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ABSTRACT  

This paper presents estimates for common trends in 

European temperature panels using new estimators. The 

analyzed data contains 4000 Eurasian weather stations. A 

sampling algorithm robust against inherent geographical 

biases is developed, and appropriate estimators are 

evaluated. The estimations based on this evaluation show 

that commonalities in temperature movements disappear 

with growing geographical scope. They also reveal that 

European mean temperature increased by 1.8°C over the 

past 130 years, but estimates differ by region. A 

particularly pronounced increase has taken place since the 

1980s. Further, a 20-year cycle is discovered, and a 

fractal structure of temperature trends is proposed. 
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INTRODUCTION 

Climate change is often estimated fitting deterministic 

trends of specified functional form. Linear trends are 

usually assumed (see, e.g., Yue, T. X., Zhao, N., Ramsey, 

D. R., et al., 2013). Despite of this being common 

practice in climatological sciences, it is well-known that 

misspecified models with deterministic trends give rise to 

spurious regressions. First to address this issue in panels 

by proposing kernel methods are Atak, Linton, and Xiao 

(2011). Since then, a branch of econometric research has 

focused on this estimation approach, as it does not restrict 

the functional form of the trend. For the panel case, the 

method is extended to a two-step procedure by Robinson 

(2012). Chen, Gao, and Li (2012) further adapt it to 

semiparametric analysis. The underlying model for 

estimations following this approach is the general 

semiparametric panel of form 

 𝑦𝑖𝑡 =  𝛼𝑖 + 𝑥𝑖𝑡𝛽 + 𝑓(𝑡/𝑇) + 𝜖𝑖𝑡 , 
 

    𝑖 = 1,2, … 𝑁;   𝑡 = 1,2, … , 𝑇.  
(1) 

Where 𝛼𝑖  is the individual fixed effect of cross-sectional 

unit i, 𝑥𝑖𝑡  are the regressors measured for individual i at 

time t. The trend function f in this model defines a 

mapping 𝑓: [0,1] → 𝑅 and is twice continuously 

differentiable. The residual variance term 𝜖𝑖𝑡 is allowed to 

be cross-sectionally dependent, with 𝐸(𝜖𝑖𝑡𝜖𝑗𝑡) =  𝜎𝑖𝑗 for 

individuals i, j. If one imposes 𝛽 = 0, the model reduces 

to the one proposed by Robinson (2012) and is estimated 

with purely nonparametric methods. 

 

 

DATA 

All data analyzed in this paper are taken from 

http://www.ecad.eu/. A blended panel with 4000 stations 

recording as early as 1880 is used. The variables studied 

from this set are primarily mean temperature (TAVG), 

but also minimum temperature (TMIN), and maximum 

temperature (TMAX). The data is adjusted seasonally by 

taking monthly dummies. Fourier expansion was also 

investigated, but did not yield noticeable differences in 

the trend estimations.  

A major challenge guiding the data selection and the 

sampling procedure are the inherent geographical biases. 

The top panel of Figure 1 reveals one such bias for 

European weather stations recording prior to 1901: The 

spatial density of stations in Germany is much higher 

than in any other region. Consequently, a sampling 

algorithm geared at minimizing sample bias and 

achieving constant spatial density is proposed: First, the 

recording stations are clustered using longitude and 

latitude with a standard K-Means algorithm (e.g., Han, 

Kamber, & Pei, 2011). In the second step, stratification is 

achieved by drawing random sampling of each.  An 

exemplary outcome of this procedure is illustrated in 

Figure 1.  In total, eight samples are generated using the 

algorithm, comprising different regions and time periods. 

 

Figure 1. Top: All European stations measuring TAVG prior to 1901. 
Bottom: A constant spatial density sample of these stations. 

http://www.ecad.eu/


 

KERNEL REGRESSION CHOICES 

The estimators proposed in Robinson (2012) and Chen et 

al. (2012) necessitate kernel regression. Their kernel 

regressions use a weight function 𝐾ℎ built from 𝐾 as 

𝐾ℎ(𝜏, 𝑡/𝑇) = 𝐾((𝜏 −  𝑡 𝑇)⁄ ℎ⁄ ) to construct weighted 

local averages or weighted local linear regressions. The 

kernel function input for constructing the weight of an 

observation at time point 𝑡 when estimating the trend at 

relative time point 𝜏 ∈ [0,1] is (𝜏 −  𝑡 𝑇)⁄ ℎ⁄ , where ℎ is 

the bandwidth. One can rewrite this as (𝜏𝑇 −  𝑡) 𝑇ℎ⁄  and 

interpret it as the time distance between two observations 

at time points 𝜏𝑇 and 𝑡, adjusted for the bandwidth. Most 

kernel functions used for the analysis have support of 

[−1,1] and are symmetric around zero, i.e. 𝐾(𝑧) =
 𝐾(−𝑧) and 𝑧 ∉ [−1,1] → 𝐾(𝑧) = 0. Hence, it is easy to 

see that smaller bandwidths ℎ cause the kernel function to 

smooth over a smaller time period when estimating the 

trend at 𝜏. 

Before running any kernel regression, three issues have to 

be addressed: Firstly, which kernel function to use for 

weight assignment. Secondly, which bandwidth selection 

procedure to apply for determination of the smoothing 

interval. Thirdly, which kernel estimator to employ. 

Kernel Function 

Thirteen different kernel functions are investigated and 

compared. Particular attention is paid to boundary kernels 

constructed using a variety of adjustment schemes. The 

boundary problem is a bias arising because the effective 

support of any kernel function is reduced at the boundary. 

In the setting at hand, 𝜏 lies in the boundary if  

𝜏 ∈ [0, ℎ] ∪ [1 − ℎ, 1] (see e.g., Fan & Gijbels, 1996). In 

this region, the kernel function tries to assign positive 

values to observations whose relative time point  

(i.e., 𝑡/𝑇) lies outside of [0,1]. 

An important discovery of this paper is that for 

bandwidth selection using Generalized Cross-Validation 

(GCV), the kernel function greatly impacts whether or not 

meaningful minima are found. In particular, kernels that 

are not treated at the boundary do not produce a global 

minimum in Estimated Prediction Error (EPE). Boundary 

kernels change this, and clear cut global minima arise. 

Amongst all examined boundary kernels, the IMSE-

optimal modification proposed by Müller (1991) does 

best in this regard. Figure 2 illustrates this by comparing 

the EPE curves one finds for Epanechnikov’s unmodified 

and the IMSE-optimal boundary kernel of first order.  

       

   
Figure 2. Exemplary EPE-function for GCV. Left: Epanechnikov’s 

kernel. Right: IMSE-optimal boundary kernel of first order. 

Bandwidth Selection 

For bandwidth selection, Generalized Cross Validation 

(GCV) and an iterative Plug-In (IPI) method proposed by 

Gasser, Kneip, and Köhler (1991) are compared. The IPI 

method is found to choose extremely small values for ℎ, 

and implies highly fluctuating trend estimations. This is 

most likely the case because homoscedasticity in the 

errors is required for the method to work. GCV selection 

schemes are investigated and prove to be robust, 

delivering reasonable bandwidths: Varying leave-out 

schemes and penalty functions are found to not alter the 

results. The most notable finding is the strong interaction 

effect between GCV and the kernel choice depicted in 

Figure 2 and described in the previous paragraph.  

Lastly, the bandwidths found for the eight analyzed data 

sets using GCV and IMSE-optimal boundary kernels 

imply nonzero weight assignment to observations roughly 

10-20 years around the time point 𝜏𝑇 for which the trend 

is estimated. 

Kernel Estimator 

Following Fan and Gijbels (1998), and adopting notation, 

any nonparametric regression estimator can be written as 

 
𝑓(𝜏)̂ =  

∑ 𝑤𝑡(𝜏, ℎ, )𝑦𝐴𝑡
𝑣∗𝑇

𝑡=1

∑ 𝑤𝑡(𝜏, ℎ)𝑇
𝑡=1

 
(2) 

With bandwidth h, cross-sectional average 𝑦𝐴𝑡
𝑣∗ weighted 

using a vector 𝑣∗, and a weight function 𝑤𝑡(𝜏, ℎ) whose 

functional form depends on the chosen kernel estimator 

and the kernel function 𝐾ℎ. Three kernel estimators are 

investigated: The Nadaraya-Watson Estimator (NWE), 

the Gasser-Müller Estimator (GME), and the Local 

Linear Regression (LLR). NWE and GME use local 

weighted averages; LLR fits a weighted local linear 

regression. Defining 𝑆𝑇,𝑙: =  (∑ 𝐾ℎ(𝜏, 𝑗/𝑇)(𝜏, 𝑗/𝑇 )𝑙𝑇
𝑗=1 ), 

equations (3) – (5) give their weight functions. 

 𝑤𝑡
𝑁𝑊𝐸(𝜏, ℎ) = 𝐾ℎ(𝜏, 𝑡/𝑇) (3) 

 
𝑤𝑡

𝐺𝑀𝐸(𝜏, ℎ) = ∫ 𝐾ℎ(𝜏, 𝑢/𝑇) 𝑑𝑢
𝑡+0.5

𝑡−0.5

 (4) 

 𝑤𝑡
𝐿𝐿𝑅(𝜏, ℎ) = 𝐾ℎ(𝜏, 𝑡/𝑇){𝑆𝑇,2 − (𝜏 − 𝑡/𝑇)𝑆𝑇,1} (5) 

Intuitively, the NWE uses the discrete kernel values for 

weight assignment. The GME bases the weights on an 

integration of  𝐾ℎ around the time point 𝑡. Lastly, LLR 

performs a weighted local linear regression around 
(𝜏 − 𝑡/𝑇) and assigns weight to the produced fit using 𝐾ℎ. 

The NWE is suggested by Robinson (2012) for a two-step 

procedure which finds the Mean Square Error (MSE) 

optimal weight vector 𝑣∗. It is found that the GME and 

the NWE deliver near identical results for this estimator, 

with LLR capturing slightly more cyclical movement, but 

affecting the trend estimate only negligibly. Because LLR 

needs twice as many parameters, the NWE and GME are 

preferred. On the other hand, for the method proposed by 

Chen et al. (2012), LLR is found to be the best estimator 

of all three in practice. This is in line with theory, as the 

authors show that it is more efficient than any local 

constant fit. However, LLR is unable to smooth cycles at 

the boundary. This suggests that higher order polynomials 

would be even more suitable for temperature data.  



NON- & SEMIPARAMETRIC ESTIMATORS 

Estimator choice 

Semiparametric estimation 

Whether it is better to use Cross-sectional averages 

(CSA), the estimator proposed by Robinson (2012) (RE), 

or the estimator proposed by Chen et al. (2012) (CGLE) 

depends on the data and estimation characteristics. CGLE 

is the only feasible choice for semiparametric estimations. 

For nonparametric settings, CSA or RE are preferred. In 

general, CGLE is found to perform extremely poorly at 

the boundary. The reason is that the estimator is based on 

local linear regression and that temperature moves in 20-

year cycles (see Figure 3). Because said cycle will either 

slope upwards or downwards at the boundaries, CGLE 

fits a local linear trend and produces extremely steep 

boundary estimates.  

Nonparametric estimation 

Given that the assumptions of common trend and stable 

long-run correlation between the stations hold, the best 

choice for a nonparametric estimator depends on two 

factors: Firstly, the magnitude of N. Secondly, the 

presence and significance of outliers. Ideally, it should 

hold that N is either very small (i.e., 2 ≤ 𝑁 ≤ 5) or 

moderately large (i.e., 𝑁 > 25). In this case, no problems 

arise. For moderate N (i.e., 6 ≤ 𝑁 ≤ 24), RE only 

performs reasonably well if the common trend is very 

strong and there are no outliers. The reason for this 

behavior is the Mean Square Error (MSE) optimal 

reweighting scheme used by RE. The method fits a 

preliminary trend and estimates residuals based on this 

preliminary estimate. These residuals are used for 

construction of a heteroscedasticity-consistent covariance 

matrix estimate. This matrix is used to calculate MSE-

optimal weights for the cross-sectional units. These 

weights are then used to construct an optimally weighted 

cross-sectional average for a second trend estimation. 

While this reweighting process generally improves the 

estimation, it does not do so in the presence of extreme 

outliers for moderate magnitudes of N. Under these 

circumstances, too much weight is put on the outliers, and 

the trend estimates become nonsensical. In this case, CSA 

is preferred. If N is moderately large (i.e., 𝑁 > 25), 

enough random correlation is typically introduced to 

make RE robust against outliers. For very small N (i.e., 

2 ≤ 𝑁 ≤ 5), every station effectively becomes an outlier, 

and so the problem disappears again.  

Common Trend Specification  

The model in equation (1) makes a strong assumption on 

the commonality of the time trend: The deterministic 

trend function has to be shared by all cross-sectional 

units. Misspecification and thereby biased estimations are 

potential dangers when estimating models described by 

equation (1). Hence, the common trend assumption 

requires careful evaluation. Zhang, Su, and Phillips 

(2012) propose a residual-based specification test which 

is based on an asymptotically pivotal distribution Yet, the 

convergence rate of the asymptotic test is extremely slow, 

and a small scale Monte Carlo study conducted as part of 

the research reveals that it can only be used in its 

bootstrapped form. A bootstrapped version of the test 

exceeds the computer resources available for the analysis, 

however.
1
 Consequently, one has to evaluate the 

assumption using visual inspection of the trend plots. 

LLR is used for smoothing an individual station’s trend, 

and the trends are expressed in mean-deviation terms. 

Figure 3 illustrates this approach: The individual stations’ 

TAVG trends are estimated, demeaned and plotted for all 

of Scandinavia after 1952. The plot reveals that the 

common trend assumption for Scandinavia is reasonable.  

   

Figure 3. Estimated individual TAVG trends of all Scandinavian 

stations recording prior to 1952 and expressed in mean-deviation units. 

RESULTS 

Common Trend Assumption 

In total, eight data sets are analyzed. The pattern across 

these data sets is consistent, and reveals that the common 

trend assumption is inappropriate for panels of Eurasian 

dimension. For panels of European data, the individual 

trends exhibit much clearer similarities. Because N is 

large enough in the data sets of European scale, RE 

performs reasonably well and does not introduce a bias 

when compared to CSA. Yet, a common trend in the 

mathematical sense of equation (1) remains questionable, 

especially before 1900. That being said, one should keep 

in mind that before the 1910s, temperature was 

commonly measured with mercury-based thermometers. 

These appliances are far less precise than thermometers 

based on alcohol, which were widely introduced in the 

1920s. In contrast, for regions within Europe (e.g., 

Germany, Scandinavia, and Spain/Portugal), a common 

trend is a reasonable assumption (see Figure 3).  

Estimated Increases In Mean Temperature 

Generally, between 1880 and 2010, an increase in mean 

temperature of around 1.8°C is found for the common 

trend within Europe. The strongest increase takes place 

from 1975 onwards until 2010, where temperature 

strongly increases by around 1°C. For the Eurasian 

samples, a common trend is clearly absent. For the 

German weather stations recording prior to 1901, the 

estimated increase in TAVG until 2010 is around 0.5°C, 

and thus below European average. Mean temperature in 

Portugal and Spain, on the other hand, increased by 

around 0.6°C in the last 60 years alone. Scandinavia has 

seen an even bigger increase of nearly 1.3°C since 1952. 

Two semiparametric estimations are also performed, 

using minimum (TMIN) and maximum (TMAX) 

                                                           

1 On a 64-bit operating system with an Intel i5 2x2.67GHz processor 
and 4 GHz DDR4-RAM, the bootstrapped test with 1.000 bootstrap 

samples is estimated to take up to 2 weeks of computation time. 



 

temperature as regressors. One finds that European mean 

temperature has risen around 0.5°C between 1901 and 

2010 relative to both the minimum and the maximum.  

Cycles and fractal dimension of temperature 

A perhaps more interesting discovery than its increase is a 

20-year cycle in TAVG. The oscillation of this cycle has 

an amplitude of around 1 – 1.5°C, and is thus bigger than 

most estimated increases. It is stronger in regions with 

maritime climate (e.g., Scandinavia), indicating a link 

with sea currents (Hurrell & Van Loon, 1997). The 

cycle’s periodicity and onset differs across regions, but 

the general movement remains. Consequently, it would be 

interesting to adjust for this 20-year seasonality and re-

evaluate the common trend assumption for Eurasia. 

Whilst on the topic of cycles, it is further noteworthy that 

one finds common trend movements suggesting a cycle of 

even lower frequency (i.e., 150 – 200 years). Fractal 

organization in natural phenomena is not uncommon (see 

Mandelbrot, 1977), and low frequency temperature cycles 

are well-known in the literature, see for instance 

Velichko, Borisova, Zelikson, et al., 1992. 

 

Figure 4. Common European trend in TAVG using Robinson (2012), 

GCV, the NWE, and an IMSE-optimal boundary kernel of first order. 

CONCLUSION 

Analyzing different kernel regression choices, this study 

concludes that the iterative plug-in method proposed by 

Gasser et al. (1991) is not robust to heteroscedastic data. 

Furthermore, one finds a strong interaction effect between 

kernel function and GCV if the NWE is used, suggesting 

usage of IMSE-optimal boundary kernels.  

For the estimator proposed by Chen et al. (2012) (CGLE), 

extreme boundary effects are found. This is due to 

cyclical behaviour that LLR cannot capture appropriately 

at the boundary. While one can treat the estimate by 

cutting off the boundary, a fit of higher order is a better 

solution. The findings for Robinson’s estimator (RE) 

suggest that the method is robust towards outliers for very 

small N (i.e., 2 ≤ 𝑁 ≤ 5) or moderately large N (i.e., 𝑁 >
25). For moderately sized N (i.e., 6 ≤ 𝑁 > 24), the 

method can only be used for very homogenously behaved 

panels without outliers. On a sidenote, the specification 

test proposed by Zhang et al. (2012) is shown to have 

poor asymptotics, necessitating a bootstrapped approach.  

Common trends are found in Germany, Scandinavia, and 

Spain/Portugal. Increases in the last 60 years range from 

0.6°C (Spain/Portugal) to 1.3°C (Scandinavia). Esti-

mating a common trend across Europe, one finds mean 

temperature to have increased by around 1.8°C since 

1880. Regardless of the exact geographical area, a stable 

20 year cycle in mean temperature is observed, and it is 

speculated that cycles of longer wavelengths could be 

found due to low-frequency dynamics in temperature.  
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