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ABSTRACT
This paper proposes a method to estimate a nonlinear
mathematical model describing the dynamic behaviour of a
robotic bird. Established knowledge on aircraft modelling
and aerodynamics is used to derive an appropriate model
structure. A new parameter optimisation method is devel-
oped, which consists of experiment design and staged pa-
rameter optimisation using datasets from test flights. The
modelling method delivers promising results for predicting
pitch and yaw of a model aeroplane and can be applied to
the Robird when flight data become available.
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INTRODUCTION
Clear Flight Solutions has built the Robird Peregrine Fal-
con (Fig. 1), a remotely piloted robotic bird that uses flap-
ping wings as a means of propulsion. The Robird has been
successfully used to repel birds (e.g., at airports and farm-
land), in an environmentally friendly way [1]. It can fly
with or without flapping its wings, which is referred to as
flapping and gliding flight respectively.

Currently, the Robird can only be controlled manually by
a few very experienced model aircraft pilots, which makes
it unsuitable for broad application. The implementation of
an autopilot could overcome this limitation. In order to
design an autopilot, a mathematical model describing the
dynamical behaviour of the Robird is needed.

Existing research contains two fields of interest. First,
there is research focussed on modelling real birds that use
wing deformation and vary feather configuration while fly-
ing [2], [3]. Since the Robird has rigid wings, these mod-
els cannot be used directly. Second, there exists research
on insect-like flapping wing aircrafts [4], [5]. Scaling of
insect-like models is impracticable and these models do
not include the effect of gliding flight. Finally, model pa-
rameters cannot be estimated without disassembly and ex-
pensive lab experiments, such as wind tunnel tests. Since
the Robird is already flying with multiple sensors1, param-
eter identification using flight data is strongly preferred.
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Figure 1: Robird Peregrine Falcon, source: [1]

This leads to the following research question: can we de-
velop a method that automatically calibrates the model pa-
rameters of a nonlinear mathematical model, using flight
data only? It is assumed that experimental data can be
obtained through flights with the Robird. Moreover, it
should be possible to perform various experiments with an
increasing level of complexity, as described later.

At the time of this research, no Robird data were available.
As a start, the method was executed on a model aeroplane2.
It is assumed that the Robird its gliding flight is compara-
ble to the behaviour of the model aeroplane, as both wings
are fixed. The flapping flight cannot be studied with the
model aeroplane and remains for future research.

METHOD
The method includes the derivation of the model structure,
an initial parameter estimation and staged parameter op-
timisation combined with experiment design. The overall
structure and the underlying reasoning are very general,
enabling direct application to other aircraft.

Since this research is aimed at modelling the Robird, this
section is still focussed on the Robird. The results section
is based on adjusted equations of motion and initial param-
eter estimations for the model aeroplane.

Mathematical Model
A general model is given by

ξ̇(t) = f
(
ξ(t), v(t), u(t)

)
(1)

with states ξ =
[
φ θ ψ φ̇ θ̇ ψ̇

]T
,

airspeed data v =
[
ẋ ẏ ż

]T
and

control input u =
[
δailrs,left δailrs,right δtail fflap

]T
.

1ArduPilot 2.6 (3-axis accelerometers, 3-axis gyroscopes, altimeter) and 1 airspeed sensor (MPXV7002) in x direction.
2EasyStar RTF Electric Parkflyer (MPU13203)



The main goal is to model the dynamic behaviour of the
Robird’s orientation, which is described by pitch, roll and
yaw (see Fig. 2). The Robird has four control inputs: tail
deflection, two aileron angles and the flapping frequency.

The Robird has two modes, namely gliding and flapping
flight. It is assumed that gliding flight is comparable to
fixed-wing aircraft behaviour, as lift is generated by using
current velocity and wing shape only. Therefore, fixed-
wing aircraft models are used for modelling gliding flight.
For flapping wing flight, a second model is made as aero-
dynamic properties change due to flapping. The model is
based on the same equations as the gliding flight model,
with an additional thrust term.

Figure 2: Model reference frame

Example: Gliding Flight Model
General model structures from [6], [7], [8] and [9] link
aerodynamic forces and moments to translational and an-
gular accelerations in 3 directions. Similar equations can
be derived for the Robird, incorporating lift and drag
corresponding to tail deflection δtail and aileron angles
δailrs,left and δailrs,right.

In gliding flight, the force and moment equations in x, y, z
direction with angles φ, θ, ψ are [9]: Fx

Fy

Fz

+mg0
 − sin θ
cos θ sinφ
cos θ cosφ

 = m

ẍ+ θ̇ż − ψ̇ẏ
ÿ + ψ̇ẋ− φ̇ż
z̈ + φ̇ẏ − θ̇ẋ

 (2)

 Mx

My

Mz

 =

Ixφ̈+ (Iz − Iy)θ̇ψ̇
Iy θ̈ + (Ix − Iz)ψ̇φ̇
Izψ̈ + (Iy − Ix)φ̇θ̇

 (3)

With mass m, moment of inertia I and gravitational accel-
eration g0. Fx, Fy , Fz , Mx,My and Mz are aerodynamic
forces and moments, caused by the wings, tail and ailerons.

The definition of all the parameters is given in Table 1. The
lift forces Li and drag forces Di are described by [6]:

Li =
1

2
ρV 2

∞Si

[
∂CLi

∂δi
δi

]
(4)

Di =
1

2
ρV 2

∞Si

[
∂2CDi

∂δi
2 δ2i

]
(5)

with air density ρ, resulting velocity vector V∞, surface
Si, derivative of lift and drag coefficients ∂CLi

/∂δi and
∂2CDi

/∂δi
2, for i = {wing, tail, ailerons}.

The aerodynamic forces and moments are given by:

 Fx

Fy

Fz

 =

 Ltotal sinα−Dtotal cosα
0

−Ltotal cosα−Dtotal sinα

 (6)

 Mx

My

Mz

 =

(Lailrs cosα+Dailrs sinα)tk
(−Ltail cosα−Dtail sinα)ht
(Lailrs sinα−Dailrs cosα)tk

 (7)

with angle of attack α (the angle between V∞ and the ve-
locity in x direction) and the moment arms of the tail and
ailerons ht, tk. Ltotal is the lift of the wings, tail and
ailerons combined.

The equations require airspeed data ẋ, ẏ and ż. However,
the airspeed in y and z direction is not measured by the
current sensors. Nevertheless, ż can be estimated by differ-
entiating the global height measured by the altimeter and
transforming it to local coordinates, using rotation matri-
ces [9]. Since there is no information about the airspeed ẏ,
it is assumed that ẏ = 0.

Initial Parameter Estimation
The parameters (Table 1) can be categorised as:

• total mass and moments of inertia
• geometry, e.g. moment arms and areas
• coefficients of lift and drag

Moments of inertia about all axes are obtained from avail-
able SolidWorks models. Moment arms are estimated from
the geometry of the Robird. Previous wind tunnel tests on
the Robird [10] provide estimates of lift and drag coeffi-
cients of the wings. For parameters regarding ailerons and
tail, lower and upper bounds are estimated. The precise
values will be determined numerically.

Parameter Optimisation
Numerical optimisation is used to determine the remaining
parameters. While flying, both control input u and sensor
output η (consisting of roll, pitch and yaw) are recorded.
Simulating the equations of motion with the same con-
trol input u results in an estimated output η̂. The system
is simulated using MATLAB’s ode45 function, which re-
lies on the fourth-order Runge-Kutta numerical integration
method.

The model performance is evaluated by comparing η̂ with
η, using the root mean squared error (RMSE). Since the
outputs have different ranges, the error is normalised to
enable comparison (NRMSE, Eq. (8)).

NRMSEi =

√
1
N

∑N
j=1(η̂i,j − ηi,j)2

ηi,max − ηi,min
(8)

with N data points, for i = φ, θ, ψ (roll, pitch and yaw).



In parameter optimisation, the NRMSE is minimised. As
the model is nonlinear in its parameters, the correspond-
ing optimisation problem is also nonlinear and nonconvex.
In order to reduce the risk of finding a local minimum, a
global optimisation solver is used. MATLAB includes sev-
eral algorithms, of which pattern search was selected for
its robustness.

Pattern search is a direct-search method which dynami-
cally adjusts the step size. Therefore, it is faster than a
brute-force grid search. This is particularly useful when
optimising multiple parameters at once.

Staged Parameter Optimisation
Despite using pattern search, optimising all parameter val-
ues simultaneously from arbitrary flight data will be very
slow and may not yield a feasible solution at all. One so-
lution is to split the full optimisation problem into smaller
problems. In every subproblem, several parameter values
are determined and then fixed.

The main idea behind staged parameter optimisation is to
start with flight manoeuvres that can be described by a sim-
ple model. Because that model contains fewer parameters
the optimisation will converge rapidly. Then in each stage
the experiment becomes more advanced, requiring an ex-
tended model with additional parameters. The optimisa-
tion algorithm will only determine the additional parame-
ters. Extra stages are introduced until the model capabili-
ties are as desired.

Experiment Design
The staged optimisation requires careful experiment de-
sign, since parameters might be coupled. For the Robird,
coupling takes place when rotating about multiple axes at
the same time. For that reason, only tail deflection is used
in the experiments of the first optimisation stage. Control-
ling the tail will only cause changes about the y axis (Fig.
2). Flight data is used to optimise all tail-related parame-
ters. After convergence, the values are fixed.

In the second stage, only ailerons are used to control the
Robird. This directly causes changes in roll and yaw, and
due to coupling, also causes changes in pitch. Using the
corresponding test flight data, all aileron-related parame-
ters are determined.

The same procedure must be repeated for flapping flight.
Optimisation is done for the same parameters, but will re-
sult in different values. For thrust, additional parameters
should be introduced.

Validation
In order to validate the model, separate validation data are
needed. In order to exploit the available data to the fullest
extent, cross-validation is used [11]. Every flight test is
performed 8 times. From the obtained datasets, 2 are se-
lected for validation and the remaining 6 for parameter op-
timisation. This is done for all C8

2 = 28 combinations.
The NRMSE and Variance Accounted For (VAF) measure
are calculated and averaged for all possible combinations
[12].

The model is considered valid if NRMSE ≤ 0.10 and
VAF ≥ 80%. VAF is calculated according to Eq. (9).

VAFi =

(
1− Var(ηi − η̂i)

Var(ηi)

)
· 100% (9)

for i = φ, θ, ψ (roll, pitch and yaw).

RESULTS
The method was tested using a model aeroplane equipped
with similar sensors as the Robird. The equations of mo-
tion and initial parameter estimates were adjusted accord-
ingly. The experiment design for the staged parameter op-
timisation could still be applied, since the coupling effects
are comparable. The optimised parameters, using cross-
validation and data of 8 independent repetitions per stage,
are stated in Table 1. The datasets typically contain 3 sec-
onds of flight data (logged at 50 Hz). The validation results
are listed in Table 2. An example of the pitch signal is plot-
ted in Fig. 3.

Table 1: Determined parameters (model aeroplane)

pi Description Value

∂CLt
∂δ

Derivative of tail lift coef. w.r.t. δ -0.0975 deg-1 (PO)
∂2CDt

∂δ2 Derivative of tail drag coef. w.r.t. δ 0.0117 deg-2 (PO)

∂CFr
∂k

Derivative of rudder force coef.
w.r.t. angles kL, kR -0.277 deg-1 (PO)

Cr,y Coupling const. (roll vs yaw rate) 0.0078 (PO)

Droll Self damping term (roll) -0.0019 J·s (PO)

Dyaw Self damping term (yaw) -0.0039 J·s (PO)

ht Moment arm tail 496 mm

tk Moment arm rudder 48 mm (PO)

Sw Wing area 22.2 · 10−2 m2

St Tail area 95.5 · 10−4 m2

Sr Rudder area 20.95 · 10−4 m2

Ix Moment of inertia x-axis 4.61 · 10−3 kg·m2

Iy Moment of inertia y-axis 5.85 · 10−3 kg·m2

Iz Moment of inertia z-axis 9.64 · 10−3 kg·m2

m Mass 680.389 g

g0 Gravitational acceleration 9.81 m/s2

PO: found by Staged Parameter Optimisation

Figure 3: Measured and simulated pitch angle



Table 2: Error results from cross-validated data

NRMSE VAF

Roll 0.41 27.57%
Pitch 0.24 78.82%
Yaw 0.07 96.03%

DISCUSSION
Comparing validation criteria with the results in Table 2, it
can be seen that the roll and pitch prediction requirements
are not met as both NRMSE and VAF values violate the
validation requirements. The yaw model, which is impor-
tant for indicating the heading, is considered valid.

The suspected main reason for the problematic roll pre-
diction is that the model does not account for the dihedral
effect, see Fig. 4. Movement in y direction causes addi-
tional lift, leading to roll. As ẏ cannot be measured with
the current sensor configuration, this effect cannot be in-
corporated in the model. Adding an airspeed sensor in this
direction is recommended for a better roll prediction.

Figure 4: Dihedral angle Γ caused by movement y direction [13]

In general, better initial estimates and tighter bounds on
the parameters will improve the numerical optimisation.
For example, moments of inertia can be determined exper-
imentally and aerodynamic behaviour of the ailerons and
tail can be tested in a wind tunnel.

CONCLUSION
The yaw prediction gives sufficient outcome. The pre-
dicted pitch does not meet the requirements for NRMSE
and VAF, but does show promising results. The experi-
ment design and staged parameter optimisation can be used
to estimate appropriate parameters of a model aeroplane
model, using flight data only. The prediction requirements
for roll and pitch are not met using the current sensor con-
figuration. It is expected that adding an airspeed sensor in
y direction will improve the result.

The proposed method is able to automatically calibrate un-
known parameters for yaw prediction of the model aero-
plane. It also shows potential in predicting the pitch angle.
Validating the modelling method for the Robird remains
for further research, in particular for flapping flight. The
method can be applied to the Robird as soon as flight data
become available.

ROLE OF THE STUDENTS
This research is carried out by four students of the de-
partment of Mechanical Engineering of Delft University
of Technology. The project was run in collaboration with
Nico Nijenhuis (Clear Flight Solutions) and supervised by
Prof. Dr. Robert Babuska. Clear Flight Solutions pro-
posed the topic: creating a dynamic model. During the
project, Marjolijn and Jan were responsible for determin-
ing the model structure. Marjolijn initialised the param-
eters and Sander was responsible for the parameter esti-
mation. He defined the used algorithm, implemented the
equations of motion and validated the model structure. Jan
came up with the specific test routines that were needed
for the staged parameter optimisation. Bart identified the
available sensors and took care of processing the data.
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