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ABSTRACT 

While decades of neuroscientific research has detailed 

the brain networks underlying memory, to date the 

neurobiology underlying interindividual memory 

differences in a healthy population is not known. Here 

we use the behavioral and resting state fMRI data from 

the Human Connectome Project (HCP), and predict 

subjects’ scores on tests of working and episodic 

memory based on their whole brain functional 

connectivity significantly above chance. We observed 

that brain connectivity between regions determining 

differences between healthy subjects were different 

from those traditionally associated with memory. 

Results may ultimately be relevant to determine risk 

factors for the development of neurodegenerative 

disorders. 
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INTRODUCTION 

The study of memory has long been one of the 

cornerstones of cognitive psychology and neuroscience. 

Both episodic memory, the memory of personal events, 

and working memory, ensuring temporary availability of 

relevant information,  are well characterized in terms of 

their underlying brain networks. Meta-analysis of 

neuroimaging and neuropsychological research points to 

the medial-temporal lobe as a hub of episodic memory 

encoding and retrieval [1, 2]. Within that region, especially 

the hippocampus has been studied extensively [3].The 

prefrontal cortex plays an important role in episodic 

memory functioning as well, as it has been implicated in 

structuring information for encoding and retrieval [4]. With 

regards to working memory, research points to a fronto-

parietal network [4].  

 While previous studies help to identify brain 

networks that underlie memory function, much less is 

known about how brain connectivity determines inter-

individual differences in memory performance. In the 

extreme case of Alzheimer’s disease, where episodic 

memory and working memory are compromised, changes 

in large-scale connectivity [5] as well as networks 

associated with task performance becoming more similar 

to those associated with rest are observed. [5]  

To date, an investigation of the differences in brain 

functional connectivity within a group of healthy subjects 

is lacking. One reason for this is the use of small sample 

sizes in neuroscientific studies that make detection of 

variability within healthy subjects difficult. The human 

connectome project [6] offers an opportunity to overcome 

this limitation. This large dataset has already been used to 

predict variables such as fluid intelligence [7]. 

Our study intends to further this line of research and use  

resting state connectivity and memory tests provided by 

the HCP to investigate if scores on the behavioural tests 

can be  

predicted from brain functional connectivity. This analysis 

would help pinpoint specific connections in the brain that 

might give rise to differences in memory performance on 

an individual basis. 

A similar analysis was done with the “HCP MegaTrawl” 

(https://db.humanconnectome.org/megatrawl/index.html).

Their analysis, however, turned out non-significant. We 

intend to make use of an alternative parcellation as 

published by Glasser and Coalson[8] and Ridge Regression 

to improve on their work. 

For two out of three variables that we are studying our 

results show a significant correlation between our 

predicted and observed scores. 

 
METHODS 

Data 

Behavioural data. Behavioural measures relevant to the 

study at hand are the Picture-Sequence-Memory-Test 

(PSMT), for episodic memory, the Penn-Word-Memory-

Test (IWRD), for verbal episodic memory and the List-

Sorting working memory test. Both previously mentioned 

variables are available adjusted for age by linear 

regression and unadjusted.. This is scored by reaction time 

(RT) in milliseconds and by the total number of correct 

responses. All tests are part of the NIH toolbox.  

Neuroimaging data. The HCP fMRI data was obtained 

using a Siemens 3T Skyra scanner modified with a 

Siemens SC72 gradient coil. [9] were collected in four runs 

of about 15 minutes,  over two sessions with two runs each. 

(http://protocols.humanconnectome.org/HCP/3T/imaging

-protocols.html;TR = 720 ms, TE = 33.1 ms, voxel size = 

2.0 mm isotropic). 

 

Subjects 

Resting state measurements and behavioural data of 102 

subjects are obtained from the human connectome 

database (53.47% female, mean age range = 26-30). All 

subjects are healthy and part of the young adult cohort of 

the HCP data releases.  

 

Connectome Preparation and Parcellation 

We summarized the full brain resting state data of each 

individual using the semi-automated parcellation proposed 

by Glasser and Coalson[8] (referred to as HCP-MMP1, 

figure 1). This serves to reduce the dimensionality of the 

raw fMRI data: Instead of producing a connectome (matrix 

of 
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correlations) between all voxels the brain is separated into 

180 areas per hemisphere, thus 360 areas relevant for 

analysis. This parcellation differs from most others in that 

it incorporates a neuroanatomical approach for areal 

delineation as well as an automated algorithmic approach. 

Further, most parcellations are based on one 

neurobiological property, e.g. architecture, function, 

connectivity or topography. HCP-MMP1 uses all four of 

those. Areas were first identified by an algorithm designed 

to detect region-to-region changes in those four properties 

in HCP fMRI data. The areas delineated by the algorithm 

were then interpreted by neuroanatomists consulting 

existing literature. In the third and last step of their 

approach, a machine learning classifier was trained to 

identify the 180 areas in new subjects. 96.6% of all areas 

turned out to be reproducible. 

 

Regression 

The regression analysis is performed in MATLAB 

R2016a. The data in its raw format would be very 

computationally intensive: Each subject is represented by 

a matrix 𝐒𝑟𝑎𝑤[parcel x parcel], with 360 parcels for the 

whole brain. We therefore perform principle component 

analysis before further processing. Sufficiently many PCA 

components were selected to explain approximately 70% 

of variance in the raw data so that for each subject: 

  𝐒𝑃𝐶𝐴 = 𝐒𝑟𝑎𝑤𝑉       

(1) 

Where  𝐒𝑃𝐶𝐴 is a [P x K] matrix, with P (number of 

parcels) = 360 and K (number of components), and V is a 

[P x K] specifying the loading of each component. Each 

matrix 𝐒𝑃𝐶𝐴 is then reshaped into a row vector and added 

to a Matrix F[N x PK], where N (number of subjects) = 

102 and PK (product of P and K). 

Averaging over 20 repetitions, we use a 4-fold cross 

validation to model the score on each behavioural measure 

Btrain [Ntrain x 1] as a combination of the functional 

connectivity matrix Ftrain [Ntrain x PK]  

  𝐵𝑡𝑟𝑎𝑖𝑛 = 𝐅𝑡𝑟𝑎𝑖𝑛𝐶     `     

(2) 

where Ntrain is the number of subjects in the training dataset 

per cross validation and C is a [PK x 1] vector of weights 

whose elements quantify the contribution of each region in 

the parcellation to the behavioural variable.  In order to 

avoid overfitting, the solution to Equation 2 is computed 

using Ridge Regression with regularization parameter 

lambda = 1 x 104. 

Performance is evaluated on the testing data 𝐵𝑡𝑒𝑠𝑡  

[Ntest x 1] based on the obtained regression weights C. The 

predicted scores are modelled as: 

�̂�𝑡𝑒𝑠𝑡 = 𝐅𝑡𝑒𝑠𝑡𝐶        

(3) 

where Ntest is the number of subjects in the testing dataset 

per cross validation. We quantify performance by 

computing the Pearson-correlation between �̂�𝑡𝑒𝑠𝑡 and 

𝐵𝑡𝑒𝑠𝑡, where 𝐵𝑡𝑒𝑠𝑡 represents the actual score of the subject 

on the respective behavioural measure.  

To test for significance we employ 1000-fold permutation 

testing at lambda = 1 x 104. Here 𝐵𝑡𝑟𝑎𝑖𝑛  and 𝐵𝑡𝑒𝑠𝑡  are 

randomized before being fed through the Ridge 

Regression script. 

 

Visualization                                                           

For the purpose of interpretation, C is projected into the 

original space becoming a [P x P] matrix. This matrix is 

multiplied with a binarized average connectivity matrix, 

where all positive connections are equal to 1 and all 

negative connections are equal to -1. Hereby we ensure 

that the directionality of the relation of each weight and the 

behavioural score is clear, as e.g. a negative weight on an 

inhibitory connection would otherwise be positively 

related to the modelled behavioural measure. To visualize 

the results C is further summarized into 22 broader regions 

per hemisphere as defined by Glasser and Coalson [8].We 

create two matrices Pos and Neg with dimensions [44 x 

44], where Pos shows positive connections and Neg shows 

negative connections, by adding up the weights of all areas 

within one region. These matrices are thresholded to only 

keep the strongest 5% its respective connections and set 

the rest to 0.  

 
RESULTS 

Picture Sequence Memory Test (PSMT) 

PSMT scores, reflecting their episodic memory, were 

predicted above chance level. Adjustment for age made no 

difference leading to a correlation of 𝑟 = 0.21. (P < 0.001). 

The strongest connections predictive of  PSMT 

measurements are all positive. Pos for this variable shows 

little hemispheric dominance. Most connections that 

remain after thresholding are interhemispheric 

connections between the Dorsolateral Prefrontal Cortex 

(DLPFC); Orbital Frontal Cortex, Polar Frontal Cortex 

(OFC, FPC); Anterior Cingulate Cortex , Medial 

Prefrontal Cortex (ACC, MPC) Posterior Cingulate Cortex 

(PCC); Inferior Parietal Cortex (IPC) and Superior Parietal 

Cortex (SPC). The right hemisphere further shows fairly 

strong intrahemispheric connectivity within the 

aforementioned six regions. The strongest weights overall 

are on connections between DLPFC and ACC, MPC as 

well as connections between DLPFC(RH, LH) . There is 

interhemispheric connectivity between left-hemisphere 

DLPFC, OFC, FPC, ACC, PCC, IPC and SPC, 

respectively, and regions around MT+, as well as the 

dorsal stream visual cortex of the right hemisphere. There 

is a single connection between SPC(LH) and IC, 

FOC(RH). Lastly the Premotor Cortex(RH) connections to 

DLPFC, ACC, MPC(LH) and DLPFC(RH) are still visible 

after thresholding.  



Neg for this variable shows one strong hub in the 

lateral temporal cortex (LTC) of the right hemisphere. Its 

connections to various frontal areas of the left hemisphere 

as well as LTC and AAC of the left hemisphere have the 

strongest weights in this matrix. However, connections 

between LTC(RH) and almost all areas of the left 

hemisphere are visible (excluding V1 and early visual 

cortex). Within the right hemisphere, weights on the 

connections between IC, FOC and DSVC and PCC are 

notable. MTC also has widespread negatively weighted 

connections but these are weak compared to LTC. 

 

Penn-Word-Memory-Test (IWRD) 

We could not successfully predict correct responses or 

reaction time scores on the IWRD task, which was the 

second episodic memory task that we included (𝑟𝑡𝑜𝑡𝑎𝑙 = -

0.1061, 𝑟𝑅𝑇  = -0.1451).  

List-Sorting 

Regression. The List-Sorting Test is supposed to reflect a 

subjects working memory capacity. We were able to 

predict scores that correlate positively with the 

observations obtained for this variable. Results differ only 

very slightly between adjusted and unadjusted scores 

(𝑟𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  = 0.2145 and 𝑟𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  = 0.2269). Both are 

significant as no permutations reach a correlation greater 

than or equal to that of the unpermuted data when averaged 

over four cross-validations and 20 repetitions (P < 0.001). 

Visualization. In general, positive connections have 

stronger weights than negative connections. Pos for this 

variable shows few weights on intrahemispheric 

connections. The strongest weighted interhemispheric 

connections are between the regions around MT+(LH) and 

the Dorsal Stream Visual Cortex (DSVC) of the right 

hemisphere, further between IC, FOC (RH) and left 

hemisphere frontal regions(DLFPC; OFC, FPC; IC, FOC) 

and parietal regions(IPC, SPC), as well as between the 

superior parietal cortices of both hemispheres. 

Neg for this variable is strongly lateralized in the 

right hemisphere. Connections are widespread and involve 

all areas except for V1 and early VC. However, 

connections between MT+ and its surrounding areas and 

DLPFC; OFC, FPC and ACC, MPC are more pronounced. 

The same is true for connections between SPC and these 

three frontal regions (DLPFC; OFC, FPC; ACC, MPC). 

 
DISCUSSION 

In this study, we sought to predict behavioural memory 

scores with individual resting state connectomes. 

Specifically, we were interested in episodic and working 

memory. For episodic memory connections between 

bilateral DLPFC and ACC, MPC were most predictive. 

Instead for working memory connections between IC, 

FOC as well as other frontal and parietal regions were most 

predictive for memory differences between individuals. 

 

Episodic Memory 

The first thing that is noticeable when looking at our 

episodic memory data, is that the medial temporal lobe 

seems to have little predictive value in determining inter-

individual differences. This is surprising, as the 

hippocampus and its surrounding areas are firmly 

established as a hub for memory formation and retrieval [1-

4]. Our data suggest that even though this region is central 

to memory function, it does not determine differences in 

performance as strongly as other regions like the prefrontal 

cortex, which is visible in our positive network. The PFC 

itself has been strongly implicated in memory retrieval and 

encoding[4] and most connections with stronger weights in 

our analysis also involve subdivisions of this region. 

Considering the general implication of for example the 

DLPFC in working memory and cognitive control, this 

might hint at differences in performance on the PSMT 

being due to differences efficiency of organizing 

information.  

 Another important region according to our data 

is the lateral temporal lobe of the right hemisphere. Its 

widespread connectivity with the left hemisphere appears 

to be negatively related with memory performance. Note 

that MTC shows a similar pattern, albeit weaker.  LTC is 

not often talked about as a central region to memory 

function, rather authors tend to discuss its function in 

concordance with MTC. Moscovitch and Nadel[10] point 

out that if lesions to the temporal lobe encompass both 

medial and lateral temporal lobe, retrograde amnesia 

becomes temporally ungraded and extends further back in 

time. This adds an interesting facet to our picture of 

episodic memory: It seems temporal lobe structures send 

out an array of connections that are not beneficial to 

memory performance. 

 

Working Memory 

The first thing to notice when looking at the positive 

working memory network is the relatively small role the 

DLPFC seems to play. While our results do show a fronto-

parietal network [11], the DLPFC is not the most well-

connected region and only shows one strongly weighted 

connection to the insular and frontal opercular cortex. This 

is puzzling, as the DLPFC is the most well established 

neural correlate of working memory . The insular and 

frontal opercular cortex of the right hemisphere stand out 

in our visualization’s positive network. According to  

Sridharan, Levitin [12] the frontal insular cortex of the right 

hemisphere plays a central role in switching between 

default mode and central executive network. This work has 

been replicated by Goulden, Khusnulina [13]. Applying this 

line of thought to our results, a possible conclusion is that 

a strong determinant of inter-individual differences in 

working memory performance is a person’s ability to 

suppress default mode network activity and more so to 

activate the central executive network, as the IC, FOC 

region has strong connections to the right DLPFC, IPC and 

SPC.  

 Surprisingly, sensory areas and connections 

between them are also implicated in our positive 

connectivity matrix. The general theory of working posits 

that it operates on existing LTM and perceptual 

representations by biasing accessibility [14]. Connections 

among sensory regions might point to an importance of 

these representations themselves rather than how the 

prefrontal cortex biases their accessibility.  

 The negative network is strongly lateralized in 

the right hemisphere, while the positive network consists 

primarily of interhemispheric connections. However, the 

negative network does show some overlap with the 

positive network. Interestingly, MT+ and surrounding 

areas are implicated again, with their connections to three 

frontal areas (DLPFC; OFC, FPC; ACC, MPC). The 

Superior Parietal Cortex’ connections to the same set of 

areas is also negatively weighted.. It might be that 



essentially the same regions’ interconnections are 

responsible for improved as well as diminished 

performance levels and that specifics depend on a higher 

level of detail.  

 

General conclusions and future research 

When reading the previous sections it might seem like our 

results are quite contradictory to what is current consensus 

in neuroscience. It is crucial to consider that Ridge 

Regression typically selects very distributed models. 

Therefore, the weights that are not present after 

thresholding still play an important role in prediction. It is 

certainly interesting to observe atypical connections 

accounting for more variance than connections between 

common ROIs, but common ROIs are by no means 

irrelevant for our predictive model. Additionally, we sum 

our results onto a 22 region parcellation that obscures 

potentially important details of the original model. 

 Naturally, some additional steps need to be 

taken, before our results can be fully interpreted. First, 

appropriate permutation testing must be done on our 

current results and the presence of siblings must be 

controlled for. Assuming the results hold up, it is of 

interest if a more sparse analysis method like Elastic Net 

Regression produces a similar model to our thresholding. 

Alternatively, Connectome Based Predictive Modelling 

(CPM) [15] could be used to this end as well, as individual 

edges can be subjected to significance testing.  

Further, it is customary for any regularized regression 

script to employ model selection for optimizing the 

parameter lambda. We were not able to do this because of 

a lack of time. Instead, we consulted an expert, who was 

able to discern a lambda value that produced positive 

results. This analysis should therefore be repeated with 

proper model selection. 

 Nonetheless, our study is evidence for a number 

of unexpected connections contributing to inter-individual 

differences in episodic and working memory performance 

and shows improvements compared to the HCP 

MegaTrawl 

(https://db.humanconnectome.org/megatrawl/index.html). 

Though we cannot clearly attribute this improvement to 

the parcellation or regression method because both differ 

between analyses.  
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