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ABSTRACT 

We consider the static traffic assignment model in which 

travelers are boundedly rational in their route choice. This 

assignment introduces uncertainty, since generally multiple 

Boundedly Rational User Equilibrium (BRUE) solutions 

exist. In this paper, we propose a day-to-day toll strategy that 

steers the network from an observed BRUE to a desired 

BRUE. We prove that the stationary state of this toll strategy 

is the desired flow, and we show by example that the 

strategy can achieve any flow.  
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INTRODUCTION 

Strategic decision making for traffic authorities is often 

based on static traffic assignment models. When measures 

are implemented, intended to change the distribution, 

authorities often seek for measures that improve the 

observed traffic distribution towards an assignment with less 

traffic congestion, a fairer assignment, or an assignment 

with less total travel time or pollution [1]. In this paper, we 

propose a strategy that can be used as a model by authorities 

to improve traffic situations. 

 

When researching traffic networks, often the notion of the 

User Equilibrium (UE) is used to describe the stationary 

state of traffic networks, and it is assumed that the UE is 

observed in real life. The UE is a traffic assignment in which 

no traveler can improve his or her travel time by unilaterally 

changing routes [2]. This notion of UE to model networks, 

is based on naive decision-making assumptions. It is 

assumed that travelers are perfectly rational in their route 

choice: they make selfish decisions, are perfectly informed, 

and can perfectly assess the effects of the decisions they 

make [3]. 

 

Bounded Rationality was introduced in the context of traffic 

problems by Mahmassani and Chang in the form of the 

Boundedly Rational User Equilibrium (BRUE) [4]. 

Empirical evidence suggests that the BRUE is more 

appropriate to describe the real-world equilibrium than the 

UE. The BRUE is the result of a traffic assignment when we 

consider travelers to be boundedly rational. The BRUE does 

not assume perfect rationality as the User Equilibrium does, 

because travelers do not always choose the shortest path [5]. 

Instead of wanting the best possible route, travelers are now 

assumed to be content with their (suboptimal) travel times 

when they are ‘acceptable’. In contrast to the UE, where 

under basic assumptions only one solution can be found, 

there is a range of solutions for the BRUE [4]. Note that, 

even though multiple ‘stable’ solutions exist, only one 

solution is observed in real life. This difference makes the 

UE a lot more convenient to work with, mathematically.  

 

The fact that there are multiple solutions to the BRUE leads 

to difficulties for an authority, since it is unknown which 

BRUE arises in practice after a policy intervention [8]. 

However, the fact that there are multiple solutions to the 

BRUE can also be seen as an advantage, which we use in 

our strategy.  

 

In this paper, we design a method that steers the network 

from a given assignment to a desired, better BRUE. From 

an equity perspective, it would be best to move to the UE 

(the UE is a special case of the BRUE). From a system 

perspective, we would like to move to a solution that lowers 

the total costs. In this paper, we work towards a desired 

BRUE assignment that minimizes travel costs, assuming we 

can find this assignment efficiently. Note that the desired 

can be any assignment, and therefore other objectives can 

be pursued as well, for example minimizing pollution. 

 

In fact, the strategy we propose is a day-to-day toll strategy. 

Every day a different toll is collected. Where traditional 

approaches typically collect tolls on a link level (see, e.g., 

Guo), advances in mobile applications allow for a more 

personalized toll system like proposed here [6]. As 

mentioned, we aim for a BRUE solution as the desired 

assignment, since it allows us to remove the toll, and the 

assignment will stay. This is due to the fact that every BRUE 

is a stable solution, because travelers are satisfied with their 

(suboptimal) routes in a BRUE. Therefore, tolls only have 

to be collected for a limited amount of time, which, we 

hypothesize, is preferable over collecting tolls continuously 

 
PROBLEM FORMULATION  

Traffic Assignment 

The traffic assignment is done given a fixed demand. 𝐺 =
(𝑉, 𝐸) is the directed traffic network, with 𝑉 the set of nodes 

and 𝐸 the set of links 𝑒 = (𝑖, 𝑗) with 𝑖, 𝑗 ∈ 𝑉. Given is a set 

of origin-destination pairs (OD-pairs), 𝐾 ⊆ 𝑉×𝑉, for which 

the static demand 𝑑𝑘 > 0, 𝑘 ∈ 𝐾. One OD-pair is referred to 

as OD-pair 𝑘 ∈ 𝐾. An OD-pair 𝑘 is connected by the set 𝑃𝑘 

of simple directed paths (routes). The set of all paths is the 

union of the paths that connect each OD-pair, 𝑃 =∪𝑘∈𝐾 𝑃𝑘 . 

A feasible traffic flow for fixed demand 𝑑 ∈ ℝ|𝐾| is (𝑓, 𝑥) 

such that 

 (𝑓, 𝑥) ∈ ℱ ≔

{(𝑓, 𝑥) ∈ ℝ|𝑃|×ℝ|𝐸||Λ𝑓 = 𝑑, Δ𝑓 = 𝑥, 𝑓 ≥ 0}. 

Then, 𝑓 is the vector which describes the flow on each route, 

while 𝑥 is the vector that describes how the flows, described 

by 𝑓, are distributed over the links. 



The OD-path incidence matrix Λ ∈ ℝ|𝐾|×|𝑃| is defined such 

that Λ𝑘𝑝 = 1 if 𝑝 ∈ 𝑃𝑘, so if path 𝑝 connects OD-pair 𝑘, and 

Λ𝑘𝑝 = 0 otherwise. The link-path incidence matrix is 

denoted by and defined as Δ ∈ ℝ|𝐸|×|𝑃| where Δ𝑒𝑝 = 1 if 

edge 𝑒 is on path 𝑝, and Δ𝑒𝑝 = 0 otherwise.  

 

For every link 𝑒 ∈ 𝐸 a flow-dependent travel time (latency, 

cost) 𝑙𝑒(𝑥) is defined. We assume that link costs are 

separable, continuous, convex and strictly monotonically 

increasing. Separable link costs ensure that the travel time 

of a link does not depend on the traffic located on other 

links, i.e., 𝑙𝑒(𝑥) = 𝑙𝑒(𝑥𝑒). The cost of a path is defined as 

the sum of all links on that path, 𝑐𝑝(𝑓) = ∑ 𝑙𝑒(𝑥𝑒)𝑒∈𝑝 ∀𝑝 ∈

𝑃. The cost of a path depends on the link flows indirectly, as 

the route flows 𝑓 will determine the link flows 𝑥.  

 
Boundedly Rational User Equilibrium 

The BRUE is a traffic distribution in which travelers do not 

necessarily take the shortest path, but a path of which the 

costs are ‘acceptable’. We introduce an indifference band, 

which is the maximum difference in travel cost between the 

shortest path and the chosen path that is still perceived 

acceptable. Formally, given an indifference band 𝜀 ∈ ℝ+
|𝐾|

, 

traffic flow (𝑓, 𝑥) ∈ ℱ with cost vector 𝑐(𝑓) is called a 

Boundedly Rational User Equilibrium (BRUE), if ∀𝑘 ∈ 𝐾 

and ∀𝑝 ∈ 𝑃𝑘 the following condition is satisfied: 

𝑓𝑝 > 0 ⇒ 𝑐𝑝(𝑓) ≤ min
𝑞∈𝑃𝑘

𝑐𝑞(𝑓) + 𝜀𝑘.         (1) 

 

A BRUE flow is a feasible flow (𝑓, 𝑥) ∈ ℱ that satisfies (1), 

a flow in which every path that carries flow has a cost within 

the specified range. We assume that 𝜀 is constant over time. 

The condition described in (1) was first discussed by 

Mahmassani and Chang, after which it was formalized by, 

among others, Di et al., and Lou et al. [4] [7] [8].  

 

We define a penalty function as introduced by Ye and Yang 

[9]: 

𝛾𝑝(𝑓) ≔ max{𝑐̃𝑝(𝑥, 𝜏) − 𝜀𝑘 , 𝜇̃𝑘} , 𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾,         (2) 

This penalty function is equal to the costs of the shortest path 

when a path satisfies the BRUE condition, otherwise it is 

equal to the amount by which the path is ‘too expensive’. In 

(2), 𝑐̃𝑝(𝑥, 𝜏) ≔ 𝑐𝑝(𝑥) + 𝜏𝑝 , 𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾, is the 

experienced travel costs, that consists of the travel time and 

the induced toll 𝜏 ∈ ℝ|𝑃|, and 𝜇̃𝑘 ≔ min
𝑞∈𝑃𝑘

𝑐̃𝑞 (𝑥), 𝑘 ∈ 𝐾, is 

the shortest path including toll.  

 

We define the total penalty as 𝑓𝑇𝛾(𝑓), we multiply the 

penalty with the flow that encounters that penalty. When 

𝑓𝑇𝛾(𝑓) = 𝑓𝑇(ΛT𝜇̃𝑘), then 𝑓 is a BRUE assignment as in 

(1), because then each penalty is equal to the cost of the 

shortest path, and therefore each path satisfies the BRUE 

condition. Indeed, it directly follows that 𝑓𝑝 > 0 ⇒ 𝑐𝑝(𝑥) −

𝜀𝑘 ≤ 𝜇𝑘, which equals condition (1). 

 
Discrete Adjustment Process 

For defining the strategy, we consider a Discrete Adjustment 

Process (DAP) to describe travelers' behavior with respect 

to route choice from day-to-day. We follow the formulation 

of Guo et al. [6]. The process describes how a new 

assignment at time epoch 𝑛 + 1, 𝑓(𝑛 + 1), is achieved by 

adding part of the current assignment at 𝑛, 𝑓(𝑛), to part of a 

new assignment, 𝑔(𝑛).  

The DAP of route flows is formally formulated as: 

𝑓(𝑛 + 1) = (1 − 𝜆(𝑛))𝑓(𝑛) + 𝜆(𝑛)𝑔(𝑛), 𝑛 = 1,2, …   (3) 

 

The flow 𝑓(𝑛 + 1) on day 𝑛 + 1 then consists of two parts, 

i.e., 𝑓(𝑛), the travelers that did not change their route, and 

𝑔(𝑛), the travelers that did change their route. The 

adjustment ratio 𝜆(𝑛) shows that only part of the travelers 

reconsiders their choice each day, the other part stays on 

their route. The adjustment ratio is 𝜆(𝑛) ∈ (0,1] and 𝑔(𝑛) 

satisfies a condition which is described in (8). 

 

Travelers reconsider their choice when they are on a path 

that they consider as ‘too expensive’. This means that that 

path has unacceptable travel cost, i.e., 𝑐𝑝(𝑥) >

min
𝑞∈𝑃𝑘

𝑐𝑞(𝑓) + 𝜀𝑘. They will then switch to a path that they 

perceive (based on the costs of day 𝑛) as less costly. 

Additionally, 𝜆(𝑛) has a mathematical purpose, it 

determines whether the process described in (3) converges 

to a stationary solution. A stationary solution is a solution 

where the assignment at time epoch 𝑛 is the same 

assignment as at time epoch 𝑛 + 1, i.e. 𝑓(𝑛) = 𝑓(𝑛 + 1). In 

other words, a stationary solution is an assignment in which 

no traveler wants to change routes. 
 
DESIRED ASSIGNMENT TOLL STRATEGY 

In this section, we propose a day-to-day toll strategy that 

steers the network from an observed BRUE to a desired 

assignment. The strategy presumes that a desired 

assignment has been defined and calculated, for example the 

BRUE with minimal travel times, or minimal pollution.  
 
Notations 

We introduce a reformulation so that we can describe all 

BRUE solutions. This is formulation is equivalent to the 

formulation used by Eikenbroek et al. and Di et al. [10] [7]. 

Parameter 𝜌̃ ∈ ℝ|𝑃|, 0 ≤ 𝜌̃𝑝 ≤ 𝜀𝑘, 𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾, is defined 

as follows for 𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾: 

𝜌̃𝑝 ≔  {
𝜇𝑘 + 𝜀𝑘 − 𝑐𝑝(𝑓)             if 𝑐𝑝(𝑓) ≤ 𝜇𝑘 + 𝜀𝑘

0                           otherwise.
           (4) 

 

We define a minimization problem corresponding to our 

notation: 

 min 𝑧̃ (𝜌̃, 𝑓, 𝑥) = ∑ ∫ 𝑙𝑒(𝜔)𝑑𝜔 + 𝜌̃𝑇𝑓
𝑥𝑒

0𝑒∈𝐸   

s.t. (𝑓, 𝑥) ∈ ℱ.            (5) 

 

Note that this notation corresponds to the Beckmann 

formulation when 𝜌̃ = 0 [11], which is the formulation used 

to find the regular UE. 

 

The formulation in (5) finds a BRUE assignment for given 

𝜌̃. For each fixed  𝜌̃, optimization problem (5) has a unique 

solution with respect to the link flows. That means that 

each  𝜌̃ determines a BRUE assignment. Further, Di et al. 

proved that any BRUE assignment can be described by a 

unique  𝜌̃ [7].  

 

We consider the system of Karush-Kuhn-Tucker (KKT) 

optimality conditions that correspond to optimization 

problem (5) [12]. These conditions are both necessary and 

sufficient conditions for optimality, as 𝑧̃ is convex in (𝑓, 𝑥) 

for given 𝜌.̃ We introduce Lagrange multiplier vector 

(𝛽, 𝜋, 𝛿) ∈ ℝ|𝐸|×ℝ|𝐾|×ℝ|𝑃|. 

 

 



Proposition 1. Any (𝑓, 𝑥) ∈ ℱ is a global optimal solution 

of optimization problem (5), if and only if (𝑓, 𝑥) satisfies the 

following system with (𝛽, 𝜋, 𝛿) ∈ ℝ|𝐸|×ℝ|𝐾|×ℝ|𝑃| with 

𝛿 ≥ 0: 

𝑙(𝑥) − 𝛽 = 0, 𝛿𝑇𝑧̃ = 0,  
𝜌̃ + 𝛽𝑇Δ + Λ𝑇𝜋 − 𝛿 = 0,   (𝑓, 𝑥) ∈ ℱ. 

We substitute 𝛽𝑒 = 𝑙𝑒(𝑥𝑒) for all 𝑒 ∈ 𝐸 and from the 

complementarity condition 𝛿𝑇𝑧̃ = 0 we find: 

𝑓𝑝 > 0 ⇒ 𝑐𝑝(𝑓) + 𝜌̃𝑝 + 𝜋𝑘 = 0, ∀𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾.         (6) 

 

Proposition 1 describes a condition that must be fulfilled for 

a solution to be optimal, thus for a solution to be a BRUE 

solution described by  𝜌̃. We use Proposition 1 later in 

Theorem 1 to prove that the stationary solution of the toll 

strategy is the desired assignment. 
 
Toll Strategy 

In the previous paragraph, we showed that we can describe 

any assignment by a  𝜌̃. Now say that (𝑓𝑑 , 𝑥𝑑) ∈ ℱ, 

(𝑓𝑑, 𝑥𝑑) satisfies condition (1), is the desired assignment, 

described by 𝜌̃𝑑, the assignment that we want to achieve by 

applying the toll strategy. The toll on route 𝑝 for day 𝑛 + 1 

is defined as: 

𝜏𝑝(𝑛 + 1) ≔

{
𝜌̃𝑑

𝑝
      if 𝑐𝑝(𝑓(𝑛)) + 𝜌̃𝑑

𝑝
= min {𝑐𝑝(𝑓(𝑛)) + 𝜌̃𝑑

𝑞
} ,

𝜀𝑘 + 𝜌̃𝑑
𝑝

          otherwise.
    (7) 

 

Intuitively, the toll ensures that every path that is ‘too 

expensive’, the path does not satisfy the BRUE condition in 

(1) for the new assignment, gets a high toll. The toll makes 

the path even more expensive and therefore serves as 

incentive for changing routes. Then each user bases their 

route choice on day 𝑛 + 1 on the travel time of day 𝑛 and 

the toll on day 𝑛 + 1, which induces the penalty: 

𝛾𝑝(𝑓) = max {𝑐𝑝(𝑓(𝑛)) + 𝜌̃𝑑
𝑝

, 𝑐𝑞(𝑓(𝑛)) + 𝜌̃𝑑
𝑞

} , 𝑝 ∈

𝑃𝑘 , 𝑘 ∈ 𝐾, in which 𝑞 is the shortest path described by 𝜇̃𝑘. 

The penalty for a path 𝑝 ∈ 𝑃 becomes: 𝛾̃𝑝(𝑛) = 𝑐𝑝(𝑓(𝑛)) +

𝜌̃𝑑
𝑝
. Then, every traveler experiences a penalty equal to 

their travel cost plus the  𝜌̃𝑑 value of their current path. 

 

We use (3) to update the flows. The adjustment ratio is again 

𝜆(𝑛) ∈ (0,1] and 𝑔(𝑛) satisfies: 

𝑔(𝑛) {
∈ Φ(n),    if Φ(n) ≠ ∅,

= 𝑓(𝑛),    if Φ(n) = ∅.
          (8) 

The set Φ(𝑛) is defined as: 

 Φ(𝑛) = {𝑔 ∈ ℱ𝑓|𝑔𝑇(𝑐(𝑓(𝑛)) + 𝜌̃𝑑) < 𝑓(𝑛)𝑇(𝑐(𝑓(𝑛)) +

𝜌̃𝑑)}. 
 

The set Φ(𝑛) thus contains all assignments in which 

travelers changed to paths with lower penalty values, and 

one of these assignments is chosen to update the flows. 

 

Theorem 1 can be explained intuitively as follows. In a 

stationary flow pattern, no user wants to change their route, 

they are satisfied with their travel time including toll. 

Theorem 1 shows that this stationary assignment is then the 

desired assignment described by  𝜌̃𝑑. 

 

Theorem 1. If 𝑓(𝑛) is a stationary flow pattern of the system 

defined in (3) with the toll strategy defined in (7), i.e. 

𝑓(𝑛) = 𝑓(𝑛 + 1), then 𝑓(𝑛) is a flow that solves 

optimization problem (5) with parameter   𝜌̃𝑑 . 

Proof. Suppose that the flow is stationary, then 𝑓(𝑛) =
𝑓(𝑛 + 1), thus 𝑔(𝑛) = 𝑓(𝑛), i.e. the set Φ(𝑛) must be 

empty, so it is true that: 

(𝑔 − 𝑓(𝑛))
𝑇

(𝑐(𝑓(𝑛)) + 𝜌̃𝑑) ≥ 0, ∀𝑔 ∈ ℱ𝑓 . 

Then, 𝑓(𝑛) gives a solution to the following Linear 

Program: 

min
𝑦

𝑦𝑇 (𝑐(𝑓(𝑛)) + 𝜌̃𝑑
𝑝

) s.t. Λ𝑦 = 𝑑, 𝑦 ≥ 0.     (9) 

 

We consider the system of Karush-Kuhn-Tucker (KKT) 

necessary and sufficient optimality conditions that 

correspond to this system. We introduce Lagrange 

multiplier vector (𝜋, 𝛿) ∈ ℝ|𝐾|×ℝ|𝑃|. Any 𝑦 ∈ ℱ𝑓 is a 

global optimal solution of the Linear Program described in 

(9), if and only if 𝑦 satisfies the following system with  

𝛿 ≥ 0: 𝑐(𝑓(𝑛)) + 𝜌̃𝑑
𝑝

+ Λ𝑇𝜋 − 𝛿 = 0,      𝛿𝑇𝑦 = 0. 

 

From the complementarity condition 𝛿𝑇𝑦 = 0 we find that: 

𝑦𝑝 > 0 ⇒ 𝑐𝑝(𝑓(𝑛)) + 𝜌̃𝑑
𝑝

+ 𝜋𝑘 = 0, ∀𝑝 ∈ 𝑃𝑘 , 𝑘 ∈ 𝐾. 

As this is the same condition as in (6), we can conclude that 

the stationary assignment is indeed the desired assignment, 

and because we chose 𝜌̃ to be a BRUE assignment, we have 

achieved a BRUE solution. ∎ 
 
Therefore, we can conclude that the stationary solution of 

the toll strategy is the desired assignment, and if we were to 

achieve this stationary solution, the strategy is usable. As 

the stationary solution is a BRUE solution, we can remove 

the tolls and the desired assignment will remain. 
 
Illustration 

In the previous section, we showed that the stationary 

solution of the toll strategy is the desired solution, 

independent of the starting point. In this section, we show, 

by numerical example, that we achieve this stationary 

solution, 𝜌̃𝑑, when starting from several initial (non-BRUE) 

assignments. For the simulation, we use the Braess network 

[13], as in Figure 1. Here, we consider only one OD-pair, 

with origin 1 and destination 4, and paths 𝑃1 =
{(1,2,4), (1,3,4), (1,2,3,4)}. The demand will be 𝑑1 = 6. 

We show how the toll strategy works when we start from a 

non-BRUE assignment. Note that the strategy also works if 

we start from a BRUE assignment. 

 
Figure 1: Braess Network used for Simulation 

We show the toll strategy. The assignment we approach 

using the toll strategy described in (7) is an assignment that 

could for example be the assignment with minimal 

emission, for which 𝜌̃𝑑 = (15, 9.5, 2.5). The corresponding 

flow pattern is 𝑓𝑑 = (1, 1.5, 3.5).  In Figure 2 we start from 

non-BRUE assignments and let the system evolve according 

to the toll strategy in (7), using the Network Tatonnement 

Process (NTP) as described by Ye and Yang to update the 

route flows [9]. The NTP is a method which (uniquely) 

describes how travelers choose to change their routes.  



Furthermore, 𝜆(𝑛) = 0.1 in each step, 𝛽 = 0.5 where 𝛽 is a 

parameter as used in the NTP. For this toll process, the value 

of 𝜀 = 15 is used. The updating of flows is stopped when 

the total penalty as in (2) does not change by more than 0.01 

in one step anymore. The process does not stop when we 

reach a BRUE, but only when we achieve the stationary, and 

therefore desired assignment. 

 
Figure 2: Toll Strategy: Path flows over time 

Figure 2 shows the path flows over time. Each shade 

represents a different starting flow, numbered 1 to 21, each 

circle represents a flow at a certain time for that starting 

flow. The location of the circle shows the flow on path 1 and 

path 3 at that time. The flow on path 2 can be determined as 

well, since the total demand is known. Figure 2 shows that 

all flows terminate close to the point 𝑓𝑑 = (1, 1.5, 3.5), 

which is the desired assignment.  

 

Figure 2 shows the evolution when the toll strategy as 

described in (7) is applied. It can be seen that, independent 

of the starting point, the desired assignment is achieved. The 

assignments reached are stationary, meaning they will not 

change over time anymore. This is due to the fact that the 

final assignments are BRUE assignments, and travelers are 

satisfied with their routes in BRUE assignments. As the 

desired assignment is a BRUE, we end up in a BRUE 

solution from each starting point. 

 
CONCLUSION 

In this paper, a toll strategy for improving traffic 

assignments is proposed. We prove that when the flow does 

not evolve, the desired assignment is achieved. We show 

that in the Braess network, and thus in general, this strategy 

can achieve the desired assignment. Further research proves 

the convergence to the desired assignment.  
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