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ABSTRACT

One of the fields of research of Computer Aided Geo-
metric Design is approximating complex curves by sim-
pler curves. Curves with constant curvatures are useful
tools for these purposes. However, parametrizations of
such curves are not always easily given. In this paper
we will derive several necessary and sufficient geomet-
ric conditions for a curve to have constant curvatures,
both in Euclidean geometry and in affine geometry.
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INTRODUCTION
Many people have an intuitive idea of the curvedness
of a curve. A straight line is not curved at all, while a
constantly curved curve in the plane is a piece of a cir-
cle. In three-dimensional space we add helices as curves
with constant curvatures. These are all examples from
Euclidean geometry, but more possibilities are provided
by looking at higher-dimensional space or “a different
geometry”.

Since Klein’s Erlanger Programm [5] in 1872, geome-
try is regarded as the study of invariants under a certain
transitive transformation group. In Euclidean geome-
try this is the group of rigid transformations, consist-
ing of translations, rotations and reflections. The natu-
ral invariant of this group is the distance between pairs
of points. Affine geometry studies geometric invari-
ants under the larger group of volume preserving linear
transformations, also known as equi-affine transforma-
tions [1]. Every equi-affine transformation can be
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represented as T (x) = Ax+ b, where the fact that T is
volume preserving means that detA = 1. The natural
invariant of this group is (signed) volume.

As Euclidean geometry speaks of Euclidean curvatures,
affine geometry speaks of affine curvatures. In this pa-
per we will look at curves with constant curvatures for
both types of curvature in m-dimensional space.

EUCLIDEAN DIFFERENTIAL GEOMETRY

Euclidean arc length
In this section we will give an analytical description
of Euclidean arc length and curvatures. For a regular
differentiable curve γ : I → Rm the arc length of
γ([a, b]) can be approximated by subdividing the in-
terval [a, b] and calculating the length of the resulting
inscribed polygonal curve [2, 10]. By refining the sub-
division sufficiently we obtain the arc length∫ b

a

|γ′(t)|dt, (1)

where | · | denotes the Euclidean norm. We say that γ
is parametrized by arc length if its tangent vector has
unit length at every point. Then the length of γ([a, b])
is given by b − a. We will write γ as function of s if it
is parametrized by arc length. Any derivatives are then
with respect to s.

Figure 1: Geometric definition of arc length



Euclidean curvatures
In the well known Frenet-Serret formulas the curva-
ture and torsion are obtained by constructing an or-
thonormal frame {t, n, b}. A similar construction can
be made for curves in Rm. If γ′(s), . . . , γ(m)(s)
are linearly independent we can use the Gram-
Schmidt Orthogonalization Process to obtain an or-
thonormal frame {F1(s), . . . , Fm(s)}, see also [3].
From this moving frame we can express the curvatures
κ1(s), . . . , κm−1(s) as follows:

F ′1 = κ1F2,

F ′i = −κi−1Fi−1 + κiFi+1, (2)
F ′m = −κm−1Fm−1,

for 1 < i < m. If γ′(s), . . . , γ(m)(s) are not linearly
independent, we can find a curve in a lower-dimensional
subspace with linearly independent derivatives that dif-
fers from γ only by a rigid transformation, so we will
not consider this case.

AFFINE DIFFERENTIAL GEOMETRY

Affine arc length
To define arc length in affine geometry we cannot use
the approach as in Euclidean geometry, since the length
of line segments is not necessarily preserved under
equi-affine transformations. However, instead of adding
the lengths of the edges of an inscribed polygon, we can
use the volume of simplices formed by points on the
curve. As a result we obtain an expression for the affine
arc length of γ([a, b]):∫ b

a

||γ′(t), γ′′(t), . . . , γ(m)(t)||
2

m(m+1) dt, (3)

where ||v1, . . . , vm|| denotes the determinant of the ma-
trix formed by the vectors v1, . . . , vm.

Figure 2: Geometric definition of affine arc length

Note that the definition of affine arc length depends on
m, whereas the definition of Euclidean arc length does
not. Furthermore, affine arc length is only defined if the

curve has nonzero Euclidean curvatures. We say that γ
is parametrized by affine arc length if

||γ′(t), γ′′(t), . . . , γ(m)(t)|| = 1 (4)

for all t ∈ I . We will write γ as function of r if it is
parametrized by affine arc length. Any derivatives are
then with respect to r.

Affine curvatures
By differentiating equation (4) we see that γ(m+1)(r)
is linearly dependent on γ′(r), . . . , γ(m−1)(r). Hence,
there exist functions k1(r), . . . , km−1(r), called the
affine curvatures, such that:

γ(m+1) = k1γ
′ + . . .+ km−1γ

(m−1). (5)

Explicit expressions for the ki are given by

ki = ||γ′, . . . , γ(i−1), γ(m+1), γ(i+1), . . . , γ(m)||. (6)

This should be interpreted as follows: start with the de-
terminant of the matrix with the first till m-th deriva-
tives, then replace the i-th derivative by the (m+ 1)-th
derivative.

IMPORTANCE OF CURVATURES
The curvatures, Euclidean or affine, are not only a way
to measure properties of a given curve, but reversily cer-
tain curvatures determine a curve completely up to a
transformation from the relevant transformation group.
In Euclidean geometry of R3 this is known as the Fun-
damental Theorem of the Local Theory of Curves [2,
19], but the proof can be easily generalized to Rm and
affine geometry. Further note that the curvatures are
invariant under their respective transformations, hence
they are well-defined.

CONSTANT EUCLIDEAN CURVATURES
In this subsection we will derive two necessary and suf-
ficient conditions for a curve to have constant Euclidean
curvatures. One of these conditions is that the curve is
equi-angular:

Definition 1. A regular curve γ : I → Rm is called
equi-angular if the tangents at any two of its points
make the same angle with the line segment connecting
these points.

We also need the following lemma which shows that
if the first i − 1 curvatures are constant, then there is
a very simple expression for the derivative of the i-th
curvature.

Lemma 2. Let γ : I → Rm be parametrized by arc
length with constant curvatures κ1, . . . , κi−1 for i < m.
Then

κ21κ
2
2 . . . κ

2
i−1κiκ

′
i = 〈γ(i+1), γ(i+2)〉. (7)



Figure 3: Equi-angularity means that the designated angles
are equal.

The two theorems are then given by:
Theorem 3. A connected regular curve in Rm has con-
stant Euclidean curvatures if and only if every arc of the
curve is equi-angular.
Theorem 4. A connected regular curve in Rm has con-
stant Euclidean curvatures if and only if the distance
between two points on the curve does not depend on
the actual positions of these points, but only on the arc
length of the curve segment between the points.

Figure 4: Theorem 4 means that the designated line segments
have equal length if the corresponding arc lengths are equal.

Because the curvatures determine a curve completely,
there exist certain normal forms for constant curvature
curves. Using these normal forms a straightforward cal-
culation shows that constant curvatures imply that the
distance depends only on arc length.

The distance between γ(t1) and γ(t2) being a function
of t2 − t1 can be rewritten as

〈γ(t1)− γ(t2), γ′(t1)− γ′(t2)〉 = 0, (8)

which is equivalent to equi-angularity.

Lastly, by differentiating equation (8) sufficiently many
times we obtain

〈γ(i+1), γ(i+2)〉 = 0 (9)

for any 1 ≤ i < m. Combined with Lemma 2 and an
induction argument we see that all curvatures are con-
stant, proving both theorems.

CONSTANT AFFINE CURVATURES

Characterization in terms of volume
Analogous to the Euclidean case we will now derive
two necessary and sufficient conditions for a curve to
have constant affine curvatures. The first of these mir-
rors Theorem 4 perfectly:
Theorem 5. A connected regular curve in Rm with
nonzero Euclidean curvatures has constant affine cur-
vatures if and only if the volume of the simplex formed
by m + 1 points on the curve does not depend on the
actual positions of these points, but only on the affine
arc length of the curve segments between the points.

Figure 5: Above condition means that the areas of the trian-
gles are equal if the corresponding pairs of affine arc lengths
are equal.

The ‘only if’ part can be proved by taking two sets of
m+1 points on the curve with equal affine arc length be-
tween corresponding points. Then there exists an equi-
affine transformation mapping one simplex to the other,
which implies that their volumes are equal.

Reversily, to prove the ‘if’ part we see that the volume
of the simplex formed by γ(t1), . . . , γ(tm+1) is given
by

V = C||γ(t1)− γ(tm+1), . . . , γ(tm)− γ(tm+1)||,
(10)

for some constant C, depending only on m. If the vol-
ume is only a function of the differences ti − tj , then

m+1∑
i=1

∂

∂ti
V = 0. (11)

By using the following algorithm for some arbitrary
fixed 1 ≤ j ≤ m− 1 we obtain k′j = 0:
• Differentiate (11) once with respect to t1, twice

with respect to t2, and so on until m times with
respect to tm, but skip tj .



• Differentiate m+ 1 times with respect to tj .

• Set t1 = . . . = tm.

Characterization in terms of offset curves
The second condition makes use of tangential offset
curves:

Definition 6. Let the regular curve γ in Rm be
parametrized by affine arc length. The λ-tangential off-
set curve of γ is given by β(r) = γ(r) + λγ′(r).

Figure 6: Geometric definition of a tangential offset curve

The theorem is then given by:

Theorem 7. A regular curve in Rm nonzero Euclidean
curvatures has constant affine curvatures if and only if
the affine arc length of any λ-offset curve in the affine
tangential direction is proportional to the affine arc
length of the curve itself.

The theorem follows immediately from the observa-
tion that we can rewrite the affine arc length of the λ-
tangential offset curve of γ as

∫ b

a

(
1 +

m−1∑
j=1

(−λ)m−j+1kj(t)

) 2
m(m+1)

dt. (12)

Note that the ‘if’ part follows by picking λ1, . . . , λm−1
nonzero and distinct and solving for kj .

CONCLUSION
The most important results of this thesis are Theorems
4 and 5. Theorem 4 shows that a curve in Rm has con-
stant Euclidean curvatures if and only if the distance
between two points on the curve does not depend on the
actual positions of the points, but only on the arc length
of the curve segment between the points. Theorem 5
shows that a curve in Rm has constant affine curvatures
if and only if the volume of the simplex formed bym+1
points on the curve does not depend on the actual posi-
tions of these points, but only on the affine arc length of
the curve segments between the points.

It would be interesting to see if other Klein geometries,

like inversive geometry or projective geometry, follow
the same rule. Generally, every Klein geometry can
be seen as a k-point geometry, meaning that every k′-
point invariant with k′ > k is a function of invariants
of at most k points [4, 144]. If there exists a natural
arc length parameter and natural curvatures, one could
look if in this geometry a curve has constant natural cur-
vatures if and only if a k-point invariant on the curve
depends only on the natural arc length of the curve seg-
ments between the points. This will be part of future
research.
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