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ABSTRACT
PRØST was a contestant in the CAESAR competition for au-
thenticated encryption. I optimised PRØST for the ARM11 mi-
croprocessor architecture. By trying to find a provably minimal
program for one of the sub-operations, I found a new approach
to implementing MixSlices, one of the sub-operations in
PRØST’s permute function. This new implementation has 33%
fewer arithmetic operations than the original version. Using
this result and by implementing PRØST in assembly and apply-
ing micro-optimisations, a performance gain of 28% to 48%
was achieved.

INTRODUCTION
Authenticated encryption schemes use symmetric keys to en-
crypt data providing not only confidentiality but also integrity
and authenticity [4]. Using these schemes avoids having to
combine authentication and traditional, confidentiality-only,
encryption, something that has often led to vulnerabilities [11].

A variant are authenticated encryption with associated data
schemes [17]. These allow to also include information that
does not need to be encrypted but of which the integrity and
authenticity needs to still be guaranteed.

The CAESAR (Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness) competition was an-
nounced in January 2013 to help select a portfolio of ciphers
that “(1) offer advantages over AES-GCM1 and (2) are suitable
for widespread adoption” [7]. PRØST was a contestant in this
competition.

Optimised implementations on various platforms help show
that an algorithm is suitable for widespread deployment. Cryp-
tography is not only used on PCs based on the amd64 archi-
tecture: it is perhaps even more widely used and needed in
embedded platforms, smart cards and mobile devices. ARM11
is a prominent example that is used in many of these.

I re-implemented and optimised PRØST in assembly lan-
guage. Aside from doing “regular” assembly-level micro-
optimisations, I also tried to reach a provably minimal al-
gorithm for one of the sub-operations.

All resulting software can be found via https://thomwiggers.
nl/proest/.

1AES with the Galois/Counter Mode of operation [13]. This is an
authenticated encryption scheme based on AES.
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PRELIMINARIES

Prøst
PRØST consists of the PRØST-permutation, which is then com-
bined with various modes of operation. These are COPA [2],
OTR2 [14] and APE [1]. This gives all of the ciphers in the
PRØST family: PRØST-COPA, PRØST-OTR and PRØST-APE.
My optimisations focused on the PRØST permutation, as it is
by far the most expensive operation in each of these modes.

Here I will briefly summarise PRØST’s permutation as de-
scribed in the PRØST v1.1 paper [10]. I will be describing the
PRØST-128 version, which provides 128 bits of security. The
full description of PRØST, including the modes of operation
and PRØST-256, can be found in the PRØST paper.

PRØST-128 has a 256-bit state s which is considered as a
4× 4× 16 three-dimensional block

s =

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3


where each sx,y is a 16-bit value. PRØST’s authors call these
lanes. The terms row, column, slice, plane and sheet for the
other parts of the state are described in Figure 1.

The permutation consists, in the PRØST-128 case, of 16 rounds.
The round function Ri : F256

2 → F256
2 with 0 ≤ i < 16, can

be defined as Ri(x) = (AddConstantsi ◦ ShiftPlanesi ◦
MixSlices ◦ SubRows)(x).
In the following I use ⊕ to denote the binary exclusive or
operation, and ∧ to denote a binary and. “a ≪ n” and “a ≫
n” mean that a is rotated n bits to the left or to the right,
respectively.

SubRows
The SubRows operation substitutes each row (a, b, c, d) of
the state by a new row (a′, b′, c′, d′) where

a′ = c⊕ (a ∧ b), b′ = d⊕ (b ∧ c),

c′ = a⊕ (a′ ∧ b′), d′ = b⊕ (b′ ∧ c′).
(1)

MixSlices
The MixSlices operation mixes the slices
of the state by multiplying the vector of lanes

2PRØST-OTR was recently shown to be vulnerable to a related-key
forgery attack by Dobraunig, Eichlseder and Mendel [8].
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Figure 1: Nomenclature for state parts (figure adopted from [10]).

(s0,0, s0,1, s0,2, s0,3, s1,0, . . . s3,3)
T with matrix M , where

M =



1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1



.

ShiftPlanesi

The operation ShiftPlanesi rotates each of the lanes in a
plane of the state by a a given amount. The lanes in each row
are rotated by a number of bits given by the shift vector, which
is different for odd and even rounds.

For round i, if i is even, the lanes in the first row are rotated
by zero bits, in the second row they are rotated by one bit, the
third row’s lanes are rotated by eight bits and the lanes in the
last row are rotated by nine bits.

If i is odd, the lanes in the four rows are rotated by zero, two,
four and six bits, respectively.

AddConstantsi

AddConstantsi, the last operation in each round i of
PRØST, updates the state s by adding a constant to each lane.
There are two constants, c1 = 0x7581 and c2 = 0xb2c5.
With index j enumerating the lanes from 0 to 16, constant c1
is applied to even lanes with even j and c2 is applied to lanes
with odd j. Before being applied, the constants are rotated left
by the round number i and by index j.

ARM11
In this subsection I will briefly set out the most important char-
acteristics of the ARM11 microarchitecture that are relevant to
the rest of this work [3].

ARM11 processors have a 32-bit instruction set. They provide
fourteen 32-bit ’work’ registers and a stack pointer to the
programmer. If the programmer needs more registers, he or
she will need to store values to main memory. These operations
are expensive and should mostly be avoided.

The architecture provides instructions that allow to rotate or
shift registers by an arbitrary amount, spending one compu-
tation cycle. Additionally, all arithmetic instructions support
having the second input value rotated or shifted by an arbitrary
distance. These shifts are essentially free.

Pipeline
The ARM11 is a pipelined architecture, which means that the
processor can work on several instructions at the same time.
Instructions take a certain amount of cycles to complete. If
their results are not immediately needed, the CPU will work on
other instructions. If however the result is immediately needed,
the CPU will wait for it to become available. Most arithmetic
instructions have a one-cycle latency, meaning the results can
be used by the next instruction immediately. Reading from
memory has a 3 cycle latency, if the load is from cache, before
the result becomes available. This means that careful schedul-
ing to avoid these latencies can drastically reduce execution
time.

OPTIMISING PRØST
I will now explain the biggest optimisations in my implement-
ation of PRØST-128.

Loading two lanes into one CPU register
The lanes in the PRØST state are each 16 bits long, while the
CPU registers are each 32 bits in size. Considering that the
lanes are stored consecutively in memory, it is possible to load
two lanes into one register in one load. This obviously saves
us from one register and one load that we would need to do
if we naively loaded each lane separately into one register.
This however does mean that we need to take care how to
apply operations to this register. This can be achieved by using
the previously described free shifts in arithmetic instructions:
rotating allows to selectively apply the correct half of the
register.

MixSlices
MixSlices is by far the most expensive operation in
PRØST’s permutation. A straightforward implementation of
the system in the matrix M represents 72 exclusive or opera-
tions.

The exclusive or is commutative and associative, which allows
us to re-order the inputs in any way we like. Several of the
output lanes share some of the input lanes they use, mean-
ing there are combinations of lanes that could be reused in
several multiplications. For example, s′0,0 and s′0,1 share the
intermediate result s1,0 ⊕ s3,0 ⊕ s3,3, as illustrated in (2).

s′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3
(2)



This of course leads to the question: can we find a way to
exploit this feature so that we can find the program with the
maximum amount of reuse? Or in other words: what is the
shortest implementation of MixSlices?

Optimisation problem
We can represent a function like MixSlices as a program
with a sequence of lines of the shape u = v ⊕ w where v and
w are either from the set of input values or one of the previous
lines of the program. In fact, this notation is exactly how one
would implement MixSlices: the arithmetic instructions in
ARM assembly look exactly like that. Programs of this form
over F2 are known as linear straight-line programs [6, 9].

Unfortunately, the problem of finding the shortest linear pro-
gram (SLP) is known to be NP-hard. Boyar, Matthews and Per-
alta additionally showed that SLP is MAXSNP-complete [6].
MAXSNP is a class of optimisation problems that can be ap-
proximated with some bounded error [15]. In other words,
finding the shortest version of MixColumns is going to be
very computationally expensive.

Fuhs and Schneider-Kamp show in [9] that it is possible to
transform SLP to a different kind of problem: the boolean
satisfiability problem (SAT).

To define SLP as the decision problem “does a program of k
lines exist” in SAT, Fuhs and Schneider-Kamp encode func-
tions such as the one for MixSlices with n inputs and m
outputs as an m×n matrix A, where every row represents one
of the outputs and every column one of the inputs. Ax,y = 1 if
and only if in output x, input y is used. This matrix is exactly
PRØST’s M . They then define matrix B as a k × n matrix,
where bx,y = 1 if and only if in line x input variable y is used.
The k × k matrix C is defined where cx,y = 1 if and only if
intermediate result y is reused in line x of the program. Finally,
they define a matrix f to map intermediate results to outputs.

The decision problem is to find valuations of B,C and f such
that a set of constraints still hold. These constraints are boolean
formulae that can only be satisfied by valid programs.

I developed a Java program that allows to input programs as
a matrix A and then tries to solve the SLP-SAT problem for
a specified length k. SAT4j [12] was used to transform the
problem from predicate logic to a SAT problem, which was
then solved also using SAT4j.

Unfortunately, the smallest satisfiable k proved to be out of
reach with this implementation of the SLP-SAT problem. The
size of the constraints is in O(n · k2) [9], but it appeared that
the addition of new constraints to the SAT4j encoder got more
expensive faster than that. The largest k for which we could
transform SLP to SAT was only k = 26. It was unable to
provide an answer for k = 26 even after running the program
for over two weeks. This might be because showing a problem
is unsatisfiable is much harder than showing it is satisfiable.

Boyar et al. give a heuristic which allows to approximate
the shortest straight-line program. A brief summary of this
heuristic, described in [6], will be given here. We define matrix
S in which we will store previously produced functions. S has
n columns. sx,y = 1 if and only if the yth input variable is a

part of the function defined by row x. As for the SAT program,
we provide the input program as a matrix A. In the case of
PRØST, A will be initialised as M .

S is then initialised to contain the input variables
x0, · · · , xn−1, so in the case of n = 3, S =
([1, 0, 0], [0, 1, 0], [0, 0, 1]). Then, we define a distance func-
tion that for a given row in A determines the smallest number
of additions of rows in S that need to be made to get that row.

The program then generates new rows in S as combinations of
rows in S, minimising the sum of the distance function. Some
optimisations are used to achieve better performance. Finally,
when the sum of the distance function is known, S can be
transformed back into a linear straight-line program.

The above heuristic was, after running for four days on a 24-
core machine, able to find a much shorter implementation of
MixSlices using only 48 exclusive ors. This approach can
be found in my implementation.

AddConstants
The constants c1 and c2 added by AddConstants are first
rotated by the round number. Because the first time we need
c2 it needs to be rotated by 1, we can instead set the constant
c2 to c2 ≪ 1 at compile time and thus save one instruction.

Because we want to load two lanes into one register every time,
we need half of the free rotations we can get from the ARM
architecture to shift the correct value in place. That means we
still need to explicitly rotate one of the constants every time,
instead of using free rotations. This means we still need to
do nine explicit rotations: two for the initial rotation by the
round number, and 7 rotations of c2 we can not do for free in
arithmetic instructions.

Inlining and unrolling the PRØST operations
We can reduce the overhead of calling subroutines by putting
the operations consecutively in the same subroutine. Having
the operations in the same subroutine also enables us to do
some nice things such as keeping intermediate values in re-
gisters between operations. This saves us quite a few loads and
stores. Operations previously also had to clean up intermediate
results that were spilled to memory and then put those back
into the PRØST state. In an inlined program, later operations
can just retrieve those values from the stack.

Finally, the unrolling allows to hide latencies better. One can
start retrieving data needed for the next function and then
while waiting for the load latency do final computations of the
previous function.

RESULTS AND COMPARISON

Benchmark results
All benchmark results were obtained by using the SUPER-
COP [5] benchmarking suite for cryptographic systems running
on a Raspberry Pi model B overclocked to run at 800MHz.
Frequency scaling was disabled. The cycle counter still re-
ports accurate results even when overclocked. We used the
2014-11-24 release of SUPERCOP, which was the most recent
release when we did the experiments. The version of gcc



Implementation APE COPA APE
Reference (C)a 2,976,123 2,402,577 1,569,582
ARM Assembly 1,900,274a 1,648,407a 848,100b

Improvement 36% 28% 46%

a Compiled with gcc -funroll-loops
-fno-schedule-insns -O3 -fomit-frame-pointer

b Compiled with gcc -O3 -fomit-frame-pointer

Table 1: Benchmark results in median cycle counts

used was 4.9.3 20141224 (prerelease). The cycle
counter provided by the ARM architecture was used to facilitate
benchmarking.

The benchmark results can be found in Table 1. The reported
figure is the “number of cycles used by a typical cryptographic
operation” as reported by SUPERCOP. Also included are the
compiler flags used to get the reported figures.

The implementation of PRØST has been submitted to the
eBACS project for public benchmarking and has been released
as open source software under the New BSD licence.

Comparison and further work
SUPERCOP currently contains no other implementations of
PRØST-128 than the reference C implementation. Rijneveld
implemented a vectorised version of PRØST for ARMv7 with
NEON [16]. A cursory comparison with his reported cycle
counts show that my implementation is significantly faster.
However, he reported problems with MixSlices which per-
haps can be addressed with my shorter variant.

PRØST-256 still remains untouched. Further work could try to
optimise that version as well. It should also be possible to apply
the approach taken to other encryption algorithms, especially
those which have an operation similar to MixSlices.

ROLE OF THE STUDENT
Peter Schwabe, my supervisor, was involved with the design
of PRØST. The designers of PRØST provided a reference im-
plementation which I re-implemented and optimised in ARM
assembly. I also wrote additional software, like for the heur-
istic and the SAT transformation. Peter Schwabe provided
valuable feedback along the way.
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