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ABSTRACT 
Increasing tissue selectivity of compounds may aid the 

development of safer drug treatments by decreasing side 

effect prevalence. To enable this, improved insight into the 

mechanisms underlying tissue selectivity is required. In 

this article the influence of receptor concentration, drug-

target affinity and binding kinetics on tissue selectivity is 

described. Simulations were performed in a physiological 

model with drug-target binding, informed by in silico 

predicted physicochemical properties. Lower tissue 

selectivity was observed for high affinity ligands than for 

low affinity ligands. This observation moves against the 

current paradigm in which high affinity ligands are 

assumed to be better drug candidates. 
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INTRODUCTION 
The discovery of side effects in late-stage drug 

development or even after marketing is one of the leading 

causes of high drug attrition rates.1,2 This contributes to 

both increased financial risks and health risks.3 To reduce 

these risks side effects should be predicted in the earliest 

stages of drug development. This prediction requires a 

thorough understanding of the underlying mechanisms. 

 

An important cause of side effects is a lack of tissue 

selectivity (i.e. differential drug effect on the same receptor 

in different tissues). Tissue selectivity of adenosine A1-

receptor ligands in mice has been quantified by Van Schaik 

et al. and Van der Graaf et al.4,5 In these studies, the half-

maximal anti-lypolytic effect was observed at lower ligand 

concentrations than the half-maximal haemodynamic 

effect. The authors propose the receptor concentration as 

the determinant of the observed tissue selectivity. The 

relation between receptor concentration and drug effect is 

intuitive and commonly assumed. However, this 

assumption is a simplification of the underlying system, 

since many other factors may influence tissue selectivity. 

These factors include differential blood flow, tissue 

partitioning and tissue-specific ligand depletion rates. 

Since the interactions between these processes have not yet 

been fully investigated, our understanding of tissue 

selectivity is limited and additional research is required. 

’Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted under the 

conditions of the Creative Commons Attribution-Share 

Alike (CC BY-SA) license and that copies bear this notice 

and the full citation on the first page’’  

 
SRC 2016, November 30, 2016, The Netherlands. 

 

In addition to the influence of receptor concentration on 

tissue selectivity, the influence of binding kinetics should 

be taken into account to predict how tissue selectivity 

changes over time. The potential role of binding kinetics 

in drug selectivity is supported by the increased 

recognition of binding kinetics as an important mediator 

of drug effect.6–10 One of the main contributors to this 

recognition is the success of the residence time (RT) 

concept, which has been proven to be a better predictor of 

drug effect in vivo than drug-target affinity (KD). RT is 

dependent on a binding kinetic parameter: the dissociation 

constant (koff).  

 

To include binding kinetics into the prediction of 

selectivity, target mediated drug disposition (TMDD) 

models can be applied.11–14 The inclusion of target 

concentration in TMDD modelling makes it a useful tool 

for studying the influence of target concentration on drug-

target binding. Using physiological target concentration 

values enables the development of a predictive model. 

These values can be extracted from online databases. 

Tissue specific drug distribution properties can be 

described by tissue specific parameters. For this cause, 

physiologically based pharmacokinetic (PBPK) models 

have previously been developed.15 In PBPK models 

different compartments are assigned to specific 

organs/organ systems. Parameters such as blood flow and 

the tissue-blood partition (Pt:b) coefficient are used to 

define the physiological processes per tissue. Pt:b describes 

the amount of ligand that is distributed into a certain tissue 

and can be predicted from the physicochemical properties 

of the ligand. These physicochemical properties can be 

predicted in silico.16 Integrated TMDD and PBPK 

modelling forms a PBPK-TMDD model, which enables 

the simulation of drug-target binding in specific tissues. 

 

In this study we combine the available resources to predict 

drug and receptor concentrations in different tissues and 

the binding to their targets. We use these combined 

predictions to derive new insights about tissue selectivity 

and compare our predictions to literature data. 
 
METHODS 
 
Overview 

All simulations were performed in RStudio Version 

0.99.893 - © 2009-2016 RStudio, Inc. Physicochemical 

parameters were predicted using Pipeline Pilot Version 

9.0.2.1 Accelrys Software Inc., San Diego (2014). 

 
Model 

A schematic overview of the applied model is depicted in 

Figure 1. The interactions between the descriptive 

parameters were described by differential equations. 



 
Figure 1. Schematic overview of the used PBPK-TMDD model. 

L = ligand concentration (nM), R = receptor concentration (nM), 

LR = ligand-receptor complex concentration (nM), kon = 

association constant (nM-1h-1), koff = dissociation constant (h-1), Q 

= blood flow (L/h), V = tissue volume (L), nbt = non-binding tissue, 

bt = binding tissue, li = liver, P = tissue-blood partition coefficient, 

kF: forward rate constant of elimination (h-1). 

 

Parameters 

Pt:b was set to 0.95 for all tissues in all simulations. Blood 

flow in binding tissues (Qbt1/2) was set to 20 L/h in all 

simulations. Binding tissue volume (Vbt1/2) was set to 1 L for 

receptor concentration (Rtot) simulations. For KD 

simulations, one set of simulations was performed with Vbt1/2 

set to 1 L and another with Vbt1/2 set to 20 L. kF was set to 

100 h-1
. Dose was scaled so that similar receptor occupancies 

were obtained in all simulations. 
 
Simulations 
In order to investigate the influence of receptor 

concentration on tissue selectivity, simulations were 

performed using different values of Rtot for each of the two 

binding tissues. The simulations were performed for four 

different KD values. Rtot and KD values are specified in the 

figure legend and captions (Figure 2). 

 

To further investigate the influence of binding kinetics on 

tissue selectivity, simulations were performed for different 

KD values. These KD values were obtained via different 

combinations of association constant (kon) and koff. 

Simulations were performed for KD = 0.001, 0.01, 10, and 

1000 nM. koff values were set to 1, 0.1, 0.01, and 0.001 h-1 

for all simulations. kon values were then obtained by 

applying Equation 1. Values per simulation are displayed 

in the figure legends and captions (Figure 3 and 4). 
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RESULTS AND DISCUSSION 

For high affinities (KD = 1*10-5 or 0.001 nM) combined with 

low koff rates (0.001 h-1) (Figure 2a and 2b), Rtot influences 

the extent, but not the duration of receptor occupancy (RO). 

This results in tissue selectivity for the tissue in which Rtot 

is the lowest. As drug-target affinity decreases, the RO 

values in the binding tissues grow more similar, until from 

KD = 1 onwards tissue selectivity is no longer observed 

(Figure 2a-c). When koff increases for low drug-target 

affinity (KD = 100), the duration of RO becomes more 

sensitive to differences in Rtot (Figure 2d). These results 

illustrate an important role for KD as well as Rtot in 

determining the extent of both RO and tissue selectivity. 

 
Figure 2. The influence of receptor concentration on receptor 

occupancy at different KD values. a: KD = 1*10-5 nM, kon = 100 

nM-1h-1, koff = 0.001 h-1, b: KD = 0.001 nM, kon = 1 nM-1h-1, koff = 

0.001 h-1, c: KD = 1 nM, kon = 0.001 nM-1h-1, koff = 0.001 h-1, d: KD 

= 100 nM, kon = 1 nM-1h-1, koff = 100 h-1. 

 

In order to further investigate the influence of binding 

kinetics on RO, simulations were performed for different KD 

values obtained via different combinations of kon and koff 

(Figure 3). In these simulations, selectivity was observed 

for the tissue with a low Rtot value (10 nM) when drug-

target affinity is high (KD = 0.001 or 0.01 nM) (Figure 3a 

and 3b). This selectivity decreases more rapidly for faster 

binding kinetics. However, the influence of binding kinetics 

decreases as drug-target affinity increases (Figure 3a). 

Selectivity for the tissue in which Rtot is the highest, even if 

only marginal, is observed when binding kinetics are fast 

and KD is equal to the highest Rtot (Figure 3c). 

 

The observations described above indicate that high drug-

target affinity does not guarantee high tissue selectivity for 

the target tissue. In fact, quite the opposite seems to be true. 

The desired effect of a ligand at the receptor is most 

commonly targeted at the tissue in which the Rtot is the 

highest. Therefore, the lower the RO in the tissue with the 

lower Rtot, the better. In this study, higher RO was observed 

in a tissue with an Rtot of 0.01 nM than in a tissue with an 

Rtot of 10 nM for the higher drug-target affinities (Figure 2 

and 3). This suggests selectivity for the off-target tissue 

rather than the target tissue. 



 
Figure 3. Increased receptor occupancy in tissues with lower 

receptor concentrations for ligands with a higher drug-target 

affinity as compared to ligands with a lower drug-target 

affinity. Q = 20 L/h, V = 20 L, kon is in nM-1h-1, koff is in h-1. a: KD 

= 0.001 (nM), b: KD = 0.01 nM, c: KD = 10 nM, d: KD = 1000 nM. 

 

The ratio of Qbt:Vbt was set to 1 in the simulations presented 

Figure 3. This value is lower than the values observed for 

most organs in the human body. Low Qbt:Vbt values limit the 

elimination of ligand from the tissue, prolonging the period 

during which drug-target binding may occur. This leads to 

an increase in the extent and duration of RO. When this 

occurs, Q is rate-limiting for the decline of RO over time. 

This effect may be observed for all values of Rtot, but is most 

pronounced for low Rtot values, since high values of Rtot 

limit the distribution of drug out of the tissue. 

 

In order to further clarify the influence of Qbt:Vbt on tissue 

selectivity, the same simulations as presented in Figure 3 

were performed for a Qbt:Vbt value of 20 (Figure 4). At this 

value, Qbt:Vbt is expected not to have a rate-limiting effect 

on RO. Roughly the same pattern of RO was observed as in 

Figure 3, but there are a couple of notable differences. As 

expected, an accelerated decline of RO over time was 

observed, mainly for the tissue with the lower target 

concentration. This accelerated decline of RO and drug-

target dissociation is most pronounced for faster binding 

kinetics (Figure 4a and 4b). This effect lasts until selectivity 

is reversed and is observed for the tissue with an Rtot of 10 

nM. 

  
Figure 4. Influence of binding kinetics and receptor 

concentration on tissue selectivity when blood flow-tissue 

volume ratio is 20. Q = 20 L/h, V = 1L = 20, kon is in nM-1h-1, koff 

is in h-1. a: KD = 0.001 (nM), b: KD = 0.01 nM, c: KD = 10 nM, d: 

KD = 1000 nM. 

 

The developed model was applied to the ligands studied by 

Van Schaick et al4, in order to validate the predictive 

potential of the developed model and the relevance of this 

research’s results. The required humane Rtot values were 

obtained from online expression databases, physiological 

parameters and KD were obtained from literature, high 

dissociation (koff = 10 h-1) was assumed, and the Pt:b values 

per humane tissue per ligand were predicted in silico.4,17–24 

The RO-based selectivity profile predicted by the developed 

model did not comply with the selectivity profile observed 

by Van Schaick et al.4 However, when predicting the 

absolute ligand-receptor binding based selectivity profile, 

the predicted profile does comply with the effect based 

selectivity as observed by Van Schaick et al. This implies an 

important role for absolute receptor binding on in vivo drug 

effect, confirms the predictive potential of our model and 

confirms the relevance of our observed results. 

 

Altogether, the results described in this article suggest that 

the quest for ligands with a high drug-target affinity at the 

receptor may not yield the safest and most efficacious 

therapeutic entities. In order to apply this new knowledge to 

the field of drug discovery, future research will be 

performed to quantify the influence of binding kinetics and 



physiological features on tissue selectivity. It will be 

attempted to create easy-to-use formulas to enable prediction 

of tissue selectivity. Furthermore, the model will be 

validated for a set of ligands of which binding kinetic data at 

the receptor is available, as well as tissue specific receptor 

concentrations and receptor occupancy measurements. 

Ultimately, the goal of future research is the development of 

an integrated model in which in silico predictions of binding 

kinetic are used to inform the PBPK-TMDD model in order 

to increase predictability of tissue selectivity.25 
 
CONCLUSION 

A combined effect of physiological properties and binding 

kinetics on tissue selectivity was observed. Most notable is 

the observation that high drug-target affinity may result in 

lower target tissue selectivity. Moving against the current 

paradigm in which high drug-target affinity is considered 

desirable, this research triggers the further investigation of 

the exact role of binding kinetics in tissue selectivity. 
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