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ABSTRACT""
It has been proposed that Hebbian learning could be 
responsible for the ontogeny of predictive mirror neurons 
in the premotor cortex (Keysers and Gazzola, 2014).  
Here, we show that an artificial neural network (ANN) 
that evolves via variation of Oja’s rule (an 
implementation of Hebbian learning) is sufficient to 
account for the emergence of predictive mirror neurons. 
By extension, this work provides positive evidence for 
the association hypothesis, which states that mirror-like 
behavior in the motor cortex is a byproduct of associative 
learning.  
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INTRODUCTION"
In the early 1990s, mirror neurons were discovered in the 
ventral premotor cortex of the macaque monkey (Di 
Pellegrino et al., 1992). These neurons fired both when 
the monkeys grabbed an object and when they watched 
another primate grab that same object. More recently, 
evidence has started to emerge that suggests the existence 
of mirror neurons with predictive properties (Keysers and 
Gazzola, 2014). These neurons fire when the action they 
encode is the action most likely to happen next, rather 
than the action that is concurrently being observed. 
Understanding how the brain is capable to predict future 
actions of others by means of a computational model 
could be of use in practical applications, such as self-
driving cars that can predict actions of other cars. A 
critical question concerns how (predictive) mirror 
neurons have developed to behave the way they do. In 
other words: what is the ontogeny of mirror neurons? 

Keysers and Gazzola (2014) proposed a mechanistic 
perspective on how mirror neurons in the premotor cortex 
could emerge due to associative learning, or more 
precisely, Hebbian learning. Hebbian learning explains 
learning as a change in synaptic strength of neurons that 
are concurrently active. To investigate whether or not 
Hebbian learning is sufficient to lead to the emergence of 
mirror neurons, we present a computational approach that 
implements the mechanics described by Keysers and 

Gazzola (2014). This involves the use of an artificial 
neural network (ANN) to simulate activity in the 
premotor cortex (PM) and the superior temporal sulcus 
(STS). The PM coordinates self-performed actions, 
whereas the STS is a region known to respond to the sight 
of body movements and the sound of actions. By exciting 
neurons in these two areas action execution and 
observation are simulated. The problem addressed in this 
work can be defined as follows: can artificial neural 
networks that evolve via a local Hebbian-like learning 
rule, when exposed to action execution and observation, 
be sufficient to lead to the emergence of predictive mirror 
neurons? 

Here, we show that Oja’s rule, an implementation of 
Hebbian learning, is sufficient to impose predictive 
mirror-like behavior. First, the proposed research 
question is considered in relation to other studies on the 
ontogeny of mirror neurons. Subsequently, three 
implementations of Hebbian learning will be discussed: 
the covariance learning rule, the BCM rule, and Oja’s 
rule. Additionally, a variation of Oja’s rule is presented. 
The computational model that describes the artificial 
neural network is introduced. A newly designed 
procedure for the quantitative analysis of mirror neuron-
like behavior has been applied to the recorded activity of 
ANNs that evolve via several different learning rules. 
Finally, it is argued that an artificial neural network that 
evolves via a variation of Oja’s rule is sufficient to 
explain the emergence of mirror neurons. 

 
HEBBIAN"LEARNING 
The association hypothesis states that mirror-like 
behavior of neurons in the motor cortex arises due to the 
establishment of associations between sensory- and motor 
stimuli. Keysers and Gazzola (2014) proposed that 
Hebbian learning, a type of associative learning, could 
account for the emergence of mirror neurons. Their idea 
is illustrated by a model that describes connections 
between the premotor cortex (PM), the inferior posterior 
parietal cortex (area PF/PFG) and superior temporal 
sulcus (STS). Both the PM and PF/PFG play a role in 
action coordination, whereas the STS is a region known 
to respond to the sight of body movements and the sound 
of actions. The proposed model explains the emergence 
of predictive mirror neurons as a result of sensorimotor 
input of self-performed actions. Action execution is 
coordinated by activity in the PM. Subsequently, 
reafferrence occurs, which refers to the observation of 
self-performed actions. Once this observation has reached 
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the STS, neurons in the PM that encode the next action 
have already become active. If Hebbian learning is 
assumed, the simultaneous activity in the STS of the 
observed action and activity in the PM for the next action 
causes an association between neurons in both regions. 
Keysers and Gazzola (2014) suggest that such an increase 
in synaptic strength could account for the emergence of 
predictive mirror neurons.  

Cooper et al. (2013) argued that Rescorla-Wagner (RW), 
a supervised learning rule, and not Hebbian learning, can 
cause the emergence of mirror neurons. Their 
computational model simulates an experimental study 
(Cook et al., 2010) that examined automatic imitation, 
which is thought to be an index for mirror neuron 
activity. Only RW was capable of simulating the data of 
Cook et al. However, Hebbian learning is not limited to 
the learning rule that was used by Cooper et al. (2013). 
Other implementations of Hebbian learning, for example 
Oja’s rule (Oja, 1982), were not considered. Therefore, 
Hebbian learning should not be dismissed fully as a 
possible explanation for the emergence of mirror neurons.  

COMPUTATIONAL"MODEL"
The artificial neural network created in this work 
simulates the PM and STS. The general structure of 
connectivity in the network (figure 1) is a result of three 
assumptions. First, the intermediate step of the PM/PFG 
has been omitted. Second, each neuron only represents 
one action phase. Note that it is not suggested that one 
action is simulated by one neuron in the brain. In fact, 
each node in the ANN should be viewed as a cluster of 
neurons rather than individual neurons. Third,  
PM ! STS connections are modeled as inhibitory 
connections between PM and STS neurons that encode 
the same action. They are modeled as inhibitory because 
the net flux of activity from PM to STS is known to be 
net inhibitory. However, the brain contains less inhibitory 
neurons (20% of all neurons) than excitatory neurons. 
Therefore, the total number of inhibitory connections is 
reduced by only allowing PM ! STS connections for the 
same action.  

 
Figure 1: The structure of the two-layered ANN that simulates the PM 
and STS cortices. 

The activity of one neuron is simulated as a function of 
the weighted activity of all presynaptic neurons, similar 
as in Cooper et al. (2013):  

              !" # + 1 = '(!" # + 1 − '( * +" #    

         +, # = ' -,,"!"(# − 1)" 1, + '2, + '3 0, 56   

Here, ( is a value between 0 and 1 that determines to 
which extent previous activity persists over time. +,(#) 
refers to the input to the neuron, which is transformed by 
a value between 0 and 1 by the sigmoid function *. The 
weight matrix - contains the weights of the connections. 
When the artificial network is trained, - is altered. 
Additionally, the value of +,(#) depends on three factors: 
1,, 2, and 5. 1,'refers to the amount of stimulation caused 
by other sources than neurons within the network and can 
be either on or off. The input signal further consists of the 
activation bias 2,'and Gaussian noise determined by 5. 
Each time step # represents 1 ms of activity. The 
parameters (, 1,, 2, and 5 are constant in this model. The 
values used in our simulations are shown in table 1. 

Parameter ( 1, 2, 5 

Value 0.990 4.0 2.0 2.0 

 
Table 1: Parameters of activity calculation, from Cooper et al. (2013). 

Keysers and Gazzola (2014) propose that mirror neuron 
activity emerges due to synaptic changes that result from 
simultaneous action execution and reafference. This 
implies that the simulation of these mechanics should 
consist of two separate phases. In the first phase, the 
training phase, action execution and reafference are 
simulated. During this phase, the weights are being 
updated. To simulate action execution, the PM neurons 
are activated by turning on the 1, variable, which persists 
for 300 ms (which is analogous to 300 time steps # in the 
model). After 300 ms, the execution transitions to the 
next action phase. A stochastic transition matrix 
determines the sequence of actions. To simulate action 
observation, an STS neuron that encodes the same action 
as a PM neuron will be activated 200 ms after activation 
of the PM neuron. The second phase, the testing phase, 
consists of the mere observation of actions and therefore 
only consists of STS activity (whilst still adhering to the 
probabilities in the transition matrix). Mirror neuron 
behavior is said to occur if PM neuron activity predicts 
future activities of STS neurons during the testing phase.  

IMPLEMENTATIONS"OF"HEBBIAN"LEARNING"
Donald Hebb (1949) proposed that learning occurs on 
neuron level as a result of changes in synaptic strength 
due to concurrent activity of the post- and presynaptic 
neuron. Over time many computational implementations 
of Hebb’s postulate have been proposed. Here, three will 
be discussed: the covariance rule, BCM and Oja’s rule. 
Additionally, a variation of Oja’s rule is presented.  
 
The covariance rule is an implementation of Hebbian 
learning (Dayan and Abott, 2001) and is defined as 
follows:  
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Here, ⟨@⟩ denotes the average over a particular time, 
whereas 8 refers to the learning rate. A disadvantage of 
the covariance rule is that the weights are unbounded. 
This can make the learning rule unstable (Dayan and 
Abott, 2001). BCM is a modification of the covariance 
rule that imposes a boundary on the synaptic strengths 
(Dayan and Abott, 2001): 

Δ-,," = ' ⟨!" ∙ !,(!, − 'BC)⟩ 

ΔBC = ' ⟨!,
6 − 'BC⟩ 

Here, BC is implemented as a sliding threshold, which 
causes the weights to be constrained from growing 
without bounds. 

Oja’s rule, introduced by Oja (1982), is an alternative 
learning rule that imposes a boundary on the weights: 

Δ-,," = ' ⟨!" ∙ !, − 8(!,
6)-",,⟩ 

Oja’s rule induces an online renormalization by 
constraining the sum of squares of the synaptic weights. 
More precisely, the boundary of the weights is inversely 
proportional to !, that is, |-|6 will relax to !EF (Oja, 
1982). In contrast to BCM, Oja’s rule allows for an 
explicit choice of the size of the boundary by choosing 8.  

One disadvantage of both BCM and Oja’s rule is that 
baseline activity of neurons is not taken into account. 
This causes the weights to grow even if no significant 
spike in activity is measured. Therefore, we propose an 
alternative to Oja’s rule that imposes a threshold B on all 
activities of the neurons: 

!GH =
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This threshold prevents the weights to change from 
unsubstantial activities. Note that the addition of the 
threshold only introduces zero correlation for certain 
periods of time. Therefore, it does not affect the size of 
bounds imposed by 8. Choosing the proper threshold 
value can be viewed as intrinsic homeostatic plasticity, 
which refers to the capacity of neurons to regulate their 
own excitability relative to network activity (Turrigiano 
and Nelson, 2004). 

ANALYSIS"PROCEDURE""
To quantitatively determine whether or not mirror neuron 
behavior has occurred in a simulation, the PM and STS 
activity in the testing phase have been transformed into 
transition matrices. By comparing the transition matrices, 
it can be determined to what extent the PM and STS 
activity is similar, and thus, to what extent mirror neuron 
behavior has emerged. The following procedure was used 
to calculate a transition matrix from recorded activity. 
First, a low-pass filter is applied to the activity signals of 
all neurons. Significant peaks are subtracted by setting a 
threshold equal to the mean plus one standard deviation. 
Subsequently, the delay between each peak at time #'and 
the peaks of other neurons within # + 3000 is determined 
via a cross correlation. The neuron with the lowest 
positive delay R" is selected as the closest successor. In 
the transition matrix, #,,"'is increased by one. As a final 
step, the rows in the transition matrix are normalized. If 

this procedure is applied to both PM and STS activity, the 
similarity between activity can be quantified via the 
Frobenius norm, which gives error S: 
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A low S indicates a high level of mirror neuron-like 
behavior. To determine whether or not a low retrieved 
error is significant, it is compared to the distribution of 
errors of randomly generated PM matrices compared to 
the calculated STS matrix.  

RESULTS"
Figure 2 shows the mean and standard deviation of the 
error ε of the transition matrices for 10 simulations of the 
covariance rule, BCM, Oja’s rule and the thresholded 
Oja’s rule after a training phase of 250.000 ms for one 
action sequence consisting of four action phases. All but 
Oja’s rule with a threshold do not impose mirror neuron 
behavior, as the errors are above significance level. The 
instability of the covariance rule can be observed by the 
large variance in its errors. The BCM rule also does not 
impose mirror neuron behavior. A closer look at the 
activity of BCM (figure 2) shows that activity in PM 
neurons completely suppresses STS activity. This 
problem can be surpassed by Oja’s rule by choosing a 
higher threshold for excitatory neurons (8X = ' 10EF) than 
for inhibitory neurons (8" = ' 1EF). The addition of the 
threshold to Oja’s rule to account for baseline activity 
successfully produces the emergence of mirror-like 
behavior.  

    
Figure 2: Average and standard deviation of error S of 10 simulations of 
four learning rules. Each simulation consisted of 250.000 ms in both the 
training and testing phase, for a single action sequence of 4 action 
phases. The striped line indicates the value under which the norm is 
deemed to be significant (< 2% of 10 million random matrices). 

A parameter space analysis was performed to see how 
different settings of the three parameters, namely 8X, 8" 
and threshold B, change the outcome of applying Oja’s 
rule. The results are shown in figure 3. If B is relatively 
low (0.3, figure 3a), Oja’s rule does not impose mirror 
neuron behavior at all. Figure 3b shows that B = 0.5 does 
impose mirror behavior if, in general, the bound of 
excitatory connections is higher than the bound of 
inhibitory connections. If both parameters are higher than 
approximately 15, no mirror behavior emerges. If B is 
high (0.7, figure 3c), neuron mirror behavior is imposed, 
but to lesser extent than when the threshold is 0.5. Here, 
the excitatory bounds much exceed the inhibitory bounds 
to a larger extent for mirror neuron behavior to emerge.  
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CONCLUSION"
In previous work it has been proposed that Hebbian 
learning could be responsible for the ontogeny of 
predictive mirror neurons (Keysers and Gazzola, 2014). 
Here, we have shown that a variation of Oja’s rule (an 
implementation of Hebbian learning) is sufficient to 
explain the emergence of mirror neurons. An artificial 
neural network that simulates the interactions between the 
premotor cortex (PM) and the superior temporal sulcus 
(STS) has been created. Different implementations of 
Hebbian learning have been compared in performance on 
a simple action sequence. Additionally, a parameter space 
analysis has been performed on the proposed thresholded 
Oja’s rule to determine the sensitivity of the parameters 
on its performance. 

We identified that from the learning rules considered, 
only the thresholded Oja’s rule is sufficient to impose 
mirror neuron behavior. The other learning rules 
(covariance, BCM and the original Oja’s rule) are subject 
to at least one of the following three limitations. First, the 
covariance rule is unbounded, which makes it unstable 
and biologically implausible. Second, BCM and Oja’s 
rule are sensitive to baseline activity, which prevents 
mirror neurons from emerging. Third, if the inhibitory 
neurons are not bounded strong enough, as in BCM, PM 
inhibition causes a complete suppression of STS 
activations. This prevents associations between the PM 
and STS to occur. A variation of Oja’s rule that uses a 
threshold and different bounds for inhibitory and 
excitatory synapses surpasses each of these limitations.  

A parameter space analysis indicates that the parameters 
of the proposed thresholded Oja’s rule must adhere to two 
constraints for mirror neuron behavior to emerge. First, 
the threshold value must be higher than the baseline 
activity, but lower than the highest peaks measured. 
Currently, this threshold is imposed as a fixed constant. 
An extension of this work would be to model homeostatic 
plasticity by dynamically determining the threshold value 
based on the overall network activity. Second, mirror 
neuron behavior can only be imposed if the bounds for 
the excitatory neurons are higher than those of the 
inhibitory neurons, otherwise inhibitory PM neurons 
completely suppress STS activity.  

In conclusion, we have shown that a thresholded Oja’s 
rule is sufficient to account for the emergence of mirror 
neurons in an artificial neural network that simulates 

interactions between the PM and STS cortices. Therefore, 
this work provides positive evidence for the proposal that 
Hebbian learning is sufficient to account for the 
emergence of mirror neurons. In the broader sense, this 
work promotes the idea that statistical sensory motor 
contingencies suffice in the explanation for the ontogeny 
of mirror neurons. Therefore, it can be regarded as 
positive evidence for the association hypothesis.  

ROLE"OF"THE"STUDENT!
This study was performed by Lotte Weerts under 
supervision of Sander Bohté and Rajat Mani Thomas. 
The idea to create a computational model of the 
mechanics described by Keysers et al. (2014) was 
suggested by the supervisors. The student proposed the 
variant of Oja’s rule. The design and implementation of 
the structure of the ANN and the analysis procedure, the 
processing of the results, formulation of the conclusions 
and writing were performed by the student.  
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Figure 3:  Results of parameter space analysis. Each figure depicts results for different thresholds B. The x-axis and y-axis show the bounds for 
inhibitory neurons (8"EF')'and excitatory neurons (8XEF') respectively. The lower the error (denoted by a color range from black to white) the better the 
performance was for a parameter setting. The areas delineated by the white line are all retrieved errors that are lower than the errors of 98% of 10 
million randomly generated matrices. If the model is set to these parameter settings, mirror neuron behavior emerges. 


