
Novel Protocols in Group-based Cryptography

Serge Horbach

IMAPP – Radboud University

serge.horbach@student.ru.nl

ABSTRACT

In this research we propose new protocols in group-based

cryptography contributing to the research of finding novel

cryptographic systems that are secure against quantum

computers. The protocols we introduce either employ

different one-way functions or different groups then the

currently available protocols in group-based

cryptography. Thereby, we avoid the successful attacks

that threaten the contemporary existing group-based

cryptosystems.

Keywords: conjugacy, cryptography, groups, post-

quantum, protocol, subgroups.

INTRODUCTION

Traditionally, cryptography is the science of writing in

secret code. Its main objective is to enable

communication between two or more parties without

eavesdroppers being able to intercept this communication.

Presently, there is an increasing demand for secure

cryptosystems due to the enormous increase of

applications like internet shopping or electronic financial

transfers.

The basic idea of cryptography is the use of a so-called

one-way-function or trapdoor-function: an action which is

easy to perform but hard to invert, except if one is in the

possession of some ‘extra’ knowledge. In this case it

should again be easy to invert to process.

Over the past decades, attempts have been made to create

secure cryptographic protocols, based on several

mathematical structures. From these, the protocols based

on number theoretic issues have been most widely used

and form the core of nearly all contemporarily used

cryptographic protocols.

In our research we have attempted to set up protocols

based on the structure of non-abelian groups and thereby

contribute to the research called group-based

cryptography ([7]).

A group is a mathematical structure consisting of a set of

objects and an operation on these objects, which is

invertible. Examples of groups used in our research are

groups of matrices, and permutation groups.

We have designed two new protocols based on group

theoretic issues. In one of the protocols, the novelty lies

in the introduction of a new type of one-way-function,

conjugacy of subgroups, while in the other protocol we

use a standard one-way-function but apply it in a class of

groups which has not been used for cryptographic

purposes before. For the sake of clarity and brevity we

will only describe the first of these protocols in this

paper, thereby still covering most of the new ideas.

CRYPTOGRAPHY

As mentioned, the basic idea of cryptography is the use of

a one-way-function: some action we can easily perform

but that we cannot invert unless we have some extra

knowledge. Classical examples of this include the

permutation of letters of the alphabet to encrypt some

written text. Indeed if we have a message and we are

given a permutation of the alphabet (for example we write

‘b’ instead of ‘a’, ‘c’ instead of ‘b’ etc.) then we can

easily perform the permutation on the message. However,

unless we know what permutation is used, it is difficult

(at least it was in former times) to find the original

message when we are only given the encrypted piece of

text.

Contemporary cryptography consists mainly of so-called

public-key (or asymmetric) cryptography. This is a form

of cryptography in which two distinct keys are required: a

secret (or private) key and a public key. Although

different, these two keys are linked to each other in such a

way that it is possible to use the public key to encrypt a

message or to verify a digital signature, whereas the

private key is used to decrypt a message or to create a

digital signature. This form of cryptography was

introduced in 1976 by Diffie and Hellman ([7]).

The use of public-key cryptography was initiated by a

new cryptographic protocol called a key-exchange

protocol. As its name suggests, this protocol is used to

exchange secret keys between two or more parties. Those

keys can subsequently be used in encryption protocols or

signature verifying protocols. The protocol suggested in

this paper is a novel example of a key-exchange protocol.

Over the past decades, cryptography has turned its

attention to abstract mathematics in order to provide

security for its protocols. Most notably, the difficulty to

factorize large numbers into their prime factors has been

at the core of many cryptographic applications for over

fifty years. However, there is an ever increasing demand

for cryptographic applications and most notably the

possible foundation of a quantum computer, from which

it is known that it breaks most of our current

cryptographic protocols, forms a serious threat to

contemporary cryptographic protocols ([9]). Therefore,

the introduction of novel cryptographic protocols, based

on different mathematical structures and one-way-

functions, is highly desirable ([7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted under the conditions of the Creative

Commons Attribution-Share Alike (CC BY-SA) license and that copies

bear this notice and the full citation on the first page.

GROUP-BASED CRYPTOGRAPHY

As a response to this call for novel cryptographic

protocols, several papers have been published, starting

with [1] and [4], that introduce the concept of group-

based cryptography. These protocols are based on the

algebraic structure of a group and use operations in a

group as their one-way-function.

A group in mathematics is defined as a set of objects in

which two objects can be composed to obtain a third one.

In addition, for every element there exists an inverse

element, meaning that we can ‘undo’ any operation that

we have performed. An example of a group is the integer

numbers with the operation of addition. Indeed, if we take

the set of all integers: and we

add two of them, we find another integer. Moreover, for

any integer there exists the integer which has the

property that first adding and then results in no

change at all. This shows that is the inverse element

of . Hence the integers form a group.

Important to note here is that the above group is said to be

commutative, since for any integers and we have that

 , loosely speaking: it does not matter in

which order we compose the group elements. However,

in many groups this order does matter. Groups in which

this is the case will be called non-abelian groups and it is

precisely those groups that group-based cryptography is

interested in.

Most commonly the operation in groups is written as

multiplication (instead of addition like in the above

example). Hence, for group elements and we write

 for applying the composition of these

elements. We stress that in non-abelian groups, in general

we have . This will mainly be used in a process

called conjugation of elements. We say that the product

 is the conjugate of by , where denotes the

inverse of the element . Note that conjugate elements

coincide precisely when , since in this case

 , but otherwise they are different

elements.

In the research on group-based cryptography, the so-

called conjugacy search problem has played a major role

([1], [4]). In an instance of the conjugacy search problem

one is given two elements of a given group , which

are conjugate by some unknown group element i.e. we

have . The problem then is to find an element

 such that Note that the unknown element

will do the job, but there may be different group elements

that also conjugate to .

In the first articles on group-based cryptography,

conjugacy was used as a one-way function, i.e. the

security of the protocols relied on the difficulty of the

conjugacy search problem ([1], [4]). However, powerful

attacks based on some notion of the length of group

elements (the length is defined as the minimum number

of generators needed to write the element as a product of

generators) have shown that the conjugacy search

problem provides a much lower level of security than

required ([7]). Therefore, we suggest a protocol using a

novel one-way function that uses conjugacy in a different

way.

A NEW CRYPTOGRAPHIC PROTOCOL

In this section we will introduce a key-exchange protocol

based on the computational difficulty of the subgroup

conjugacy search problem in permutation groups. In order

to do so, we will discuss the mathematical background of

the protocol.

We will use a group of permutations as our platform

group. Each element of this group is a function permuting

the numbers 1 to for some chosen integer . The

operation in this group is the composition of mappings,

the inverse of any element is the reverse permutation

moving every number back to its original position. We

use the notation for the group of permutations of the

numbers 1 to and call the degree of .

Furthermore, our protocol will make essential use of the

notion of a subgroup: Given some group we will call a

subset of a subgroup of if is a group in its own

right. For example the set of even numbers forms a

subgroup of the integers. If is a subgroup of we

write

The protocol is based on the subgroup conjugacy search

problem, which extends the notion of conjugacy from

group elements to (sub-)groups. We denote by the

group of elements of the form where runs over

all elements of and call this the conjugate group of

by .

We now give a description of the protocol in which two

parties, usually called Alice and Bob, create a common

secret key:

 Public information: Positive integers and ,

with even and . Furthermore, a

subgroup (given by generators); and

two commuting subgroups and

 (i.e. for every element in and

every in we demand that .

 Private information:

o Alice: an element in .

o Bob: an element in

 The protocol:

o Alice computes and sends

it to Bob.

o Bob computes and sends it

to Alice.

o Alice and Bob both compute
 . The common secret key

is the -th element in with respect to

the lexicographic order of permutations.

Note that Alice and Bob can both compute because

and commute, Alice computes it as
 and likewise Bob computes it as
 .

ANALYSIS

For the above protocol we make some remarks on its

complexity and on possible ways of attacking the

protocol. Before that, we comment on the choices that

have to be made in the protocol:

 For the public key we advise to choose as an

elementary abelian 2-subgroup, meaning that any

element has order 2 (performing twice the same

permutation yields the identity map) and elements

within commute with each other. We recommend this

choice because any knowledge on the structure of

elements in which is invariant under conjugation will

also show up in the elements of any conjugate

subgroup, thus also in . One of these structural

properties are the orbits of on the numbers between 1

and . We say that any two numbers and are in

the same orbit under if there exists a permutation

in such that maps to Under conjugation this

property is preserved in the sense that the number of

orbits and their sizes are equal under and under .

For an elementary abelian 2-subgroup all orbits have

size 2, therefore no additional information is leaked to

an attacker. Moreover, in this way we maximize the

number of orbits under which, among others, makes

it difficult to construct a so-called Base and Strong

Generating Set (BSGS) for which is a standard tool

for making computations in permutation groups

efficient and would almost certainly be required for an

attack on the protocol ([6]).

Lastly, we recommend that has roughly √
elements (the square root of the number of elements in

 to ensure that both and its coset space (a

partition of the elements of in parts of the same size

as) are large and thereby averting brute force and

quotient attacks ([7]).

 For the public keys and we recommend on

choosing them as large as possible. Indeed, the secret

keys are chosen from the subgroups and Hence,

choosing small subgroups would enable brute force

attacks. One possibility is to choose to be the set of

all permutations that fix the numbers up to

while permuting the numbers to amongst

themselves. Similarly is the set of permutations

fixing the first numbers while permuting the last

ones. In this way elements from commute with those

of and both and have elements. Hence the key

space grows very fast with increasing .

Secondly, we comment on the method that Alice and Bob

employ to find the -th element in lexicographic order

from In order to do this we transform the abelian 2-

subgroup into a linear code over the field with two

elements (i.e. a binary code). For the technical

construction to do this we refer to [3]. Important in this

construction is that it can be done very efficiently and that

it preserves the lexicographic order. The -th element in

the linear code can be computed very quickly (without

actually enumerating all the elements) by using the binary

expansion of . Finally, the -th element of the linear

code is translated back to the corresponding element of .

([3]). Note that the assumption is used in the

fact that if is constructed as above, it contains precisely

 elements.

Attacks and complexity

In this section we will comment on the general difficulty

of breaking the protocol. The above protocol is based on

the difficulty of finding a conjugating element between

two subgroups. Indeed, if one would succeed in finding

the (secret) element from the public information and

the transmitted information then one would have

knowledge of and and therefore would be able to

compute in the same way as Alice does, and thus find

the secret key .

However, it was shown in [6] that the problem of finding

a conjugating element between two permutation

subgroups in general is hard to solve, meaning that the

time to find a solution grows exponentially with the

parameter .

To execute the protocol we saw that essential use has to

be made of the possibility to transform the subgroup

into a binary linear code. However, this construction also

facilitates a possible attack on the protocol. In the same

way as is transformed into a linear code, one could also

transform the subgroups and to binary linear codes.

By construction, these linear codes will be isomorphic

([3]). Finding an isomorphism between these linear codes

will directly provide a conjugating element between the

corresponding subgroups ([3]), hence the problem of

finding a conjugating element between the subgroups

and translates into the problem of finding an

isomorphism between binary linear codes. This problem

has been studied under the heading code-equivalence

problem and has been part of the research on post-

quantum cryptography - the research on cryptographic

protocols that are resistant against attacks by quantum

computers. It is believed that the code-equivalence

problem is hard and in fact may even provide a platform

for post-quantum cryptography ([8], [9]). Therefore, we

conclude that this attack does not pose an actual threat to

our protocol and in fact provides some decent ground for

security assumptions.

As a final, but crucial point we note that the length-based

attacks that were used to attack protocols based on the

conjugacy search problem cannot be employed to attack

our protocol. Indeed, the use of subgroups rather than

elements was motivated by the fact that it makes these

attacks infeasible.

Recommendation on parameters

In order to get some insight in the complexity of the key-

exchange protocol and the complexity of the above

mentioned attack on the protocol via binary linear codes,

we ran some computer experiments. Results of these

experiments are presented in table 1, ‘Experimental data’,

below. The first column of the table indicates the value of

 that has been used (and hence determines in what group

 we are working). The second and third columns

present the time it takes to respectively generate a secret

key, i.e. to perform all steps of the protocol, and the time

it takes to break to protocol by an attack using linear

codes. All timings are given in seconds and have been

averaged over 100 runs for the first four rows and over

ten runs for the last row. The last column provides the

interval from the shortest to the longest time it took to

break the protocol. Experiments were run using a 3.10

GHz computer and the V2.19-2 version of the Computer

Algebra system MAGMA ([2]).

 Table 1: Experimental data

From the table we conclude that key generation can be

done very rapidly using the above mentioned protocol.

Even for values of key exchange can take place

in less than a second.

Some additional experiments were run in order to be able

to extrapolate the duration of an attack for larger values

of ([3]). From these results we find the same trend as

can be spotted in the table: the duration of an attack

grows exponentially with , increasing by 1 increases

the breaking time by a factor of . Using these

results we recommend values about 200 for For these

values key exchange can be done in less than 0.1 seconds,

while using the above attack will cost over a million years

of computation time (on a single computer). We note that

these parameter sizes are well chosen according to the

standards in [5].

Another interesting result that is shown in the table is that

the variation of the duration of the breaking algorithm is

actually quite small. This is an important requirement for

using the above protocol in practical applications, since it

indicates that breaking the protocol by a ‘lucky strike’ is

very unlikely.

CONCLUSION

In our research project we have suggested a novel

protocol in group-based cryptography that employs the

computational difficulty of the subgroup conjugacy

search problem. With this protocol we intended to avoid

the length-based attacks that were very effective in

breaking the existing protocols based on the conjugacy

search problem.

For this protocol we have thoroughly investigated the

computational difficulty in order to find hard instances of

the subgroup conjugacy search problem. By means of this

analysis we recommend on employing permutation

groups of degree about 400 as platform group and to use

elementary abelian 2-subgroups as public key.

We showed that one of the attacks against our protocol

deals with the problem of finding an equivalence between

binary codes, a problem that has been extensively studied

in the field of post-quantum cryptography and has the

potential of being secure against quantum-computer

attacks ([8], [9]). Therefore, our protocol may even be

relevant for the post-quantum era. We note that a rigorous

mathematical proof of the security of the system is (as

with most cryptographic systems) very challenging.

However, the results of the above experiments using

state-of-the-art attack methods and the recommendations

in ([8], [9]) serve as good indications for the security.

In our research we moreover took a closer look at

employing different groups as platform group for our

protocol and suggest that polycyclic groups are worth

considering ([3]). More importantly, we introduced

another novel protocol based on the computational

difficulty of the decomposition search problem. This

problem is related to the conjugacy search problem, for

given group elements and it asks to

reconstruct and from and . In groups for which no

useful length function exists this is a hard problem and

we suggest to use matrix groups like for prime

numbers as platform groups ([3]). This second protocol

also turned out to be very robust against (standard)

attacks.

ROLE OF THE STUDENT

For this research I have been working under the

supervision of Dr. Bernd Souvignier (Radboud

University) and I had some valuable discussion with Prof.

Derek Holt (University of Warwick). Valuable insights

have been gained during discussions with both

supervisors, though the initiatives and ideas for the results

of the project, as well as working them out and writing

the report came from the side of the student.

REFERENCES

1. Anshel I., Anshel M., Goldfeld D., ‘An Algebraic

Method for Public Key Cryptography’. Math.Res.Lett,

vol. 6, Springer Verlag, pp 287-291, 1999.

2. Bosma W. and Cannon J., ‘MAGMA Handbook’,

Sydney, 1993.

3. Horbach S., ‘Group-based Cryptography’, Bachelor

Thesis, Radboud University, Nijmegen, 2014.

4. Ko K., Lee J. et al.: ‘New Public-key Cryptography

using BraidGroups’. Advances in Cryptology -

CRYPTO 2000, Lecture Notes in Computer Science,

Springer, vol. 1880, pp 166 - 183, 2000.

5. Lenstra A. and Verheul E., ‘Selecting Cryptographic

Key Sizes’. Public Key cryptography, Lecture Notes

in Computer Science, vol. 1751, Springer-Verlag, pp

446 - 465, 2000.

6. Luks E.M., ‘Permutation Groups and Polynomial-

Time Computation’. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol.

11, pp 139 - 175, 1993.

7. Myasnikov A., Shpilrain V., Ushakov A., ‘Group-

based cryptography’, Advanced Courses in

Mathematics, CRM Barcelona, 2007.

8. Overbeck R. and Sendrier N., ‘Code-based

cryptography’. Post-Quantum Cryptography 2009,

Springer, pp 95 - 145, 2009.

9. Sendrier N. and Simos D.E., ‘The hardness of code

equivalence over Fq and its applications to Code-

Based cryptography’. Post-Quantum Cryptography,

Lecture Notes in computer Science, vol. 7932,

Springer-Verlag, pp. 203 - 216, 2013

 Key

generation

(s)

Breaking

(s)

Interval (s)

80 0.005 0.250 [0.200 , 0.300]

100 0.010 14.16 [12.11 , 21.06]

110 0.010 72.97 [64.18 , 123.5]

120 0.015 303.46 [268.90 , 596.8]

140 0.020 8683.2 [8092.1 , 9316.8]

