message passing on
Forney-style factor graphs; a probabilistic programming
framework. We show that an active inference controller
with variational message passing can perform state
estimation and control at the same time.
Keywords
Factor graphs, free-energy principle, active inference,
closed-loop control, variational message passing

I. INTRODUCTION
The Free Energy Principle (FEP) has been proposed to
provide a unified theory of the brain [1], providing an
explanation for how cognitive functions such as
perception, action and model learning are achieved [2]. It
claims that in order for an intelligent agent to persist in a
time-varying environment, it must minimize 'surprise' (the
atypicality of an event). This is done by minimizing an
upper bound called 'Free Energy', as organisms can not
directly minimize surprisal.

Active Inference, corollary to the FEP, states that
biological agents act to fulfill prior beliefs about preferred
future observations. Desired behaviour is then achieved by
minimizing Free Energy with respect to a generative
model of the environment [3]. This generative model is an
internal model of the environment that is used to produce
actions and estimate posterior states.

There have been a few attempts of implementing active
inference in robot control. In [4], a PR2 (Personal Robot2,
a human-like robot) robot, simulated in Robot
OperatingSystem (ROS, the open source robotic
middleware), is con-trolled by open-loop Active
Inference.Lanillos et al. [5] use concepts from Active
Inference for sensor data fusion for an interactive robot.

The main contribution of this paper is to provide an online
Active Inference implementation for control of a 1 degree
of freedom (DoF) robot arm. The system is modeled as a
stochastic State-Space Model implemented as Forney-
Style Factor Graphs (FFG) [6]. A factor graph is a tool
that is used in probability theory to enable efficient
computations.The performance of this controller is
tested for common control tasks. This contribution aims
to clarify the potential of closed-loop robot control with
active inference.

II. Background on the Free Energy principle and
Active Inference

This section offers a short technical recap of Active
Inference and Factor graphs. The concepts will be
introduced with the application, provided in III, in mind: a
torque controlled robot arm equipped with proprioceptive
sensors.

Variational free energy
The Free Energy Principle postulates that well-adapted
biological agents maintain a probabilistic model of their
typical environment (including their bodies). In order to
persist in a time-varying environment, these agents attempt
to minimize the occurrence of events which are atypical in
such an environment as estimated by their internal model.
The atypicality of an event can be quantified by the negative
logarithm of the probability of its sensory data P(x), also
known as 'surprise'. It is argued in the FEP that organisms
can not minimize surprisal directly [7]. Instead they achieve
this by minimizing an upper bound called the 'Free Energy'.

To see this into practice, let us consider a robot arm which
receives sensor data x about the value of its state and it tries
to infer its actual hidden state z. This could be formulated
by Bayes' theorem as:

In equation 1, p(x|z) is the sensory consequence of being in
a physical state z and p(z) is the prior belief of the
environmental states. The marginalization of the likelihood
over all the possible states is computationally tough. In this
case, we can apply Variational Free Energy approximation
[7]. The core idea is to minimize Kullback-Leibler (KL)
divergence between a distribution q(z) that is encoded in the
agent and the true posterior p(z|x). Meaning, the true
posterior distribution (p(z|x)) is often intractable for all
different values so it is approximated with a distribution q(z)
that has a standard shape (for example a normal
distribution).

𝐾𝐿#𝑞(𝑧), 𝑝(𝑧|𝑥), = .𝑞(𝑧) ln
𝑞(𝑧)
𝑝(𝑧|𝑥) 𝑑𝑧

=.𝑞(𝑧)(ln 𝑞(𝑧)

− ln𝑝(𝑧, 𝑥))𝑑𝑧 + ln	 	𝑝(𝑥)
= 𝐹 + ln	 	𝑝(𝑥)

(2)

’Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted under
the conditions of the Creative Commons Attribution-Share
Alike (CC BY-SA) license and that copies bear this notice
and the full citation on the first page’’

SRC 2019, December 5, 2019, The Netherlands.

 Mees Vanderbroeck*; Mohamed Baioumy; Daan van der Lans; Rens de Rooij; Tiis van der Werf
Delft University of Technology

*mees.vanderbroeck@gmail.com
All contributed equally.

D
a
a
n
v
a
n
d
e
r
L
a
n
s

D
e
l
f
t
U
n
i
v
e
r
s
i
t
y
o
f
T
e
c
h
n
o
l
o
g
y
v
d
l
.
d
a
a
n
@
h
o
t
m
a
i

𝒑(𝒛|𝒙) =

𝒑(𝒛)𝒑(𝝓|𝒛)
𝒑(𝝓)

(1)

The Kullback-Leibler is in essence a measure for
dissimilarity between two distributions. Note that if q(z)
and p(z|x) were identical their ratio would be 1 and its
logarithm would be 0. This would mean the integral
evaluates to 0 and thus there is no dissimilarity.

From equation (2) it is noted that minimizing F directly
reduces KL since the term ln p(x) does not depend on q(z).
Instead of approximating p(z|x) with the whole q(z)
distribution, the agent model is a delta distribution 𝛿(𝑧 −
𝑠) that makes s the mean of the approximating density as
done in section 3 of [3]. So z is the actual physical state of
the robot and s is the estimation of this physical state which
is encoded in the brain dynamics. Thus, we can remove the
integrals simplifying the Variational Free Energy equation
to:

𝐹 = − ln𝑝(𝑠, 𝑥) = − ln𝑝(𝑥|𝑠) − ln 𝑝(𝑠)

(3)

For further reading and full derivations see [3], [5] and [7].

Active inference
The minimization of VFE does not just account for
perceptual inference but also for actions within the same
framework. This means that while the beliefs are updated
to better predict sensory data, actions are simultaneously
executed on the environment to alter the sensory input and
make these coincide with the sensory predictions [7]. This
would mean that the true posterior p(z|x) is extended to p(z,
u|x) where u are the actions. Subsequently, q(z) is extended
to q(z, u).

This process can be represented by the schematic in figure
1. The agent and the environment are two statistically
separated nodes, shown in blue and red respectively. These
can interact with each other through a Markov Blanket [8].
A Markov blanket only contains the variables that a node
uses to interact with the outside world, isolating the
dynamics within that node from the outside.

Instead of knowing the dynamics of the environment and
its states exactly, the agent estimates the states and
dynamics using an internal recognition model q. The agent
furthermore observes the state output y from the
environment imprecisely to some extent in the triangular
node. Secondly, the control signal u and the environmental
action a are linked in the square node. This control signal
and the corresponding environmental action are generated
by the agent, using observations of the states.

III. METHOD

To research the feasibility of closed-loop AIC with FFG, a
simulation of a 1 DoF robotic arm is set up. The robotic arm
that is simulated can be seen in figure 2.

The link can move relative to the ‘fixed’ world in point A.
Point B marks the end-effector position. The state of the
robotic arm can be changed by the motor in A with torque 𝜏.
The sensor used is a proprioceptive sensor in A.
The proprioceptive sensor outputs measurements of the angle
and angular velocity between the robot arm and the horizontal
axis (𝜙, �̇�). 𝜙, �̇� are sensor data that are captured in a
probability function 𝑝(𝒙𝒕|𝒔𝒕). Be aware that 𝜙 and �̇� are not
necessarily identical to the real angle and angular velocity 𝜃, �̇�
as they include sensor noise.

Environment setup
The robotic arm operates in the horizontal plane, therefore the
gravitational force has no influence on the motion dynamics.
To simulate the saturation of the motor, the torque applied to
the robot arm is limited to 10 Nm in both directions, for all
possible control signals by equation 4.

 𝜏(𝑎C) = 10 ∗ tanh	(𝑎C) (4)

The environment is updated by Euler integration, as in
equation 5. Equation 5b is the short vector notation of 5a.

J�̇�𝑡
𝜃𝑡
L = M 1 0

𝑑𝑡 1N J
�̇�𝑡−1
𝜃𝑡−1

L + O
𝜏(𝑎𝑡) ∗ 𝑑𝑡

𝐼𝐴
0

R			

(5a)

 𝒛𝒕 = 𝒈 ∗ 𝒛𝒕−𝟏 + 𝒉(𝑎𝑡)

(5b)

Where 𝐼V is the mass moment of inertia around point A.
To simulate the sensor data used in the AIC, Gaussian white
noise is added to the real robot state values, with standard
deviations 𝜎X, 𝜎Ẋ. The output vector 𝑦C will contain the real
(hidden) angle and angular velocity values 𝜃, �̇� similar to
figure 1. The torque 𝜏 is given as a function of the action 𝑎C .
The control signal 𝑢C from the agent generates these actions.
Internal (agent) model
In order to estimate the posterior states, the agent uses a
stochastic state-space model. The execution of the generative
model 𝑝C is done with a factor graph represented in figure 3.
The factorization of this factor graph is given by:

𝑝𝑡(𝒙, 𝒔, 𝒖)

∝ 𝑝(𝒔𝒕−𝟏)]𝑝(𝒙𝒏|𝒔𝒏)	_`a`b
observation

𝑝(𝒔𝒏|𝒔𝒏−𝟏, 𝑢𝑛)_`̀`a`̀`b
state	transition

𝑝(𝑢𝑛)_ab
control

𝑝l(𝒙𝒏)_ab
𝑡𝑎𝑟𝑔𝑒𝑡

	
𝑡+𝑇

𝑛=𝑡

(6)

Fig. 1. Schematic of agent-environment interaction

Fig. 2. Schematic of simulated robotic arm

Where the probability functions represent the model for the
observation, state transition, control and target; which will
be explained one by one. Note that now ‘n’ is used to
indicate a specific timestep, all variables that vary for each
timestep will therefore be denoted with an ‘n’ as subscript.

The agent's target state is defined as 𝒙𝒓𝒆𝒇 = #𝜃tuv, �̇�tuv, =
(2.0, 0.0). T is the number of steps that the algorithm will
look ahead ("lookahead" parameter), so the factor graph will
be generated for T timesteps in the future on each iteration.
The target prior is defined as a normal distribution, marked
as 𝑝l(𝒙𝒏), to clearly distinguish it from the observation
model notation. For timesteps before the first lookahead, this
target prior has a large variance of 10yz to make a change in
state have almost no effect on the Free Energy, allowing for
unrestricted state changes, because the controller is not yet
expected to have reached 𝒙𝒓𝒆𝒇. For 𝑡 ≥ 𝑇𝑑𝑡, The target prior
is set to 𝒙𝒓𝒆𝒇, with a small variance, 10|} in this case, to
make sure the robot arm reaches this state with high
precision (equation 7).

𝒑l(𝒙𝒏) = {
𝑵(𝒙𝒏|𝟎, 𝟏𝟎𝟏𝟐)												𝒊𝒇	𝒕 < 𝑻𝒅𝒕
	𝑵#𝒙𝒏�𝒙𝒓𝒆𝒇, 𝟏𝟎−𝟒,						𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆	

(7)

Furthermore, the agent has a transition model that captures
the state dynamics for the estimated robot states s. The AIC
uses this transition model, as defined in equation 8 to infer
the environmental dynamics.

𝑝(𝒔𝒏|𝒔𝒏|𝟏, 𝑢�) = 𝑁(𝒔𝒏|𝑝(𝒔𝒏|𝟏, 𝑢�), Γ) (8)

Here Γ is the state transition variance. The value for Γ is
chosen according to the belief of the accuracy of the
generative model 𝑝(𝒔, 𝒙, 𝑢). For instance, if a non-linear
system is approximated by a linear model, you would resort
to a higher variance. For the presented results, Γ was chosen
to be 10|}.
The generative model is represented by 𝑝(𝒔�|y, 𝑢�) and
closely resembles the environmental dynamics. This is
indicated in figure 5 within the dashed box. In this case 𝒈
and 𝒉 are the same functions as in 5b.
The internal model uses an observation model, defined in
equation 9, to predict the sensory outputs.

𝑝(𝒙𝒏|𝒔𝒏) = 𝑁(𝒙𝒏|𝒔𝒏, 𝛼) (9)
Here, 𝛼 is the observation variance. The value of the
observation variance is encoded in the agent, which
resembles its belief about how noisy the observations of the
environment are. For the results presented in this paper, 𝛼
was set to 10|}.
Finally, the internal model has a state prior and control prior
as defined in equations 10a and 10b respectively.

 𝑝(𝑠�) = 𝑁(𝑠�|(0.0,0.0), 𝜎��
z) (10a)

 𝑝(𝑢�) = 𝑁(𝑢�|0.0,10yz) (10b)

Where 𝜎��

z is defined dependent on how well the initial state
of the robot arm is known. In our experiments, the AIC is
given the assumption that the brain state perfectly matches the
initial hidden state (i.e. the initial state is known), so the
variance is small: 𝜎��

z = 10|yz. The control prior is given a
large variance of 10yz to allow the controller to conduct a
large range of control signals.

Control loop
The algorithm loops through the functions act, execute,
observe, infer and slide respectively, similar to [9], assuming
we start at step n and simulate T timesteps, as in fig. 4. These
functions are defined as follows:

1. Act: The act-function simply converts the control
signal u, generated by the agent, into the action a,
making their values equivalent. This action a will be
applied to the environment. This is illustrated in
figure 5 by the label 1.

2. Execute: Next up, the action a is used to calculate a
certain torque, which will move the robot arm. The
angle and angular speed of the robot are updated as
described in equation 5. This way, the action is used
to change the environment. So Execute happens in
the environment as labelled by 2 in figure 5.

3. Observe: As the environment changes in the execute
step, the angle and angular speed of the robot arm
change. These new angles will be observed by the
sensors as 𝒙. This value is clamped as indicated by 3
in figure 5.

4. Infer: In the infer-function, VMP is used to calculate
a new control signal u by minimizing VFE. The input
for the VMP is the action a and observed x generated
in the steps before. Subsequently, the next state and
control action are inferred. This is shown in figure 4
by 4.

5. Slide: The last part of the algorithm is to remove the
first time step from the factor graph, and to add one
time step at 𝑛 + 𝑡 + 1. This is shown in figure 4,
where the first step (encircled) is removed and the
last step is added.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the AIC, a number of
experiments were conducted. As a proof of concept, the
controller was instructed to go from an initial state to a target
state, in this case from 𝜃�C�tC = 0 rad to 𝜃tuv = 2 rad.
Secondly, noise was added to the sensors. In all experiments
listed below, a timestep of 0.2 seconds and a lookahead of 5
timesteps are used.

No noise
Figure 6 show the smooth convergence towards its target
state. The results show that the rise time and settling time of
the controller are both approximately 15 seconds for an error
band of 5%. This response is used as a benchmark to test the
effect of noise and disturbances.

Fig. 3. Schematic of agent-environment interaction

With noise
Figure 7 shows the controllers' response with Gaussian
white noise on the sensors (𝜎Xz = 0.02 rad). The AIC's
shows minor oscillations around the target state in both
cases. The rise time and overshoot are
comparable to the no-noise experiment. The required input
torque is minimal. Finally, the estimated state is very smooth
compared to the observations.

V. CONCLUSION

In this paper we have presented a closed-loop Active
Inference controlled (AIC) robot simulation, using a Factor
Graph implementation. This controller is able to
simultaneously update its beliefs about its state and
perform actions on this environment, based on sensory
input. The AIC was used to control a 1DoF robot arm in
the horizontal plane. The results have shown that the
controller is able to steer the robot arm to an arbitrary target
position. The controller shows the ability to reach and
maintain the desired position when disturbances are
applied. An implementation with more complicated
disturbances such as gravitational forces has not yet been
successful. Further research into the tuning methods for the
AIC is required to fully understand and improve this
control method. Altogether, we can conclude that the
proposed Active Inference controller provides a way to
control a robot that is robust to various disturbances and,
with some extensions, shows promise for the future of
robot control.

ROLE OF THE STUDENT

All authors are students who were under supervision of
Carlos Hernandez Corbato. The work was equally divided
under the students. The topic was proposed by the

supervisor. The design of the controller, formulation of the
results and the writing was done by the students.

ACKNOWLEDGMENTS
The authors thank Carlos Hernandez Corbato for the
supervision, Thijs van der Laar for answering questions
about ForneyLab.

REFERENCES

1. K. Friston. The free-energy principle: a
unified brain theory? Nature Reviews
Neuroscience, 11:127 EP -, 01 2010.

2. K. Friston. The free-energy principle: a rough guide
to the brain? Trends in cognitive sciences, 13:293–
301, 07 2009.

3. R. Bogacz. A tutorial on the free-energy
framework for modelling perception and learning.
Journal of mathematical psychology, 76:198–
211, 2017.

4. L. Pio-Lopez, A. Nizard, K. Friston, and G. Pezzulo.
Active inference and robot control: a case study.
Journal of The Royal Society Interface, 13(122):2016
0616, 2016

5. P. Lanillos and G. Cheng. Adaptive robot body
learning and estimation through predictive coding. 05
2018.

6. H. Loeliger. An introduction to factor graphs. IEEE
Signal Processing Magazine, 21(1):28–41, Jan 2004.

7. C. L. Buckley, Chang Sub Kim, Simon McGregor, and
Anil K Seth. The free energy principle for action
and perception: A mathematical review. Journal of
Mathematical Psychology, 81:55–79, 2017.

8. J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Elsevier, 2014.

9. T. W. van de Laar and B. de Vries. Simulating
active inference processes by message passing.
Frontiers in Robotics and AI, 6(20), 2019

Fig. 4. Factor graph showing the slide function of the algorithm. The infer function is indicated with a 4.

Fig. 5. Factor graph showing one timestep of the algorithm.

Fig. 7. Performance of the AIC with minor Gaussian white noise
𝜎Xz = 0.02	 on the sensor

Fig. 6. Performance of the AIC with the standard settings and
without any noise.

