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ABSTRACT
Quantum Chromo Dynamics predicts a phase tran-
sition from hadronic matter to a system with new
degrees of freedom at temperatures accessible in labo-
ratory. This state of matter, called the Quark Gluon
Plasma (QGP), is created at Heavy Ion Collisions. In
these collisions there should be large electromagnetic
fields present that affect the evolution of the QGP.
After obtaining the electromagnetic fields we study the
effects of the fields on the QGP. The influence is stud-
ied using relativistic viscous hydrodynamics. We show
the influence on the anisotropic flow of the QGP, in
particular the directed flow, elliptic flow and triangular
flow.
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INTRODUCTION
In this section we will explain what Heavy Ion Colli-
sions are, why we are interested in them and how the
electromagnetic fields arise. Apart from these subjects
we will also give a short introduction to anisotropic
flow. The QGP consists, as its name suggests, of quarks
and gluons. These are fundamental building blocks of
the world we know. It is hypothesized that this QGP
existed for several microseconds after the big bang.
It is also possible that the QGP might be present in
the cores of neutron stars [1]. There are thus enough
reasons to thoroughly study this phase of matter. The
laboratory where this is best studied is the ALICE
experiment at CERN Switzerland, where heavy ions
are collided. An example of a heavy ion collision is
given in Figure 1. An important tool used in these
collisions is the centrality, which states how peripheral
the collision was.
Now that we know what these collisions look like, we
can investigate the origin of induced currents in the
QGP. First there is an electromagnetic field due to
the moving spectators. This can be seen from the fact
that moving charges (here: spectators) generate (be-
sides their usual electric field) a magnetic field. When
the spectators move away from the QGP their electro-
magnetic field drops, and thus changes in time. From
classical electrodynamics we know that a changing mag-
netic field will result in an electric field, the induced
Faraday current. Second there is the Hall effect that is

induced due to the Lorentz force ~F = q ~E+q~v× ~B. This
force is thus perpendicular to the longitudinal speed
and the B-field. The Hall effect occurs because charged
particles of different sign are directed to opposite sides,
which in turn generates another electric field.
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Figure 1: The left side shows the Lorentz-contracted
blobs of protons before the collision, where b
defines the impact parameter. On the right
hand side, the situation after the collision is
shown. The participants are the particles that
participate in the collision and the spectators
are the particles that fly by the collision.
Figure from Ref. [1].

Our eventual goal will be to find out what the influence
of these electromagnetic fields is on the evolution of the
QGP. This evolution of the QGP can be constrained by
determining the so-called anisotropic flow. Anisotropic
flow has different forms which provide information on
the bulk properties of the matter and the initial geom-
etry of the collision. The most prominent anisotropic
flows we look at are the directed, elliptic and triangu-
lar flow, noted by v1, v2 and v3 respectively. These
flow components originate from a Fourier expansion
of the particle spectrum, shown in Equation 1. We
note that for later purposes, we are only interested in
the small contribution to the anisotropies caused by
the electromagnetic fields. This charge-dependent con-
tribution is smaller than the total flow caused by the
hydrodynamical response to the initial asymmetries.
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Where E is the energy, p the momentum, pT the
transverse momentum and Y the rapidity. ψRP is the
angle with the Reaction Plane (which we pick zero for
our theoretical model) and, most importantly, vn are
the flow harmonics. From this expansion we can derive
the properties of the different flows. The directed flow
is the flow directed along transverse axes with respect
to the beam axis. The elliptic flow is the elliptic expan-
sion of the plasma in the transverse plane, as shown
in Figure 2, so proportional to cos(2φ). The triangu-
lar flow then shows us characteristics with respect to
cos(3φ) (resulting in a triangle shape, hence it’s name).

So in summary, Equation 1 shows us that we can figure
out the details of the expansion of the QGP in terms
of our anisotropic flow harmonics.
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Figure 2: Shown here is the elliptic flow and its time
dependence. One can see the characteristic
elliptic shape of the expansion which defines
elliptic flow. Note that the z-direction is the
beam direction.

METHODS
Electromagnetic fields
We obtain expressions for the EM fields by using the
Maxwell equations and including a constant conductiv-

ity by Ohm’s law ~J = σ ~E, picked as σ = 0.023 fm−1

[2]. These equations yield a differential equation as
shown below.

~∇2 ~B −
∂2 ~B

∂t2
− σ

∂ ~B

∂t
= −e v ~∇× (ẑδ(z − vt)δ(~x⊥ − ~x′⊥))

The coordinate with the apostrophe denotes the loca-
tion of the particle that creates the field. As it turns
out, solving this equation is not trivial. We solved it
using Green’s functions, complex analysis and integral
definitions. The result obtained for the magnetic field
(in ŷ direction) is shown in Equation 2.
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The + represents the fact that it is a positively moving
(+ẑ) particle and Y denotes the rapidity. Note that
we work in Bjorken coordinates, so η is pseudorapidity

and x⊥ is the equivalent of
√
x2 + y2 in Cartesian

coordinates. We have defined A and ∆ as follows:
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√
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∆ = τ2 sinh2(Y − η) + (x⊥)2 + (x′⊥)2
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′
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The same solving procedure can be used to solve the
for the electric field, which yields the result:

eEx = eBy coth(Y − η) (3)

The other components of the electromagnetic field are
irrelevant since Bz = 0. To obtain now the total con-
tribution of all particles we need to integrate over the
coordinates indicated with an apostrophe in Equation 2
with some distribution function. For the participants
we also need to include the loss of rapidity in the colli-
sion. In both cases we assumed that the particles were
evenly distributed over a sphere with radius R = 7 fm.
We then assumed that our impact parameter (distance
between centers) was b = 7 fm, or in other words we use
20-30% centrality. Using the distribution the limits of
the x′⊥ integrals can be found. For the participants we
integrate over the part that will overlap, for spectators
we integrate over the non-overlapping area.

Hydrodynamics
Before we can make use of the derived electromagnetic
fields we first need to simulate the ’normal’ expansion
of the QGP. Where ’normal’ means thus the expansion
without any of the effects of the EM fields. To do this
we used a model created by Gubser in 2010 [3]. In
practice this model gives us the local fluid tempera-
ture and the four velocity uµ which describes the fluid
velocity of our QGP, Equation 4. Note that Gubser’s
model is azimuthally symmetric and boost invariant
and therefore does not have uφ and uη .

uτ =
1 + q2τ2 + q2x2⊥

2 q τ
√

1 + g2
; u⊥ =

q x⊥√
1 + g2

(4)

Here, q is a parameter (that we have to pick) propor-
tional to the inverse length and the variable g is given
in Equation 5.

g =
1 + q2 x2⊥ − q

2 τ2

2 q τ
(5)

The next thing to introduce is the freezeout of the
QGP. The local fluid temperature allows us to find
isothermal curves in the model parameterized as τ(x⊥)
(τ is proper time). One important curve will be at the
freezeout temperature. We choose to pick Tf = 130
MeV. The hydrodynamics that are developed deal with
quantities like energy density and fluid velocity. The ex-
periment, however, deals with measured quantities like
the momentum spectra of protons and pions. The link
between the hydrodynamic variables and the desired
spectra (Equation 1) is then given by the Cooper-Frye
freezout procedure [4]. In summary we can write it as
Equation 6, where we assumed that we have a Boltz-
mann distribution function.
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)
= −
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Note that di is the degeneracy of the particle, dΣµ is an
area element of the freezeout surface, Tf the freezeout
temperature and pµ is the four momentum. We expect
the freezeout to happen when the temperature becomes
so low that the interactions can no longer hold thermal
equilibrium. For our QGP, this happens as it cools
and the viscosity becomes stronger, until the viscous
corrections cause the hydrodynamic description to be
no longer viable, see also [5]. For our used hydrody-
namic model we know, however, that it is azimuthally
symmetric. When we then look at Equation 1 we see
that the only non-zero flow harmonic will be v0. This
v0 essentially describes our expansion without any of
the electromagnetic effects. By fixing the parameters
in the model we tried to obtain a spectrum as close to
the experimental spectrum of ALICE [6] as possible.

Obtaining the anisotropic flow
In order to obtain the flow harmonics, we need the
fluid velocity V µ, which contains both the expansion
due to Gubser’s model and the contribution of the elec-
tromagnetic field. We do this by doing a Lorentz boost
to the local fluid restframe in which applies u′µ = 0.
At this point we shall solve the equation of motion
given in Equation 7, to get the velocity due to the
electromagnetic fields ~v′.

m
d~v′

dt
= q ~E′ + q~v′ × ~B′ − µm~v′ = 0 (7)

The first term indicates the Lorentz force and the sec-
ond term the drag force. The drag coefficient µm we



choose to obtain from N = 4 supersymmetric Yang-
Mills (SYM) theory. We do this to keep an analytic
solution. The drag force coefficient is currently only
known precisely for heavy quarks in the N = 4 SYM
theory [7].

µm =
1

2
π
√
λT 2 (8)

Where λ = g2Nc, called the t’ Hooft coupling. Here g
is the gauge coupling and Nc the number of colors. We
shall pick just as in [2], λ = 6π and T = 3

2
Tc, where

Tc is the crossover temperature to hadrons.

We now solve Equation 7 for up quarks (q = 2
3
e) and

anti down quarks (q = 1
3
e), which will be combined to

get results for positively charged particles. We simply
add the two found velocities together and divide by
two to get our final velocity. For negatively charged
particles we use the down and anti up quarks. Note
that we assume that there are equal distributions of
up and down quarks and thus ignore any chemical
potential induced by the differences. The negative par-
ticles will just be characterized by −~v′. When we have
solved this equation we can boost back to the original
frame, again including the uµ and obtaining our final
four velocity V µ. We now rewrite Equation 1 with the
assumption ψRP = 0 to obtain a general expression
for vn, with n ≥ 1.

vn(pT , Y ) =

∫ π
−π dφp cos(nφp)Si(pT , Y, φp)

2πv0
(9)

We can take the v0 (in the numerator) to be only due
to the hydrodynamic model since we will find that the
electromagnetic contribution to this is minimal. So all
we need now is an expression for Si and we are capable
to compute our flow harmonics. The procedure to ob-
tain this is already outlined in Equation 6, but instead
of uµ we use now V µ. The results of these calculations
are shown in Equation 10.
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dφp cos(nφp)Si(pT , Y, φp) =
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e
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(V τ cosh(Y−η)−V ητf sinh(Y−η))

×
(
mT cosh(Y − η)Mn +Rf pTNn
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Where τf (x⊥) is the freezeout proper time, Rf is
given by the ratio Rf = −∂τf (x⊥)/∂x⊥ and mT =√
m2 + p2T . The pT is the momentum in the transverse

plane (so perpendicular to the beam axis). Further-
more, Mn and Nn read:

Mn = 2π cos(n(φ+ ξ)) In(ζ)

Nn = π (cos[(n− 1)ξ + nφ)] In−1(ζ)

+ cos[(n+ 1)ξ + nφ)] In+1(ζ))

Here I denote Bessel functions. Furthermore, we have

ξ = arctan
(
B
A

)
and ζ =

√
A2 +B2 with:
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pT V

⊥

Tf
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pT V
φ x⊥
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RESULTS
Flow harmonics
To obtain the final results for our flow harmonics we
need to complete the integrals in Equation 10 and di-
vide by 2πv0. As it turns out these remaining integrals
will have to be solved numerically. As can be seen
from these expressions the eventual flow harmonics will
be dependent on the rapidity Y and the transverse
momentum pT . We used the described methods to
obtain results for pions and protons. We show here the
results for pions; directed flow in Figure 3, elliptic flow
in Figure 4 and the triangular flow in Figure 5.
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Figure 3: The directed flow at fixed transverse
momentum for π−. Results for π+ have the
same magnitude but opposite sign, showing
the charge-dependency.

The directed and triangular flow are asymmetric in
rapidity whilst the elliptic flow is not. This can also
be related to the respective angle dependencies and
we can in fact expect that all even harmonics will be
symmetric in Y .
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Figure 4: The elliptic flow at fixed transverse
momentum for π+. Note that this is no longer
asymmetric in rapidity. Just as with v1, the
results for π− are exactly opposite.
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Figure 5: Here we show the triangular flow v3 at fixed
PT for π−. It has about equal order of
magnitude as v1.



One thing we notice is that the elliptic flow is about
one order of magnitude larger than both the directed
and triangular flow. Note again that these results for
v1, v2 and v3 are due to the electromagnetic effects
only. In reality there will be a larger contribution due
to initial asymmetries in the collision.
Apart from looking at fixed transverse momenta we
have also obtained results for the flows integrated over
certain pT bins. We show an example in Figure 6 where
we integrated from 0.5 GeV to 5.0 GeV. As can be seen
the effect increases by around a factor of two.
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Figure 6: The directed flow integrated over the
transverse momentum. We use this particular
pT range since it is often used in experiment.

We now look into the effect of some of our most im-
portant parameters in these calculations. The two
most important parameters are the conductivity of
the QGP and the drag force coefficient µm as seen in
Equation 7. The results of conductivity are shown in
Figure 7, the drag force coefficient in Figure 8. For
the conductivites we used Ref. [8] to approximate that
σmin ' 0.0052fm−1 and σmax ' 0.092fm−1.
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Figure 7: The directed flow for different conductivities
of the QGP. The solid line (0.023fm−1)
corresponds to earlier calculations. One sees
that adjusting the σ results in moving the
peak of v1.
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Figure 8: The directed flow v1 plotted against the drag
force coefficient. Note that v1 ∝ 1

µm . The

dashed curve indicates the value we used in
previous calculations.

CONCLUSIONS
The results of our study show that the electromagnetic
fields at HIC lead to a charge-dependent contribution
to the expansion of the QGP. We can for v1 conclude
that the effect is rather small (around 0.0001). The
triangular flow is of the same order of magnitude and
both the v1 and v3 are asymmetric in rapidity. On the
other hand, the elliptic flow is symmetric in rapidity
and about one order of magnitude bigger than the
other two found flow harmonics.

It can be seen that the drag force coefficient is by far
the most influential parameter as v1 ∝ 1

µm
. So in

the case of experimental differences in this effect close
attention should be payed to the strong influence of
this µm. The conductivity shows something similar to
a general shift of the directed flow. Perhaps this effect
can be used to constrain the actual conductivity of the
QGP.

For further development in the project, we argue for
the importance of a complete numerical hydrodynamic
model. This numerical model would then include re-
alistic background flow harmonics, which the analytic
model by Gubser lacks. Another interesting addition
could be the Chiral Magnetic Effect. This effect could
result in a contribution to the magnetic fields and would
add a necessary quantum approach to the currently
completely classical computation.

Role of the student
Before the start of Eric’s Honours-bachelor research U.
Gürsoy, D. Kharzeev and K. Rajagopal had recently
published a paper about the same topic, showing re-
sults for the directed flow. Supervised by R. Snellings
and U. Gürsoy Eric continued on the research in the
field. After redoing the calculations up to v1 he cor-
rected the expression for the general vn. Eric then
obtained the first results for v2 and v3. He also ob-
tained the influences of several important parameters
on the eventual results of the flow harmonics. During
past year he regularly met with his supervisors to dis-
cuss and evaluate obtained results. The outcomes of
the research were written up in a thesis, this paper is
a short summary of that. Besides this also a paper
co-written with the authors of the previous paper on
this subject is in progress. The work on including the
numerical background is also already in progress.
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