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ABSTRACT

Skyrmions are magnetic textures, that behave like par-
ticles. They exist as excitations within two-dimensional
magnetic insulators and are promising candidates for fu-
ture data storage. There has been a strong rise in interest
in skyrmions in recent years, which is encouraged by sev-
eral experimental observations of skyrmions in various
magnetic thin-films. In this paper the classical dynamics
of skyrmions and vortices in antiferromagnets are stud-
ied. We find that an antiferromagnetic skyrmion does
not feel a Magnus force, while a ferromagnetic skyrmion
does. We also see that an antiferromagnetic vortex feels
a Magnus force.
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I. INTRODUCTION

In a magnet textures can appear that behave like parti-
cles. These magnetic textures are phenomena that move
in a collective way through a magnet and may thus be
described as a single object.

The focus of this paper is on the classical dynamics of
such a particle-like magnetic texture, namely skyrmions
(see Fig. 1) [1]. There has been a strong rise in interest for
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FIG. 1. Graphical depiction of a ferromagnetic skyrmion.
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FIG. 2. Magnus force for ferromagnetic skyrmion with wind-
ing number one. Nature Physics 13.2 (2017): 112-118.

skyrmions in recent years, which is stimulated by several
experimental observations of skyrmions in various thin-
film magnets [2-5]. Magnetic skyrmions are promising
candidates for storing information, due to the fact that
they are topologically stable in the sense that no contin-
uous local deformation can destroy a skyrmion and they
can be moved using relatively low currents.
The main findings of this paper are:

1. An antiferromagnetic skyrmion does not experience
a Magnus force, which is in agreement with Ref. [6].
This is different from a ferromagnetic skyrmion,
which does feel a Magnus force. It will also
have a classical mass opposite to a ferromagnetic
skyrmion, which is massless if interactions with e.g.
spin waves are neglected. The Magnus force will
give rise to motion perpendicular to the direction
of the applied force (see Fig. 2). This type of force
also appears in e.g. a rotating ball or a vortex in a

fluid.

2. For magnetic fields above the spin flop field we find
vortex configurations (see Section IIIB) which feel
a Magnus force which is proportional to the mag-
netic field.

The remainder of this paper is organized as follows. In
Section II the dynamics of antiferromagnets is described
and an action which only depends on the Néel vector is
derived. This is done by integrating out the magnetic
field, assuming both large wavelengths for both the Néel
vector and the magnetization. In Section III the pro-
file of a single antiferromagnetic skyrmion is determined
and another topologically protected structure is intro-
duced, which is called a vortex. In Section IV the clas-
sical dynamics (no spin wave interactions) of skyrmions
and vortices in two-dimensional antiferromagnets are de-
termined.



II. DYNAMICS OF ANTIFERROMAGNETS

In a ferromagnet the exchange interaction wants to
align two neighboring spins. In an antiferromagnet, the
exchange interaction forces neighboring spins to point in
opposite directions (see Fig. 3).
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FIG. 3. A graphical example of antiferromagnetic ordering.

The aim of this section is to describe antiferromagnetic
motion in the imaginary time path integral formalism. It
turns out that Haldane’s mapping is useful for describing
antiferromagnet dynamics. In Section ITA we work out
the kinetic term/Berry phase for our system, using Hal-
dane’s mapping. We expect the magnetic moments due
to an external magnetic field to be small due to a large
antiferromagnetic exchange interaction. This allows us
to make an expansion of the Hamiltonian up to second
order in the canting field (magnetic moments) m. Most
methods used in this section are described in Ref. [7].

Haldane’s mapping is useful to make a distinction be-
tween short and long wavelength fluctuations. In this
paper we will be looking at long wavelength fluctuations
around a single skyrmion configuration. We start by in-
troducing two continuous vector fields (n, m), such that:
1 ()

Q; = nif(x;) +m(x;) (1)

with 7; = €%, A is called the Néel vector and m
the canting field. Furthermore |fi(x;)| = 1 and f(x;) -
m(x;) = 0.

A. The Kinetic term / Berry phase

From Ref. [8, Appendix A] it follows that the Berry
phase of the total system is given by the sum over all the
independent Berry phases, which is given by
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Here the sum over ¢ means a sum over all the lattice
points and A is a gauge invariant vector field with the
property that Vg - A; = Q;.

Considering only large wavelengths and expand-
ing Eq. (2) up to second order in m, we obtain

Ap[{Q}] = i% /dr/dx {a(x) x 0;-11(x) -m(x)}. (3)

B. The partition function

In this section we start from the following Hamiltonian:

1 N N N ~
H = § Z {SQJZ]QZ . Qj + SQDZ‘]‘ (Qz X Q])
(ig) (4)
~ S?°KeQ2, - SH- Q}

Jij > 0 is the Heisenberg exchange interaction (which
is positive in the antiferromagnetic case), D;; gives the
Dzyaloshinskii-Moriya exchange interaction, K, gives the
anisotropy of the system and H represents an external
magnetic field. We assume that both J;; and D;; have
the full lattice symmetry.

The action describing antiferromagnetic dynamics is
given by the Berry phase plus the Hamiltonian. By ex-
panding both up to second order in m and integrating
out this canting field we obtain the following action which
only depends on the Néel vector
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Where N4 is given by the number of antiferromagnetic
layers along the Z-direction and x( is the uniform sus-
ceptibility. We also assume that the magnetic field is
pointing in the Z-direction.

III. PROFILE OF ANTIFERROMAGNETIC
SKYRMION

A. Minimizing the free energy of the
antiferromagnet

In this section we determine the Euler-Lagrange equa-
tions belonging to the energy in Eq. (6). Now we use the
transformation

A = sin[f] cos[po] p + sin[d] sin[po] ¢ + cos[d] Z.

The given Hamiltonian is translationally invariant and
the skyrmion configuration is a local minimum of the
Hamiltonian in Eq. (6). Because of this the skyrmion
configuration will be rotationally invariant. We assume



6 only depends on p and ¢q is constant. We also choose
the magnetic field to be in the 2-direction. Using the pre-
ceding assumptions the Hamiltonian in Eq. (6) reduces

to
Fli] = 20N 4 /A {% ((apey + Sm:#)

cos(@)psin(@))

+ % cos(¢o) <8p9 + (7)

— K, cos*(6) + %f[z 0052(9)}pdp.

The skyrmion configuration will be a local minimum in
the energy (i.e. % = 0) with boundary conditions

0(0) = 7 and #(cc) = 0. By performing the substi-
K, . o

tution p = 4/—p in Eq. (7) and multiplying the to-
Ps

tal by %, we obtain the following dimensionless Euler-
Lagrangezequation
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In the preceding equation we used Dy = (4/7)v/psK-,
h? = %ﬁ? and ho = VK.

B. Finding local skyrmion solutions

First note that there are different type of solutions for
h
different values of . To see this, one must notice that

ho is the spin flop Oﬁeld. When h = hy the Néel vec-
tor flops into the basal plane and for h > hy the mag-
netic field gives rise to a magnetization (see Fig. 4). This
causes weak ferromagnet behavior. When h < hg we
get solutions with boundary conditions #(0) = 7 and
f(o0) = 0. At the moment h > hy we also get solutions
with boundary conditions #(0) = = and §(c0) = /2.
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FIG. 4. Graphical depiction of an antiferromagnetic state
when the magnetic field is above the spin flop field (h > ho)
and antiferromagnetic ordering when the magnetic field is far
below the spin flop field (h < hg).

C. Small magnetic field h/ho = 0.3

Now we consider the case in which h/hg = 0.3. We see
that the radii of the skyrmions grow as d = D/Dy in-
creases (see Fig. 5). We conclude that antiferromagnetic

skyrmions have a size of order O(\/ps/K>).

Skymion profile antiferromagnet h/h0=0.3

— d=0.2
— d=0.5
— d=0.7
— d=0.8
— d=0.9
— d=1.0
— d=1.2
— d=1.3

FIG. 5.

configuration for

{0.2,0.5,0.7,0.8,0.9,1.0,1.2,1.30} with h/hg = 0.3.
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IV. CLASSICAL DYNAMICS OF
ANTIFERROMAGNETIC SKYRMIONS

In Section II we found that the action describing anti-
ferromagnetic dynamics is given by

B
Splf] zNA/O dT/Adx{%XOWTﬁ(x)F
9)
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A. Dynamics of non-interacting antiferromagnetic
skyrmion

Since 1 is always a unit vector it will be useful to de-
scribe it using polar coordinates

A(x,7) =
{sin[0y(x, T)] cos[po], sin[fo(x, T)] sin[po], cos[fo(x, T)] }
(10)

The skyrmion configuration will characterized by the col-
lective dynamical coordinate R(7)

fo(x — R(7)), (11)
do(x — R(7)). (12)

In Egs. (13) and (14) we calculate the classical part
of the dynamical terms in Eq. (9), Eq. (13) reduces to a



mass and Eq. (14) gives rise to a Magnus force,
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In Eq. (14) we used that the skyrmion configuration is
rotationally invariant. Using this rotational invariance it
follows that the mass matrix M is diagonal. We define
M = xoM and a = xyoHa&. By writing x in cylindrical
coordinates (z = pcos(f)),y = psin(f)) and performing
the transformation p = \/(K./ps) p on M and & we

obtain

M =27 h dp ~(aﬁﬁ0)2
i Xo/o P {p . (15)
t3 {Sin(Ho) sin(¢o)p — sin(fo) COS(%)(Z)} }’

a = 2rHyo sin®(0(p))|/_, - (16)

Since the dimensionless integral in Eq. (15) takes on val-
ues between zero and ten for different skyrmion con-
figurations we obtained in Section III, we see that M
roughly has order of magnitude O(xo) if D/Dy is of or-
der one. For skymions with winding number n € Z, «
in Eq. (16) will be zero. So antiferromagnetic skyrmions
do not feel a Magnus force, which is in agreement
with Ref. [6]. For magnetic fields above the spin-flop
field, vortices may arise. Vortices have different bound-
ary conditions than skyrmions for which « is non-zero,
which implies that antiferromagnetic vortices feel a Mag-
nus force. For the boundary conditions of the vortex
(00(0) = 7 and y(c0) = 7/2), we see that o = —27H xo.

The classical action (no interactions) describing the

dynamics of skyrmions or vortices is thus given by

B 1. . L
Sy = NA/ dr {iMR2 + z‘aeinZRﬂ} . (17)
0

V. CONCLUSIONS

In this paper we gave a description for the classical
dynamics of skyrmions in antiferromagnetic thin-films.
In Section IT long wavelengths for fi and m were assumed.
By integrating out the magnetization in the action that
describes the antiferromagnetic dynamics we were able to
derive the action given in Eq. (5) which is only dependent
on the Néel field fi. We derived that antiferromagnetic
skyrmions have a classical mass and feel no Magnus force,
which is in agreement with Ref. [6]. This result differs
from ferromagnetic skyrmions, which feel a Magnus force
and have no classical mass [9]. We also find that a vortex
does feel a Magnus force, since the boundary conditions
of a vortex are different from those of a skyrmion.

VI. ROLE OF THE STUDENT

Joren Harms is an undergraduate student working un-
der the supervision of Rembert Duine. The topic was
chosen by Rembert Duine and the research was done by
Joren Harms. This includes the problem definition, ob-
taining the results and conclusions for the project. Dur-
ing the past year Joren regularly met with his supervisor
to discuss the results and possible future directions. This
paper reflects just a part of the thesis [10].

ACKNOWLEDGEMENTS

First and most foremost I would like to thank my
supervisor R.A. Duine, for his guidance through this
project. Secondly I would like to thank C. Psaroudaki
for a helpful discussion.

[1] T. Skyrme, Nuclear Physics 31, 556 (1962).

[2] S. Mihlbauer, B. Binz, F. Jonictz, C. Pfei-
derer, A. Rosch, A. Neubauer, R. Georgii,
and P. Boni, Science 323, 915  (2009),

http://science.sciencemag.org/content/323/5916/915.full.pdf.

[3] S. Heinze, K. Von Bergmann, M. Menzel, J. Brede,
A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and
S. Bliigel, Nature Physics 7, 713 (2011).

[4] 1. Raicevi¢, D. Popovié, C. Panagopoulos, L. Benfatto,
M. B. Silva Neto, E. S. Choi, and T. Sasagawa, Phys.
Rev. Lett. 106, 227206 (2011).

[5] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz,
P. G. Niklowitz, and P. Boni, Phys. Rev. Lett. 102,
186602 (2009).

[6] J. Barker and O. A. Tretiakov, Phys. Rev. Lett. 116,
147203 (2016).

[7] A. Auerbach, Interacting Electrons and Quantum Mag-
netism (Springer-Verlag New York).

[8] H.-B. Braun and D. Loss, Phys. Rev. B 53, 3237 (1996).

[9] C. Psaroudaki, S. Hoffman, J. Klinovaja, and D. Loss,
ArXiv e-prints (2016), arXiv:1612.01885 [cond-mat.mes-
hall].

[10] J. Harms, “Quantum dynamics of skyrmions and vortices

in antiferromagnets,” (2017), Utrecht University.



