
Using Program Dependency Graphs for plagiarism detection
in Python

Thomas Schaper (student), Ana Lucia Varbanescu (supervisor)

University of Amsterdam

ABSTRACT
Plagiarism in computer science education programs is

a significant problem, requiring resilient, reliable, auto-

mated tools for efficient detection. Plagiarism detection

tools based on Program Dependency Graphs (PDG) ful-
fill these requirements, but do not directly support all

programming languages. For example, for Python, an

increasingly popular programming languages in com-

puter science education, traditional PDG-based meth-

ods do not work, as they create too many incorrect

edges. In this work we propose the PyDG framework,

the first solution for PDG-based plagiarism detection

for Python programs. PyDG’s approach is based on

creating a slightly restricted Python language. Our em-

pirical analysis demonstrates that PyDG successfully

improves plagiarism detection by complementing ex-

isting tools.

KEYWORDS
Plagiarism detection, Python, Static analysis, Program

dependency graph

INTRODUCTION
Plagiarism in computer science programs is a big prob-

lem. Over 70% of students admit to committing plagia-

rism at least once during their graduate program [11].

Automated tools are very important for detecting pos-

sible cases of plagiarism as the amount of pairs that

need to be checked is large. However, as the reliance

on these tools is well known, students can leverage

the weaknesses of these tools to commit plagiarism

without getting caught.

There are multiple specialized tools for detecting

plagiarism in source code [9, 10]. Most of these tools

are resilient against attacks such as identifier renaming

and formatting changes. However, they are vulnerable

to other attacks, such as code insertion and statement

reordering [7]. A plagiarism-detection technique that

is resilient against these attack is based on the Program

Dependency Graph (PDG) of a program [7].

A PDG is a directed graph where the nodes are state-

ments and the edges represent dependencies — both

data and control ones. In fact, the PDG is the union

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted under the conditions of

the Creative Commons Attribution-Share Alike (CC BY-SA) license

and that copies bear this notice and the full citation on the first

page

SRC 2018, November 9, 2018, The Netherlands

of the edges present in a Control Dependency Graph

(CDG) and a Data Dependency Graph (DDG) [4]. Given
the advantages of PDG-based plagiarism detection, our

goal is to enable their use for Python, a programming

language quickly growing in popularity in various ed-

ucation programs.

However, creating PDGs for Python poses multiple

problems. These problems mainly occur when creat-

ing the DDG, as types of variables cannot be statically

determined and many techniques, such as static inter-

procedural analysis, are not possible in Python. This

causes incorrect data dependency edges, which in turn

causes all graphs for functions of equal length to look

the same, resulting in many false positives for plagia-

rism detection.

In this work we propose PyDG, a framework that au-

tomatically generates PDGs suitable for Python plagia-

rism detection. Specifically, PyDG reduces the amount

of incorrect edges by creating a restricted Python lan-

guage in which certain assumptions about mutation

and aliasing are always true. Our empirical analysis

shows that PyDG is capable of generating PDGs with a

low amount of incorrect data dependency edges for un-

restricted Python source code. Furthermore, we show

that, using these generated PDGs and a matching anal-

ysis as proposed by [7] we can analyze code submitted

by students for plagiarism. Our results show PyDG

adds value to the plagiarism detection process, as it

complements state-of-the-art tools such as MOSS.

THE PYDG ARCHITECTURE
To detect plagiarism in Python using PDGs we created

a processing pipeline. First we parse the Python source

code into an Abstract Syntax Tree (AST), and perform

pre-processing by simplifying the AST. This simplified

AST is used to create a CDG and a DDG which are

combined into a PDG. This PDG is then post-processed

by pruning and used for the matching.

Pre-processing
There are expressions in Python which contain con-

trol flow jumps. As a PDG is created on statement level,

these jumps are not visible in the resulting graph. To

prevent this we transform a subset of these expressions:

list, set, dict and generator comprehensions, and

conditional expressions (also known as ternary opera-

tors). All generators are rewritten as a loop that pro-

duces a value in a temporary variable. A conditional

expression is rewritten as an if statement, where a

temporary variable is assigned in the then and in the

else block.

PDG construction
There are two options for creating PDGs: using static

analysis or using runtime information [3]. Both ap-

proaches pose challenges. To get runtime information

the code needs to be run, creating possible security

issues and requiring a standardize way of testing the

submitted code needs to be created. When using run-

time information the test code for creating the PDGs

needs to cover all edge cases, as these edge cases could

possibly drastically change the PDG.

PyDG uses static analysis and restricts the supported

language to enable disambiguation (see A1 throughA5).

The key is to find the sweet spot for restrictions/assumptions

that do not hurt programmers, and enable analysis. As

local variables can be statically resolved, the challenge

in building the PDG is finding all mutations of variables.

To do this we first identify two classes of statements:

(1) guaranteed mutation, where statements are guaran-

teed to mutate a variable (e.g. assignment of a variable),

and (2) possible mutation (e.g. calling a method on a

variable). As a data dependency from node A to node

B indicates that the statement of node B contains a

variable which would have an incorrect value if the

statement of node A was executed after the statement

of node B, possible mutations create data dependen-

cies. As all false edges (i.e. edges present in the graph

while there is no dependency between the statements

in the program) are caused by the second class of state-

ments, decreasing the amount of false edges can be

achieved by reducing as much as possible the types of

statements from the second class.

In our approach we remove all statements from the

second class: we either move them to the first class,

assuming that they always mutate, or we remove them

completely, assuming that they never mutate. As the

goal of the assumptions is to minimize the amount of

false edges, a statement of the second class should only

be moved to the first class if the chance that it mutates

a variable is high. The result of this analysis is encoded

into a set of 5 main assumptions, A1-A5, which should

hold for most idiomatic Python code, and therefore

the generated PDGs should be valid for most idiomatic

Python code.

A1: Restricted aliasing With A1 we assume that

aliasing of variables is restricted. When it is not possi-

ble to determine that variable a and b do not alias each
other, mutating a might also mutate b. A1 assumes

that aliasing can only occur from direct assignment in

a function, e.g. a = b, but that functions always return
new objects and that function arguments do not alias

each other.

A2: Behavior of attributes Python objects have

attributes, just like languages such as Java and C++.

In these languages the semantics for getting, setting

and deleting, if at all possible, attributes is defined.

In Python however, getting, setting and deleting at-

tributes can be done by special methods which can mu-

tate the object in arbitrary ways. With A2 we assume

that all attributes have the same properties as instance

attributes, simple attributes. This means that overriding

methods such as __getattr__ and __getattribute__
do not violate A2 if it follows this behavior.

A3: OperatorsWith A3we assume that these opera-

tor functions, like __add__, are pure. Binary and unary
operators like a + b are syntactic sugar in Python for

a.__add__(b). A3 assumes that these methods do not

mutate their arguments and that they produce a new

object each time they are called.

A4: Functions and methodsWith A4 we assume

that functions and methods do not mutate their pa-

rameters. It is possible for functions and methods in

Python to mutate their parameters, as most objects in

Python are mutable. A4 assumes functions to be pure,

as global state is not modeled in the PDG, and methods

always only mutate the object they are defined on.

A5: Exceptions The fifth assumption is that only

blocks inside a try statement can raise exceptions.

Modeling exceptions in a CDG can be done in differ-

ent ways, but most methods depend on some form of

checked exceptions [1, 2]. As Python has no checked ex-

ceptions, these techniques are not suitable. While creat-

ing a control dependency to the previous statement for

each statement is technically correct this would result

in a graph that is unsuitable for plagiarism checking,

because slight alterations will drastically change the

PDG. As suggested in [1], we chose to only model ex-

ceptions that are catched. We extended this technique

to assume that only the block inside a try statement

can raise exceptions, not the individual statements. The

raise statement, which always raises an exception, is

directly connected to the special exit node of a func-

tion, even if this happens in a try block as it is not

always possible to statically determine which except

clause will catch the raised exception.

Besides these main assumptions we need 6 extra

assumptions for generator expressions, conditional ex-

pressions, comprehensions, global state, nested meth-

ods and augmented assignment.

Post-processing
In Python, it is normal to have functionally-useless

statements. Functionally-useless statements are state-

ments that do not have side effects and do not modify

the control flow. An example of such a statement is

the docstring, which is a string literal that documents

a function, method, class or module. In the post pro-

cessing phase these functionally-useless statements are

removed. A node is considered functionally-useless if

the sum of indegree and outdegree is less than two.

Matching
For each submission (from each student) every func-

tion in each file is converted to a PDG, as described in

the previous sections, resulting in the set Si of PDGs for
submission i . The PDGs in Si are filtered based on size,

as proposed by [7] to remove all trivial functions. A

pair of two submissions, i and j with i , j , are marked

as possible plagiarism if there exists a graph G in Si
that is similar to a graph G ′

in S j . A graph G is similar

to graph G ′
if G is γ -isomorphic as defined in [7], i.e.

if there exists such a graph Gs ⊆ G that is subgraph

isomorphic to G ′
and satisfies γ · |G | ≤ |Gs |. We find

this subgraph Gs by finding the Maximum Common

Subgraph (MCS) ofG andG ′
, as the MCS is the largest

graph that is subgraph isomorphic to G and G ′
. There-

fore if the MCS does not satisfy γ · |G | ≤ |Gs |, no other

graph that is subgraph isomorphic toG andG ′
will. We

have implemented finding theMCS using the described

algorithm in [8].

Finding the MCS is a NP-complete problem [6], this

may take a long time. Therefore, we limit the amount of

time that we search for the MCS to a certain threshold

which we call the cutoff-time.

EXPERIMENTS
We test the functionality of PyDG in two ways: (1)

by determining the extent to which our assumptions

A1-A5 are applicable to real code, and (2) by checking

students’ code on students’ to determine if the gener-

ated PDGs can be used for plagiarism detection.

Code analysis
To determine the applicability A1-A5, we generated

the PDGs for the back-end code of CodeGrade1 at com-

mit hash 5ea16a49. CodeGrade is a blended learning

application, partially written in Python, designed for

programming education. The Python part of the pro-

gram is around 9000 lines of code, divided over 385

functions. Only functions of at least 5 nodes and one

data dependency edge were included in the analysis,

of which we analyzed 151.

Table 1 presents the result of this analysis. Specifi-

cally we present the relative amount of incorrect edges

in the generated PDGs, calculated as the ratio between

the amount of incorrect edges by the total amount of

data dependency edges. The results are very good: we

observe a very small number of false edges — at most

12.5%. The average amount of incorrect edges across

all node sizes is 6.9%.

We note that, while it is desirable to interpret the

relative amount of incorrect edges by comparison to

other tools/methods to generate Python PDGs, this

comparison is currently impossible because no such

tool is available.

Plagiarism detection
To assess the effectiveness of using the generated

PDGs for plagiarism detection, we ran PyDG on an

1
https://github.com/CodeGra-de/CodeGra.de

Table 1: An analysis of the amount of incorrect
data dependency edges in automatically gener-
ated PDGs from CodeGrade.

Amount of nodes Incorrect edges

5 – 16 6.3%

17 – 28 7.5%

29 – 39 12.5%

40 – 51 8.5%

52 – 63 4.6%

Average 6.9%

assignment given in the "Datastructuren en Algorit-

men" course of the artificial intelligence BSc program.

The latest submission of each student, 98 in total, was

checked for plagiarism using PyDG and MOSS. For

PyDG, we defined 15 nodes as the minimal size of a

non-trivial PDG. We set our matching cutoff-time to

25 seconds, and γ = 0.9, as suggested by [7]. Matching

cutoff-time is a trade-off between accuracy and execu-

tion time. For this experiment we set a budget or 1400

CPU hours, which meant 25s per pair (201453 × 25s =
5036325s ≈ 1399h).
The assignment had a fixed structure, and part of the

code is provided. We therefore added an extra filtering

step to minimize false positives. A function f of sub-

mission s is considered given or trivial if it is marked as

possible plagiarism more than t times. The threshold t
was set to 2 for this case study. This value was chosen

based on intuition and can be easily changed.

MOSS outputs its results online in a sorted list. This

list contains all possible matches, resulting in low qual-

ity matches at lower positions. For a fair comparison

we decided to only consider the first ten matches MOSS

outputs, as suggested by [5].

Our analysis focuses on the potential cases of plagia-

rism. A match is a pair of submissions that is flagged

as similar by PyDG or MOSS. In this case study how-

ever we used a dataset where not all true positives are

known, which means the ground truth is not known.

To determine whether a match is a true or false posi-

tive, all matches were analyzed by hand and assigned

a true or false positive label.

In this context, we define a true positive as a match

which needs closer inspection by a human. A match

that doesn’t need further inspection (i.e. the code is

in fact not similar) is considered a false positive. The
relative false negative rate for a tool A is defined as the

amount of false negative matches from A divided by

the true positive matches from A. As the ground truth

is not known it is not possible to determine the amount

of false negatives. Therefore, we can only determine

the minimal amount of false negatives for a tool A, i.e.
the amount of unique true positives found by all tools

except A that were not found by A.

https://github.com/CodeGra-de/CodeGra.de

Table 2: The amount of true and false positives, minimal amount of false negatives and relative false
positive rate for PyDG and MOSS.

True positives False positives Minimal false negatives Relative false positive rate

PyDG MOSS PyDG MOSS PyDG MOSS PyDG MOSS

20 8 10 2 1 13 50% 25%

The analyzed results are presented in table 2. PyDG

finds 12 more true positives than MOSS. The output

of PyDG does contain more false positives than MOSS,

and PyDG also has a higher relative false positive rate.

Not all true positives from PyDG and from MOSS were

the same, i.e. PyDG outputs true positives that MOSS

doesn’t output and vice versa. PyDG finds 13 true posi-

tives that MOSS does not find, MOSS finds one unique

true positive.

CONCLUSION
Reliable plagiarism detection using automated tools is a

necessity for many education programs. The increased

use of Python in these programs has rendered some of

the previously acceptable techniques, like PDG-based

plagiarism detection, impossible to use. In this work,

we proposed PyDG, the first framework able to use

PDGs for plagiarism detection in Python.

In this work, we have shown that our novel approach,

limiting the Python language using a limited set of re-

strictions, makes it possible to create PDGs for Python.

We empirically demonstrated that these PDGs have a

reasonably low amount of incorrect dependency edges

compared to the ground truth constructed by hand. We

have further demonstrated that it is possible to devise

a methodology to detect possible cases of plagiarism

that MOSS, a state-of-the-art plagiarism detection tool,

does not detect, while also detecting most true posi-

tives from MOSS. Therefore, we have shown that it is

feasible to use PDGs for plagiarism detection in Python

code.

Based on these results, we believe PyDG-based pla-

giarism detection to be a useful addition to existing

plagiarism detection tools. The generated graphs could

also be used for other purposes where small errors

in the graph are tolerable, e.g., for improving linting

or the debugging experience in Python. We also sus-

pect that our approach is scalable and could be used

for other high level programming languages where no

static type information is known.

We identify two directions of future work. They are

short and long term. On the short term, better PDG

validation for the graphs generated by PyDG, as well

as better PDG matching algorithms are required to

further validate the correctness and feasibility of the

methods proposed in this work.

On the longer term, employing better analysis to

further reduce the amount of incorrect dependency

edges is also desirable. Although the current version

of PyDG is capable of creating PDGs with a reasonably

low amount of incorrect data dependency edges (at

most 12.5%), the amount of incorrect edges could be

further reduced.

ROLE OF THE STUDENT
This research was performed by Thomas Schaper un-

der the supervision of Ana Lucia Varbanescu (in the

period April-June 2018). The topic was proposed by

the student. The design and implementation of the pro-

gram, the choice and implementation of the matching

algorithm, the design of the experiments and success

metrics, the processing of the results and formulation

of the conclusion were all done by the student.

REFERENCES
[1] M. Allen and S. Horwitz, Slicing java programs that throw

and catch exceptions, ACMSIGPLANNotices, 38 (2003), pp. 44–

54.

[2] A. Amighi, P. de C. Gomes, D. Gurov, and M. Huisman,

Sound control-flow graph extraction for java programs with
exceptions, in Software Engineering and Formal Methods,

Springer Berlin Heidelberg, 2012, pp. 33–47.

[3] Z. Chen, L. Chen, Y. Zhou, Z. Xu, W. C. Chu, and B. Xu,

Dynamic slicing of python programs, in 2014 IEEE 38th Annual

Computer Software and Applications Conference, 7 2014.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren, The pro-
gram dependence graph and its use in optimization, ACMTrans-

actions on Programming Languages and Systems, 9 (1987),

pp. 319–349.

[5] J. Hage, P. Rademaker, and N. van Vugt, A comparison of
plagiarism detection tools, Utrecht University. Utrecht, The
Netherlands, 28 (2010).

[6] J. Hartmanis, Computers and intractability: a guide to the the-
ory of np-completeness (michael r. garey and david s. johnson),
SIAM Review, 24 (1982), pp. 90–91.

[7] C. Liu, C. Chen, J. Han, and P. S. Yu, Gplag: detection of
software plagiarism by program dependence graph analysis, in
Proceedings of the 12th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, ACM, August

2006, pp. 872–881.

[8] J. J. McGregor, Backtrack search algorithms and the maximal
common subgraph problem, Software: Practice and Experience,

12 (1982), pp. 23–34.

[9] L. Prechelt, G. Malpohl, and M. Philippsen, Finding pla-
giarisms among a set of programs with jplag, J. UCS, 8 (2002),
p. 1016.

[10] S. Schleimer, D. S. Wilkerson, and A. Aiken,Winnowing:
local algorithms for document fingerprinting, in Proceedings

of the 2003 ACM SIGMOD international conference on Man-

agement of data - SIGMOD ’03, 2003.

[11] D. Sraka and B. Kaucic, Source code plagiarism, in Proceed-

ings of the ITI 2009 31st International Conference on Infor-

mation Technology Interfaces, 6 2009.

	Abstract
	References

