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ABSTRACT  

In this research we propose new protocols in group-based 

cryptography contributing to the research of finding novel 

cryptographic systems that are secure against quantum 

computers.  The protocols we introduce either employ 

different one-way functions or different groups then the 

currently available protocols in group-based 

cryptography.  Thereby, we avoid the successful attacks 

that threaten the contemporary existing group-based 

cryptosystems. 

Keywords: conjugacy, cryptography, groups, post-

quantum, protocol, subgroups.    

INTRODUCTION 

Traditionally, cryptography is the science of writing in 

secret code. Its main objective is to enable 

communication between two or more parties without 

eavesdroppers being able to intercept this communication. 

Presently, there is an increasing demand for secure 

cryptosystems due to the enormous increase of 

applications like internet shopping or electronic financial 

transfers. 

The basic idea of cryptography is the use of a so-called 

one-way-function or trapdoor-function: an action which is 

easy to perform but hard to invert, except if one is in the 

possession of some ‘extra’ knowledge. In this case it 

should again be easy to invert to process. 

Over the past decades, attempts have been made to create 

secure cryptographic protocols, based on several 

mathematical structures. From these, the protocols based 

on number theoretic issues have been most widely used 

and form the core of nearly all contemporarily used 

cryptographic protocols. 

In our research we have attempted to set up protocols 

based on the structure of non-abelian groups and thereby 

contribute to the research called group-based 

cryptography ([7]). 

A group is a mathematical structure consisting of a set of 

objects and an operation on these objects, which is 

invertible. Examples of groups used in our research are 

groups of matrices, and permutation groups. 

We have designed two new protocols based on group 

theoretic issues. In one of the protocols, the novelty lies 

in the introduction of a new type of one-way-function, 

conjugacy of subgroups, while in the other protocol we 

use a standard one-way-function but apply it in a class of 

groups which has not been used for cryptographic 

purposes before. For the sake of clarity and brevity we 

will only describe the first of these protocols in this 

paper, thereby still covering most of the new ideas. 

CRYPTOGRAPHY 

As mentioned, the basic idea of cryptography is the use of 

a one-way-function: some action we can easily perform 

but that we cannot invert unless we have some extra 

knowledge.  Classical examples of this include the 

permutation of letters of the alphabet to encrypt some 

written text. Indeed if we have a message and we are 

given a permutation of the alphabet (for example we write 

‘b’  instead of ‘a’, ‘c’ instead of ‘b’ etc.) then we can 

easily perform the permutation on the message. However, 

unless we know what permutation is used, it is difficult 

(at least it was in former times) to find the original 

message when we are only given the encrypted piece of 

text.  

Contemporary cryptography consists mainly of so-called 

public-key (or asymmetric) cryptography. This is a form 

of cryptography in which two distinct keys are required: a 

secret (or private) key and a public key. Although 

different, these two keys are linked to each other in such a 

way that it is possible to use the public key to encrypt a 

message or to verify a digital signature, whereas the 

private key is used to decrypt a message or to create a 

digital signature. This form of cryptography was 

introduced in 1976 by Diffie and Hellman ([7]). 

The use of public-key cryptography was initiated by a 

new cryptographic protocol called a key-exchange 

protocol. As its name suggests, this protocol is used to 

exchange secret keys between two or more parties. Those 

keys can subsequently be used in encryption protocols or 

signature verifying protocols. The protocol suggested in 

this paper is a novel example of a key-exchange protocol.  

Over the past decades, cryptography has turned its 

attention to abstract mathematics in order to provide 

security for its protocols. Most notably, the difficulty to 

factorize large numbers into their prime factors has been 

at the core of many cryptographic applications for over 

fifty years. However, there is an ever increasing demand 

for cryptographic applications and most notably the 

possible foundation of a quantum computer, from which 

it is known that it breaks most of our current 

cryptographic protocols, forms a serious threat to 

contemporary cryptographic protocols ([9]). Therefore, 

the introduction of novel cryptographic protocols, based 

on different mathematical structures and one-way-

functions, is highly desirable ([7]).    
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GROUP-BASED CRYPTOGRAPHY 

As a response to this call for novel cryptographic 

protocols, several papers have been published, starting 

with [1] and [4], that introduce the concept of group-

based cryptography. These protocols are based on the 

algebraic structure of a group and use operations in a 

group as their one-way-function.  

A group in mathematics is defined as a set of objects in 

which two objects can be composed to obtain a third one. 

In addition, for every element there exists an inverse 

element, meaning that we can ‘undo’ any operation that 

we have performed. An example of a group is the integer 

numbers with the operation of addition. Indeed, if we take 

the set of all integers:                          and we 

add two of them, we find another integer. Moreover, for 

any integer   there exists the integer    which has the 

property that first adding   and then    results in no 

change at all. This shows that    is the inverse element 

of  . Hence the integers form a group.  

Important to note here is that the above group is said to be 

commutative, since for any integers   and   we have that 

       , loosely speaking: it does not matter in 

which order we compose the group elements. However, 

in many groups this order does matter. Groups in which 

this is the case will be called non-abelian groups and it is 

precisely those groups that group-based cryptography is 

interested in.  

Most commonly the operation in groups is written as 

multiplication (instead of addition like in the above 

example). Hence, for group elements   and   we write 

        for applying the composition of these 

elements. We stress that in non-abelian groups, in general 

we have      . This will mainly be used in a process 

called conjugation of elements. We say that the product 

      is the conjugate of   by  , where     denotes the 

inverse of the element  . Note that conjugate elements 

coincide precisely when      , since in this case 

             , but otherwise they are different 

elements. 

In the research on group-based cryptography, the so-

called conjugacy search problem has played a major role 

([1], [4]). In an instance of the conjugacy search problem 

one is given two elements     of a given group  , which 

are conjugate by some unknown group element    i.e. we 

have        . The problem then is to find an element 

  such that           Note that the unknown element   

will do the job, but there may be different group elements 

that also conjugate   to   . 

In the first articles on group-based cryptography, 

conjugacy was used as a one-way function, i.e. the 

security of the protocols relied on the difficulty of the 

conjugacy search problem ([1], [4]). However, powerful 

attacks based on some notion of the length of group 

elements (the length is defined as the minimum number 

of generators needed to write the element as a product of 

generators) have shown that the conjugacy search 

problem provides a much lower level of security than 

required ([7]). Therefore, we suggest a protocol using a 

novel one-way function that uses conjugacy in a different 

way.  

A NEW CRYPTOGRAPHIC PROTOCOL 

In this section we will introduce a key-exchange protocol 

based on the computational difficulty of the subgroup 

conjugacy search problem in permutation groups. In order 

to do so, we will discuss the mathematical background of 

the protocol.  

We will use a group of permutations as our platform 

group. Each element of this group is a function permuting 

the numbers 1 to   for some chosen integer  . The 

operation in this group is the composition of mappings, 

the inverse of any element is the reverse permutation 

moving every number back to its original position. We 

use the notation    for the group of permutations of the 

numbers 1 to   and call   the degree of   .  

Furthermore, our protocol will make essential use of the 

notion of a subgroup: Given some group   we will call a 

subset   of   a subgroup of   if   is a group in its own 

right. For example the set of even numbers forms a 

subgroup of the integers. If    is a subgroup of   we 

write           

The protocol is based on the subgroup conjugacy search 

problem, which extends the notion of conjugacy from 

group elements to (sub-)groups. We denote by       the 

group of elements of the form       where   runs over 

all elements of   and call this the conjugate group of   

by  .  

We now give a description of the protocol in which two 

parties, usually called Alice and Bob, create a common 

secret key: 

 Public information: Positive integers   and  , 

with   even and       . Furthermore, a 

subgroup        (given by generators); and 

two commuting subgroups        and 

        (i.e. for every element   in   and 

every   in   we demand that       .  

 Private information:  

o Alice: an element   in  . 

o Bob: an element   in   

 The protocol: 

o Alice computes         and sends 

it to Bob. 

o Bob computes         and sends it 

to Alice. 

o Alice and Bob both compute   
          . The common secret key 

is the  -th element in   with respect to 

the lexicographic order of permutations.  

Note that Alice and Bob can both compute   because    

and   commute, Alice computes it as             
      and likewise Bob computes it as   
               .  

ANALYSIS 

For the above protocol we make some remarks on its 

complexity and on possible ways of attacking the 

protocol. Before that, we comment on the choices that 

have to be made in the protocol:  



 For the public key   we advise to choose   as an 

elementary abelian 2-subgroup, meaning that any 

element has order 2 (performing twice the same 

permutation yields the identity map) and elements 

within   commute with each other. We recommend this 

choice because any knowledge on the structure of 

elements in   which is invariant under conjugation will 

also show up in the elements of any conjugate 

subgroup, thus also in  . One of these structural 

properties are the orbits of   on the numbers between 1 

and   . We say that any two numbers   and   are in 

the same orbit under   if there exists a permutation   

in   such that   maps   to    Under conjugation this 

property is preserved in the sense that the number of 

orbits and their sizes are equal under   and under  . 

For an elementary abelian 2-subgroup all orbits have 

size 2, therefore no additional information is leaked to 

an attacker. Moreover, in this way we maximize the 

number of orbits under   which, among others, makes 

it difficult to construct a so-called Base and Strong 

Generating Set (BSGS) for   which is a standard tool 

for making computations in permutation groups 

efficient and would almost certainly be required for an 

attack on the protocol ([6]). 

Lastly, we recommend that   has roughly √      
elements (the square root of the number of elements in 

     to ensure that both   and its coset space (a 

partition of the elements of     in parts of the same size 

as  ) are large and thereby averting brute force and 

quotient attacks ([7]).  

 For the public keys   and   we recommend on 

choosing  them as large as possible. Indeed, the secret 

keys are chosen from the subgroups   and    Hence, 

choosing small subgroups would enable brute force 

attacks. One possibility is to choose   to be the set of 

all permutations that fix the numbers      up to    

while permuting the numbers   to   amongst 

themselves. Similarly   is the set of permutations 

fixing the first   numbers while permuting the last   

ones. In this way elements from   commute with those 

of   and both   and   have    elements. Hence the key 

space grows very fast with increasing  .  

Secondly, we comment on the method that Alice and Bob 

employ to find the  -th element in lexicographic order 

from     In order to do this we transform the abelian 2-

subgroup   into a linear code over the field with two 

elements (i.e. a binary code). For the technical 

construction to do this we refer to [3]. Important in this 

construction is that it can be done very efficiently and that 

it preserves the lexicographic order. The  -th element in 

the linear code can be computed very quickly (without 

actually enumerating all the elements) by using the binary 

expansion of  . Finally, the  -th element of the linear 

code is translated back to the corresponding element of  . 

([3]). Note that the assumption        is used in the 

fact that if   is constructed as above, it contains precisely 

     elements.  

Attacks and complexity 

In this section we will comment on the general difficulty 

of breaking the protocol. The above protocol is based on 

the difficulty of finding a conjugating element between 

two subgroups. Indeed, if one would succeed in finding 

the (secret) element   from the public information   and 

the transmitted information   then one would have 

knowledge of   and   and therefore would be able to 

compute   in the same way as Alice does, and thus find 

the secret key  .   

However, it was shown in [6] that the problem of finding 

a conjugating element between two permutation 

subgroups in general is hard to solve, meaning that the 

time to find a solution grows exponentially with the 

parameter  .  

To execute the protocol we saw that essential use has to 

be made of the possibility to transform the subgroup   

into a binary linear code. However, this construction also 

facilitates a possible attack on the protocol. In the same 

way as   is transformed into a linear code, one could also 

transform the subgroups   and   to binary linear codes. 

By construction, these linear codes will be isomorphic 

([3]). Finding an isomorphism between these linear codes 

will directly provide a conjugating element between the 

corresponding subgroups ([3]), hence the problem of 

finding a conjugating element between the subgroups   

and   translates into the problem of finding an 

isomorphism between binary linear codes. This problem 

has been studied under the heading code-equivalence 

problem and has been part of the research on post-

quantum cryptography - the research on cryptographic 

protocols that are resistant against attacks by quantum 

computers. It is believed that the code-equivalence 

problem is hard and in fact may even provide a platform 

for post-quantum cryptography ([8], [9]). Therefore, we 

conclude that this attack does not pose an actual threat to 

our protocol and in fact provides some decent ground for 

security assumptions.  

As a final, but crucial point we note that the length-based 

attacks that were used to attack protocols based on the 

conjugacy search problem cannot be employed to attack 

our protocol. Indeed, the use of subgroups rather than 

elements was motivated by the fact that it makes these 

attacks infeasible. 

Recommendation on parameters 

In order to get some insight in the complexity of the key-

exchange protocol and the complexity of the above 

mentioned attack on the protocol via binary linear codes, 

we ran some computer experiments. Results of these 

experiments are presented in table 1, ‘Experimental data’,  

below. The first column of the table indicates the value of 

  that has been used (and hence determines in what group 

    we are working). The second and third columns 

present the time it takes to respectively generate a secret 

key, i.e. to perform all steps of the protocol, and the time 

it takes to break to protocol by an attack using linear 

codes. All timings are given in seconds and have been 

averaged over 100 runs for the first four rows and over 

ten runs for the last row. The last column provides the 

interval from the shortest to the longest time it took to 

break the protocol.   Experiments were run using a 3.10 

GHz computer and the V2.19-2 version of the Computer 

Algebra system MAGMA ([2]).  



           Table 1: Experimental data 

From the table we conclude that key generation can be 

done very rapidly using the above mentioned protocol. 

Even for values of       key exchange can take place 

in less than a second.  

Some additional experiments were run in order to be able 

to extrapolate the duration of an attack for larger values 

of   ([3]). From these results we find the same trend as 

can be spotted in the table: the duration of an attack 

grows exponentially with  , increasing   by 1 increases 

the breaking time by a factor of       . Using these 

results we recommend values about 200 for     For these 

values key exchange can be done in less than 0.1 seconds, 

while using the above attack will cost over a million years 

of computation time (on a single computer). We note that 

these parameter sizes are well chosen according to the 

standards in [5].   

Another interesting result that is shown in the table is that 

the variation of the duration of the breaking algorithm is 

actually quite small. This is an important requirement for 

using the above protocol in practical applications, since it 

indicates that breaking the protocol by a ‘lucky strike’ is 

very unlikely.  

CONCLUSION 

In our research project we have suggested a novel 

protocol in group-based cryptography that employs the 

computational difficulty of the subgroup conjugacy 

search problem. With this protocol we intended to avoid 

the length-based attacks that were very effective in 

breaking the existing protocols based on the conjugacy 

search problem.   

For this protocol we have thoroughly investigated the 

computational difficulty in order to find hard instances of 

the subgroup conjugacy search problem. By means of this 

analysis we recommend on employing permutation 

groups of degree about 400 as platform group and to use 

elementary abelian 2-subgroups as public key. 

We showed that one of the attacks against our protocol 

deals with the problem of finding an equivalence between 

binary codes, a problem that has been extensively studied 

in the field of post-quantum cryptography and has the 

potential of being secure against quantum-computer 

attacks ([8], [9]). Therefore, our protocol may even be 

relevant for the post-quantum era. We note that a rigorous 

mathematical proof of the security of the system is (as 

with most cryptographic systems) very challenging. 

However, the results of the above experiments using 

state-of-the-art attack methods and the recommendations 

in ([8], [9]) serve as good indications for the security.   

In our research we moreover took a closer look at 

employing different groups as platform group for our 

protocol and suggest that polycyclic groups are worth 

considering ([3]). More importantly, we introduced 

another novel protocol based on the computational 

difficulty of the decomposition search problem. This 

problem is related to the conjugacy search problem, for 

given group elements   and       it asks to 

reconstruct   and   from   and  . In groups for which no 

useful length function exists this is a hard problem and 

we suggest to use  matrix groups like         for prime 

numbers   as platform groups ([3]).  This second protocol 

also turned out to be very robust against (standard) 

attacks.   

ROLE OF THE STUDENT 

For this research I have been working under the 

supervision of Dr. Bernd Souvignier (Radboud 

University) and I had some valuable discussion with Prof. 

Derek Holt (University of Warwick). Valuable insights 

have been gained during discussions with both 

supervisors, though the initiatives and ideas for the results 

of the project, as well as working them out and writing 

the report came from the side of the student.   
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  Key 

generation 

(s) 

Breaking 

(s) 

Interval (s) 

80 0.005 0.250 [0.200 , 0.300] 

100 0.010 14.16 [12.11 , 21.06] 

110 0.010 72.97 [64.18 , 123.5] 

120 0.015 303.46 [268.90 , 596.8]  

140 0.020 8683.2 [8092.1  ,  9316.8] 


