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ABSTRACT  

The Usambara Mountains are a region in Tanzania with a 

high population density, low soil fertility and high rainfall 

variability. The persistence of drought occurrence and the 

influence of the Indian Ocean Dipole (IOD) driven sea 

surface temperature (SST) anomalies on drought 

occurrence in the Usambara Mountains was analyzed. A 

Markov analysis was used to calculate the rainfall 

probabilities and drought occurrence. The October-

December rainfall season showed a higher rainfall 

variability than the March-May rainfall season, a higher 

probability for drought occurrence, is therefore unreliable 

for the cultivation of crops and is correlated with the IOD. 
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INTRODUCTION 

East Africa experienced drought and famine in the last 

century. This century the food security of the region is 

threatened by an ever changing climate. Higher 

temperatures and a decreasing amount of rainfall are 

detrimental to agriculture and food production, as over 95 

percent of Africa’s crop production is rain fed (Van Aalst 

et al., 2007). Agriculture also forms a large part of their 

economies. In multiple countries variability in rainfall 

seems to force GDP changes (Barrios et al., 2010). The 

2011 drought is a crushing example. The failure of the 

October-December rains in 2010 and the subsequent 

March-May rains caused a humanitarian crisis. Over 13 

million people were affected and in the beginning only a 

fraction received food aid (IFRC, 2011). 

Like the rest of East Africa, Tanzania suffers increasing 

occurrence of returning dry spells (Kabanda & Jury, 1999). 

The people of the Usambara Mountains in Tanzania in 

particular were and are still greatly affected by these dry 

spells (Liwenga et al., 2012). The region has one of the 

highest population densities of Tanzania, 300-480 capita 

per km2 with annual growth rates up to 3.5 percent and as 

a consequence a lot of poverty (NBS, 2012). Yearly 

rainfall has declined from an average of 1400 mm/y in the 

1930’s to 800 mm/y on average in the early 2000’s. A 

survey among villagers shows that the October-December 

rainfall period has become very unreliable and has almost 

disappeared (Liwenga et al., 2012). The soils have low 

fertility and are strongly acidic with nutrients only 

available in the top soil. Moreover, the region has one of 

the highest erosion rates of Africa (Reyes, 2008). 

These facts make it harder for people to make a living, as 

above 90 percent of the land use is agriculture and forests 

(NBS, 2012). If crops fail, farmers need other activities to 

cope and most resort to deforestation to sell wood, which 

will only lead to more degradation (Liwenga et al., 2012). 

Also the practice of thinning forest canopy needed for 

growing cash crops, such as Cardamom, is widespread 

(Reyes, 2008). Knowledge of drought occurrence and 

rainfall beforehand will be beneficial for the local farmers 

for the successful cultivation of crops.  

The research to the influence of sea surface temperatures 

(SST) other than the El Niño Southern Oscillation (ENSO) 

has started in recent years, which shows a larger role for 

the Indian Ocean Dipole (IOD) in East Africa weather, 

which we do not fully understand. Marchant et al. (2006) 

state that there is more and more evidence that the IOD is 

a distinct phenomenon separated from the ENSO in 

contrast to the previous consensus and is partly responsible 

for the climate on the surrounding landmasses. Black et al. 

(2003) conclude that large rainfall amounts in East Africa 

are associated with the sea surface temperature of the 

Pacific and Indian Ocean. Mutai et al. (1998) suggest there 

is a significant relationship between the OND rainfall 

season and SST anomalies. Quantitative knowledge of the 

relation between the IOD and drought will be needed to 

predict the nature of future rainfall seasons.  

The objectives of this study were; To analyze persistence 

of drought occurrence in the Usambara Mountains; To 

analyze the influence of IOD driven SST anomalies on 

drought occurrence in the Usambara Mountains. 

MATERIAL AND METHODS 

The rainfall data for this study was obtained from the 

Sakarina Mission School located in the western Usambara 

Mountains. The Usambara Mountains are a mountain 

range located in North-east Tanzania, with a NW-SE 

orientation and spans about 3600 square kilometers, 

consists of two blocks and is part of the Eastern Arc 

Mountains (Murless, 2013). The Usambara Mountains 

experiences two rainy seasons each year from March to 

May (MAM) and from October to December (OND), 

mainly under influence of monsoons, the Intertropical 

Convergence Zone, subtropical anticyclones, African jet 

streams, and wave perturbations (Kabanda & Jury, 1999). 

The dataset comprises the daily rainfall amounts from 1 

September 1991 to 31 August 2005. 

The daily rainfall data was used to perform a zero-order 

and first-order Markov Chain analysis, which is a 

stochastic process, to analyze rainfall probability and the 

difference in length of dry spells (Stern & Coe, 1984). The 

software INSTAT+ version 3.36 was used to perform this 

analysis with instructions provided by Stern et al. (2006). 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted under the conditions of the Creative 

Commons Attribution-Share Alike (CC BY-SA) license and that copies 

bear this notice and the full citation on the first page.  

jhdd
Stamp



 

A zero-order approach will deliver a probability that is 

only affected by the day for which it is calculated. A first 

order approach will calculate the probability that depends 

on the state of the previous day being wet or dry with a 

0.85 mm threshold, for errors in measurements.  

The dataset consists of 15 years (xi) that all contain 366 

days (xj) which can be dry (xij=0) or wet (xij=1). 29th 

February is discarded for any non-leap years. The zero 

order Markov Chain analysis is defined as;  

𝑃𝑗(𝑟) =
∑ 𝑥𝑖′𝑗 = 1𝑖=15

𝑖=1

15
                                                         [1] 

There the number of years with a wet state for any given 

day is counted and then divided by the number of years in 

the dataset to get the probability for every date in the year. 

The first order Markov chains are shown in equation 2 and 

3. In equation 2 the number of wet days that are preceded 

by a dry day for any given day in the year was divided by 

the number of days for that date that are preceded by a dry 

day.  

𝑃𝑗(𝑟𝑑) =
∑ 𝑥𝑖′𝑗 = 1, 𝑥𝑖,𝑗−1 = 0𝑖=15

𝑖=1

∑  𝑥𝑖,𝑗−1 = 0𝑖=15
𝑖=1

                                  [2] 

In equation 3, the number of wet days that are preceded by 

a wet day are divided by the total number of days preceded 

by a wet day. So, two different first-order probabilities 

were calculated, one for a wet day following a dry day 

(P(rd)) and one for a wet day following a wet day (P(rr)). 

𝑃𝑗(𝑟𝑟) =
∑ 𝑥𝑖′𝑗 = 1, 𝑥𝑖,𝑗−1 = 1𝑖=15

𝑖=1

∑  𝑥𝑖,𝑗−1 = 1𝑖=15
𝑖=1

                                   [3] 

The 2nd equation was then used to calculate the 

probabilities for a dry spell, by calculating the probability 

for a consecutive number of dry days. Sequences of 7, 14, 

21 days of drought were chosen. All probabilities were 

then calculated over an average of 5 days and a curve was 

fitted with INSTAT+ by adding harmonics to account for 

the irregularity of daily rainfall as described by Stern et al. 

(2006).  

To determine the influence of IOD anomalies on rainfall 

probability the Dipole Mode Index (DMI) was used, which 

portrays the intensity of IOD anomalies. Monthly data was 

obtained from JAMSTEC (Japan Agency for Marine-Earth 

Science and Technology) that was averaged for the rainfall 

seasons. The average DMI value, as independent variable, 

was then regressed with the cumulative rainfall in the 

MAM and OND season as dependent variable to quantify 

the effect of IOD on the variability of the rainfall seasons 

in the Usambara Mountains. Rainfall probabilities were 

separately calculated for years that have a significant 

positive value (1994, 1997 and 2002) and a significant 

negative value (1992, 1996 and 1998) to show the effect of 

the IOD on rainfall probability and drought occurrence. 

Again also probabilities of sequences of dry days were 

calculated for these years. 

RESULTS 

The MAM rainfall period seems to be longer and is 

observed to have a smaller standard deviation than the 

OND rainfall period and is therefore a guarantee for rain in 

the time period of the dataset. The OND rainfall period has 

a larger spread and a significant amount of rainfall is not 

guaranteed.  

The estimated probabilities for rainfall in the Usambara 

Mountains are shown in figure 1. The two rain seasons are 

clearly visible in the chart with probabilities of rain of 30 

to 50 percent. The probability for rain in the October-

December season is about 20 percent lower than in the 

March-May season. There exists a smaller difference in 

probabilities for the rain seasons given the previous day 

was dry. Also, the P(r) curve in the OND season is notably 

closer to the P(rd) curve than in the MAM season, 

indicating a dryer season.  Rain in summer seems to be 

very unlikely but possible given the previous day received 

rain. In general, the probability of rain after a wet day is 

significantly higher than the probability of rain after a dry 

day. So consistency in dry days is the defining factor. 

  

Fig. 1. Probability of daily rainfall for the whole year P(r), 

probability of rainfall given previous day was dry P(rd) and 

given previous day was wet P(rr). 

The probabilities for drought exceeding 7, 14 and 21 days 

are shown in figure 2. A noticeable dip in probabilities for 

the sequences exceeding 7 days can be seen in the MAM 

season and dips in the sequences exceeding 14 days in the 

OND season. This means the MAM season is almost a 

guarantee for the occurrence of rainfall needed for the 

successful cultivation of crops but the OND season is 

highly variable. The OND season has a more than 90 

percent probability for a drought exceeding 7 days and 

even occurrence of droughts exceeding 21 days, while the 

MAM season has a 50 percent probability of a dry spell 

exceeding 7 days and only a very small probability of a dry 

spell exceeding 14 days. In summer there is a 60 percent 

probability for a drought exceeding 21 days. 

  

Fig. 2. Probabilities of drought occurrence of length 

exceeding 7, 14 and 21 days.  

A regression was run between average DMI and 

cumulative rainfall for the MAM and the OND season to 

quantify the relationship between IOD and rainfall 

probability. It showed that there is no significant 

relationship between the MAM cumulative rainfall and 

DMI in the same months as a correlation coefficient of 0.20 



(p≈0.5) was calculated. A better fit is there between 

average OND DMI and cumulative rainfall for the same 

period with a correlation coefficient of 0.73 (p≈0.00). At 

least in part the IOD driven SST anomalies are responsible 

for variability of rainfall in the OND period. So for only 

the OND period the rainfall probabilities and drought 

occurrence will be calculated for years with positive and 

negative IOD separately. 

  

Fig. 3. Probabilities of daily rainfall (OND) for positive and 

negative IOD conditions. 

The results of the separate analysis of rainfall probabilities 

of the OND season for years with a high IOD and low IOD 

separately can be found in figure 3. A difference of about 

10 percent can be seen between the rainfall probabilities. 

The largest difference can be seen in the probability of rain 

given the previous day was dry. In the positive IOD 

scenario the probability has a convex shape over the length 

of the OND season while in the negative IOD scenario a 

concave shape is shown, as a result the difference in 

probability is up to 15 percent.  This will have 

consequences for the length of a sequence of dry days. Dry 

spells will be longer and more frequent. 

  

Fig. 4. Probabilities of drought (OND) for positive and 

negative IOD conditions. 

The resulting drought occurrence from the P(rd) from 

figure 3 can be seen in figure 4 where the drought 

occurrence with lengths exceeding 7, 14 and 21 days is 

plotted for a positive and negative IOD separately. A 

considerable dip in probability for a drought exceeding 14 

days was calculated for the middle of the OND season with 

a positive IOD. This would be beneficial for agriculture. 

No such dip can be found in the graph for the negative IOD 

where there is a 100 percent probability for a period of 

drought exceeding 7 days during the whole season. Also a 

very high probability can be seen from 50 to 80 percent 

probability for a drought exceeding 21 days. In a negative 

IOD scenario the successful cultivation of crop seems very 

unlikely with these conditions. 

To determine if the IOD conditions for the OND season is 

predictable a regression was run between the DMI of 

September and the DMI from October to December. A 

very good fit was found between these two values. A 

correlation coefficient of 0.98 (p≈0.00) suggests a very 

strong correlation and a very high significance. This means 

that the DMI of October to December can be predicted 

with certainty in September. This would be sufficient time 

for farmers to prepare for the coming season. 

DISCUSSION 

The Usambara Mountains rainfall probabilities show a 

higher probability of rain in the MAM season than in the 

OND season. There is a difference of about 20 percent in 

the annual rainfall probability and probability given the 

previous day was wet and less so given the previous day 

was dry. Barron et al. (2003) studied rainfall probabilities 

in Tanzania and Kenya. The data, originating from 

Tanzania, shows the same trend, only with a smaller 

probability difference of 15 percent. The data from Kenya 

shows an OND season that has a higher probability than 

the MAM season by about 10 percent. However other 

research from Kenya shows a stronger MAM season with 

a 20 to 25 percent higher probability of rain in the center 

of the season (Ochola & Kerkides, 2003). This might be 

due to differences in latitude of the locations in Kenya. 

Drought occurrence in the region show the same thing. 

While the probability for dry spells exceeding 21 days for 

both season is almost zero, probabilities for dry spells 

exceeding 7 and 14 days show a 40 and 30 percent 

difference in probability respectively between rainfall 

seasons. In the research of Barron et al. (2003) there only 

exists an approximately 10 percent difference in 

probability of the dry spells of the same length. A much 

larger difference in dry spell occurrence was found in 

Kenya where the probability of a dry spell exceeding 14 or 

21 days in the OND season was about 60 percent higher 

than in the MAM season (Sharma, 1993). 

The results of the high rainfall variability for the people in 

the Usambara Mountains was discussed by Liwenga et al. 

(2012). The people are very vulnerable to rainfall 

variability as their livelihood most depends on agriculture. 

To cope with these challenges farmers will often resort to 

other activities. The long dry spells in the OND season 

make it impossible to use traditional irrigation, due to 

availability of water, and will make the keeping of 

livestock and the cultivation of crops almost impossible. 

The conditions force migration as one of the main factors. 

Multiple years of drought will threaten food security as 

farmers will find another way to make a living.  

One of the main causes of the rainfall variability in the 

OND season was measured to be IOD anomalies, with a 

correlation coefficient of 0.73. In particular, the IOD 

anomalies have an effect on the length of dry spells. This 

is in line with other research. Black (2005) calculated that 

the September-November seasonal rainfall in equatorial 

coastal East Africa is consistently higher in years with 

positive IOD. Mutai et al. (1998) found significant 

correlations between East African rainfall from 1949-1988 

and sea surface temperature of the tropical Pacific and 

Indian Oceans. Saji et al. (1999) argue that some 



 

experiments demonstrate the important effect of the Indian 

Ocean SST changes on East African rainfall variability. 

Ummenhofer et al. (2009) conclude that increased amounts 

of East African rainfall in the OND season are primarily 

driven by positive SST anomalies in the western Indian 

Ocean. 

The accuracy of the results was sufficient due to daily 

rainfall that spans 15 years (Stern et al, 2006). There are 

problems with the accuracy of the negative and positive 

IOD scenarios as they are both only based on three years 

of data. Daily rainfall data for the last decade will hugely 

increase the accuracy of these scenarios and will give more 

insight in the influence of IOD on drought occurrence. 

CONCLUSION 

The rainfall probabilities calculated with daily rainfall data 

from the Usambara Mountains in Tanzania show various 

trends. The OND season is more variable than the MAM 

season and rainfall probabilities are lower. Also the season 

suffers from significantly more dry spells that exceed 7 and 

14 days and even experiences some dry spells that exceed 

21 days while the MAM season does not. Rainfall 

probability in the OND season is also highly correlated 

with the IOD in the same period. In the negative IOD 

scenario the probability of rainfall is at least 10 percent 

lower than in the positive IOD scenario. Drought 

occurrence that exceeds 7 days is certain in the negative 

IOD scenario while dry spells exceeding 21 days is above 

the 60 percentile. In the positive IOD scenario probability 

of drought occurrence is generally much lower. The IOD 

in the OND season is almost totally dependent on the IOD 

in September, so good predictions can be made before the 

rainfall season starts for the successful cultivation of crops. 
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