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ABSTRACT 
Accurate real-time diagnostics of high-tech systems are 
becoming more and more important. Therefore, the 
potential of distributed acoustic sensors in combination 
with machine learning for contactless diagnostics of 
machine performance has been investigated. Hereto, 
frequency response data of a brass plate has been gathered 
through experiments and a finite element model. In order 
to investigate the possibility of identifying the locations 
and weight of the masses, Support Vector Machines and 
Random Forest algorithms have been trained with 
experimental and numerical data. The Random Forest 
algorithm shows promising performance with short 
computational time, easy application, 95% accuracy and 
relatively easy understandability. 
Keywords 
Diagnostics, acoustic emission, vibration sensor data, 
machine learning, support vector machines, random forest. 
INTRODUCTION 
Machine learning is recently being used more and more in 
different fields of research. In the field of dynamics, 
machine learning could bring plenty of improvements as 
well. For example, real-time contactless diagnostics of 
high tech systems. Real-time detection of irregularities in 
these systems is necessary for long-term and safe 
operation. Ideally monitoring would happen without 
interrupting the operation of the machines, to keep the 
downtime as low as possible. To this end, an acoustic 
sensor would be a great improvement, enabling the 
possibility to monitor the behavior and performance of 
multiple parts. This paper aims to develop such 
methodology for detecting irregularities in structures or 
systems, using machine learning algorithms trained with 
data obtained from acoustic measurements and a finite 
element model. For this purpose, the frequency response of 
a basic plate structure has been investigated. Small masses 
have been used to represent structural irregularities and one 
normal mode has been observed in particular. This mode 
is depicted in Fig. 1, where the minus and plus signs 
represent displacement in and out of the page respectively. 
This mode shows 9 clear sectors and thus makes it possible 
to monitor the changes of 9 extrema separately. 
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THEORY 
First, in order to understand the dynamical behavior of a 
plate, and the corresponding sound generation and 
detection, the relevant theory is elaborated.  

Plate vibrations 
A natural vibration is defined as the free motion that will 
follow when an arbitrary initial disturbance, i.e. excitation, 
is imposed on an undamped time-invariant single-degree-
of-freedom linear system. Such a natural vibration 
indicates that the system vibrates at a so-called natural 
frequency, which depends on the system parameters. Each 
natural frequency corresponds to a certain configuration of 
the system’s motion, called a normal mode, e.g. the mode 
shape shown in Fig. 1. For an undamped multi-degree-of-
freedom linear system, its free motion is a superposition of 
all its normal modes. Analytically, the natural frequencies 
and modes can be obtained by using the equations of 
motion to solve the algebraic eigenvalue problem [1].  

Sound generation and detection 
In sound generation, bending waves are the most important 
and induce a displacement of the particles that is mainly 
perpendicular to the plate’s surface. These sound waves 
can be recorded with a receiver, which makes it possible to 
identify the sound pressure or intensity. Moreover, it is 
possible to separate a sound wave into its component parts, 
which are various sound wave frequencies and noise. From 
this, the frequency of each of the different sound wave 
components can be determined, which are the different 
natural frequencies. Additionally, at a fixed distance from 
the source, the pressure, velocity, and displacement of the 
medium vary in time. On the other hand, at an instant in 
time the pressure, velocity and displacement vary in space. 
The transversal displacement caused by the bending waves 
is proportional to the particle velocity in the direction 
perpendicular to the plate. Thus, with multiple receivers, it 
is possible to detect the complete motion of the plate, since 
every receiver detects the plate’s motion at a specific 
location. 

EXPERIMENTS 
To gather experimental training data, a considerable 
amount of measurements has been performed in a semi-
anechoic chamber. The experimental set-up consisted of a 
vertically oriented brass plate of dimensions 0.401 x 0.401 
x 0.002 [m] and mass 2.67 [kg], positioned parallel to a 
microphone array as shown in Fig. 2. The distance between 
the array and the plate has been chosen as 𝑧𝑧𝑑𝑑 = 30 [mm]. Fig. 1: The mode shape of interest. Here ‘–‘ and ‘+’ denote 

displacements in and out of the page respectively. 



Each corner of the plate has been attached to the aluminum 
frame by deflated bicycle inner tubes. The array that has 
been used is a CAM1K Sorama microphone array with 
1024 microphones in a 32 by 32 grid. The plate has been 
excited manually using a hammer equipped with a nylon 
tip. With an impact excitation it has been ensured that the 
dynamical behavior of the plate is not influenced and thus 
a natural vibration is induced. 

The mode of interest that has been used for this paper 
contains 9 sectors. The extrema in de mode shape are 
located somewhat closer to the middle of the plate and 
thus, the plate has been divided into 9 equal sectors, 
according to the nodal lines around the extrema. Small 
plate masses of 20 and 60 [g], respectively 0.75 and 2.25% 
of the total mass, have been used to represent irregularities 
in the plate. The masses have been attached to the midpoint 
of a sector using beeswax. The location and numbering of 
the sectors and location of the masses and excitation point 
are shown in Fig. 3. 

For each sector, except for sector 5 due to the excitation 
point being located there, 20 measurements per mass, both 
20 and 60 [g], have been performed. Moreover, 20 

measurements for the clean plate, without mass, have been 
done. For some randomness and small deviations in the 
results, a maximum of 5 consecutive measurements has 
been done, after which the mass has been repositioned. 
The measurement data has been processed using 
MATLAB and its implemented Fast Fourier transform 
(fft) function, to obtain the acoustic data corresponding to 
the mode of interest. The acoustic field at the hologram 
plane (microphone array), is different from the one at the 
source plane (vibrating plate). A reconstruction, i.e. 
acoustical holography, could be applied to solve this. 
However, as proven by Moers (2016) [2], this has a 
negligible effect on the amplitude, and therefore, the shape 
of the modes. Hence no reconstruction has been applied. 
To be able to compare the resulting sound pressure images, 
the pressure data has been normalized to a maximum value 
of unity. For completeness of the sound image, the 
normalized values are multiplied with the sign of the real 
part which makes it possible to distinguish positive and 
negative extrema. 
As an example, the sound image of a measurement with 60 
[g] in sector 1 can be seen in Fig. 4. This sound image 
proves that the mode shape shows clear indications about 
the location of the mass, making it possible to identify an 
irregularity from the acoustic data. 

FINITE ELEMENT MODEL 
To generate more training data without having to perform 
the experiment, a finite element model has been made in 
ANSYS. First, quadrilateral elements of the Serendipity 
type have been used to mesh the model. Material properties 
have then been assigned to the mesh. The density ρ of 8100 
[kg/m3] has been found by weighing the plate. 
Furthermore, the Poisson’s ratio ν has been chosen as 0.33 
[-], which is a typical value for brass, and the Young’s 
modulus E has been tuned such that the mode of interest 
matches the frequency of the one found in the experiments, 
resulting in 92.3 [GPa]. Finally, a damping ratio ζ of 
0.00137 [-] has been found using the 3 dB-bandwidth 
method defined as 

𝜁𝜁 = Δ𝑓𝑓/𝑓𝑓0 , 
where f0 is the frequency of the mode of interest in the 
experiment and Δf is the distance between the frequencies 
for which the response is 3 dB lower.  
It has been found that free-free boundary conditions 
represent the boundary conditions from the experiment 

Fig. 2: Schematic representation (left) and picture (right) 
of the experimental set-up. 

Fig. 3: Sector and mass locations. The continuous line marks the 
plate. ‘+’ indicate the mass locations with corresponding sector 
number, dots indicate microphone locations, dotted lines mark 

the sectors and the circle shows the point of excitation. 

Fig. 4: Sound pressure image for a measurement with 60 [g] 
in sector 1. The white square marks the plate position. 



best. Finally, the masses have been simulated using point 
masses placed on the node closest to the point (x,y) where 

𝑥𝑥 = 𝑥𝑥𝑐𝑐 + 𝑟𝑟 cos 𝜃𝜃 
𝑦𝑦 = 𝑦𝑦𝑐𝑐 + 𝑟𝑟 sin𝜃𝜃. 

Here, (xc,yc) is the location of the mass, as shown in Fig. 3. 
During each of the 30 simulations per sector, r and θ have 
been randomly sampled from uniform distributions ranging 
from 0 to 1 [cm] and 0 to 2π [rad] respectively, in order to 
generate randomness in the location for the mass. This 
randomness results in slightly different responses, which is 
necessary to train the algorithms. In each simulation the 
plate has then been excited in its center using a unity force.  
For simulations of the plate without mass, the location of 
the excitation force has been changed around the center of 
the plate in the same manner as the location of the mass. 
The response of the plate has then again been normalized 
in the same way as with the experiments, to be able to 
compare the two responses. This comparison has been done 
using the Modal Assurance Criterion (MAC) defined as 

𝑀𝑀𝑀𝑀𝑀𝑀 =
|𝜙𝜙𝑀𝑀𝑇𝑇 𝜙𝜙𝐸𝐸|2

(𝜙𝜙𝑀𝑀𝑇𝑇𝜙𝜙𝑀𝑀)(𝜙𝜙𝐸𝐸𝑇𝑇𝜙𝜙𝐸𝐸)
, 

where ϕM and ϕE represent modal vectors of the model and 
the experiment respectively. From this equation follows 
that when the two modes are equal, the MAC equals 1. For 
the considered plate and model, the MAC has been found 
to be only 0.60. However, looking at Fig. 5 the main 
difference is located at the edge of the plate, where the 
soundwaves detected by the microphones are weaker as 
they can diffuse more in all directions. When excluding the 
edges of the plate, a MAC of 0.94 has been found. 
Therefore, it can be concluded that the model is accurate 
when the edges are excluded, hence the edges are not 
considered in further analysis. 

DETECTION ALGORITHM 
Using the data from the experiment and the model, two 
types of machine learning algorithms are investigated: 
Support Vector Machines (SVM) and Random Forest 
(RF). These algorithms are chosen for their 
understandability, ease of implementation and their 
classification performance in other applications. 

Support Vector Machines 
SVM make binary classifications by assigning a value of 
+1 or -1 to each class. Classification of an input a then 
happens according to the function  

𝑔𝑔(𝑎𝑎) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑖𝑖�(𝑤𝑤 ⋅ 𝑎𝑎) + 𝑐𝑐�. 
Here, w is a vector of weights and c is a bias, which are 
found by means of a minimization problem during training 
of the algorithm. If classification in more than two classes 
is desired a one-versus-one or one-versus-all approach can 
be taken, which specify one class as the positive class and 
one or all other classes as the negative class, respectively. 
In [3] the inner working of the SVM are explained in more 
detail. Optimization of several other parameters of the 
SVM can be performed automatically in MATLAB. This 
uses Bayesian optimization and has high computational 
time. More information regarding the parameters to be 
optimized and the theory behind the Bayesian optimization 
in MATLAB can be found in [4]. 

Random Forest 
RF makes classifications by taking the majority vote of 
several decision trees. These trees are directed graphs with 
randomly chosen parameters, such as its maximum depth, 
which are ‘grown’ during the training of the algorithm. 
This growing procedure aims to minimize the impurity of 
each node defined using the Gini index as 

𝑖𝑖 = 1 −� 𝑝𝑝2(𝑗𝑗)
𝑗𝑗

 

where p is the fraction of class j present at a given node. 
Optimization of the RF can be performed by changing the 
number of trees. A more detailed explanation of the RF can 
be found in [5].  

Algorithm accuracy results 
Both algorithms have been implemented in MATLAB, 
using the fitcecoc and TreeBagger functions, to identify the 
sector in which the mass is located and the weight  of the 
mass from the response of the plate. Furthermore, the 
influence of the amount of experimental training data on 
the performance has been investigated. Minimizing this 
amount, while maintaining reasonable accuracy, reduces 
the amount of physical experiments needed to train an 
algorithm, which is preferred for more advanced systems. 
First, the experimental data has been interpolated to a finer 
grid that matches the numerical element grid. After that, 
the pressure data is squared in order to eliminate the sign 
dependency. This data is then divided into 9 sectors and 
converted to a ratio I by 

𝐼𝐼𝑆𝑆 =  
∑ 𝑣𝑣𝑆𝑆,𝑛𝑛

2
𝑛𝑛

∑ ∑ 𝑣𝑣𝑠𝑠,𝑛𝑛
2

𝑛𝑛𝑠𝑠
 

where S denotes the sector for which I is calculated, n 
denotes all nodes in sector S, s denotes all individual 
sectors and v is the normalized response of a node. This 
data has been used to train the algorithms, which could 
then distinguish test data by sector number and weight of Fig. 5: Normalized response of the plate for the 

experiment (top) and the model (bottom). 
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the mass. Both algorithms have been trained with 25 
measurements per mass, per sector, randomly chosen from 
the gathered data set. This means that a total of 425 
measurements have been used to train the algorithms and 
17 classes can be distinguished. Furthermore, the ratio 
between experimental and numerical data has been varied 
and expressed as a percentage of experimental data out of 
the total training data. Once trained, the algorithms have 
been tested with 5 measurements per mass, per sector, 
randomly chosen from the data not used for training. 
Performance on experimental and numerical data have 
been tested separately. The accuracy is then expressed in 
the percentage of correct classifications out of all 
classifications made. In Fig. 6, the performance of the 
optimized SVM and the RF with 20 trees on experimental 
data are shown. It can be seen that the change of 
performance is similar in shape, with the RF performing 
slightly better. For the optimized SVM, an accuracy of 
95% is reached at approximately 40% of experimental 
training data, whereas for the RF the 95% accuracy is 
reached at approximately 20% of experimental data. In Fig. 
7, the performance of the optimized SVM and RF 
algorithm on numerical data is shown. Here, it can be seen 
that the performance is more than reasonable for both 
algorithms. A small difference in performance can be seen 
for the optimized SVM, as the accuracy slightly decreases 
when adding more experimental training data, whereas the 
RF performs rather stable at around 100%.  

CONCLUSION 
For this paper acoustic experiments have been performed 
on a basic plate structure, to which masses have been added 
to simulate irregularities. Furthermore, a finite element 
model representing this plate has been developed. It has 
been shown that this modeled plate, when excluding the 
edges, accurately describes the plate used in the 
experiments. Response data resulting from excitation of 
the plate and the finite element model has been used to 
train two machine learning algorithms for detecting the 
location of the added mass and its weight. The used 
algorithms, Support Vector Machines and Random Forest, 
both reached over 95% accuracy using respectively 40% 
and 20% data from the physical experiments in the training 
set. Moreover, it has been found that the Random Forest 
reaches a higher overall performance. An additional 
benefit of the Random Forest is its simplicity regarding 
both understanding the algorithm, as well as optimizing it 
leading to lower computational times. Therefore, it has 
been concluded that for a similar classification purpose, the 
Random Forest is the better algorithm to use. 
Improvements could be made in further research, by using 
holographic reconstruction of the image of the plate to 
verify the aforementioned assumption that stated that the 
difference between the hologram plane and source plane is 
negligible for the mode shape. Furthermore, the training of 
the algorithms could be extended by using more modes, 
which could make it possible to determine the mass 
location more exactly. Finally, improvements to the 
algorithm could be made by training it with more data. 
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Fig. 6: Accuracy of the optimized SVM (○) and RF (∆) when 
classifying experimental data. 

Fig. 7:  Accuracy of the optimized SVM (○) and RF (∆) when 
classifying numerical data. 

 


