Additive Manufacturing of Lunar Regolith simulant using Direct Ink Writing

Authors

  • Billy Grundström Uppsala University
  • Timon Schild ESA/EAC - European Astronaut Centre
  • Aidan Cowley European Space Agency - ESA

DOI:

https://doi.org/10.7480/spool.2021.2.5268

Keywords:

Additive Manufacturing, Direct Ink Writing, ISRU, 3D printing, lunar regolith, sintering

Abstract

This work explores the use of a lunar regolith simulant as feedstock for the direct ink writing additive manufacturing process as an option to enable future lunar in-situ resource utilisation. The feasibility of this approach is demonstrated in a laboratory setting by manufacturing objects with different geometries, using methyl cellulose or sodium alginate as binding agents, water and lunar regolith simulant to create a viscous, printable ‘ink’. A custom three-axis gantry system is used to produce green bodies for subsequent sintering. The sintered objects are characterised using compressive strength measurements and scanning electron microscopy (SEM). It is proposed that the bioorganic compounds used in this work as additives could be produced in situ for a future lunar base through photosynthesis, utilising carbon dioxide exhaled by astronauts together with the available sunlight. Thus, all the components used for the dispersion – additive, water, and regolith – are available in situ. The compressive strength for sintered samples produced with this method was measured to be 2.4 MPa with a standard deviation of 0.2 MPa (n = 4). It is believed, based on the high sample porosity observed during SEM analysis, that the comparatively low mechanical strength of the samples is due to a low sintering temperature, and that the mechanical strength could be increased by optimising the sintering process further.

It is proposed that the bio-organic compounds used in this work as additives could be produced at the site for a future lunar base through photosynthesis, utilising carbon dioxide exhaled by astronauts together with the available sunlight. Thus, all the components used for the feedstock – additive, water (in the form of ice) and regolith – are locally available or can be produced in-situ.

The compressive strength for sintered samples produced with this method was measured to be 2.4 MPa with a standard deviation of 0.2 MPa (n = 4). Based on the high sample porosity observed from the SEM analysis, the comparatively low mechanical strength of the manufactured samples is due to a non-optimal sintering process carried out at a too-low temperature, and that the mechanical strength could be increased by optimising the sintering process further.

References

Allan, S., Braunstein, J., Baranova, I., Vandervoort, N., Fall, M., & Shulman, H. (2013). Computational modeling and experimental microwave processing of JSC-1A lunar simulant. Journal of Aerospace Engineering. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000245

Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Péraudeau, G., Jaumann, R., & Seboldt, W. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 74(1), 42–48. https://doi.org/10.1016/j.pss.2012.08.012

Balla, V. K., Roberson, L. B., O’Connor, G. W., Trigwell, S., Bose, S., & Bandyopadhyay, A. (2012). First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 18(6), 451–457. https://doi.org/10.1108/13552541211271992

Buchner, C., Pawelke, R. H., Schlauf, T., Reissner, A., & Makaya, A. (2018). A new planetary structure fabrication process using phosphoric acid. Acta Astronautica, 143(June 2017), 272–284. https://doi.org/10.1016/j.actaastro.2017.11.045

Caprio, L., Demir, A. G., Previtali, B., & Colosimo, B. M. (2020). Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Additive Manufacturing, 32(July 2019), 101029. https://doi.org/10.1016/j.addma.2019.101029

Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034

Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R. C., Goldstein, D., Summy, D., Bart, G. D., Asphaug, E., Korycansky, D., Landis, D., & Sollitt, L. (2010). Detection of water in the LCROSS ejecta plume. Science, 330(6003), 463–468. https://doi.org/10.1126/science.1186986

Dai, L., Cheng, T., Duan, C., Zhao, W., Zhang, W., Zou, X., Aspler, J., & Ni, Y. (2019). 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 203(March 2018), 71–86. https://doi.org/10.1016/j.carbpol.2018.09.027

Engelschiøn, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-62312-4

Faierson, E. J., Logan, K. V., Stewart, B. K., & Hunt, M. P. (2010). Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronautica, 67(1–2), 38–45. https://doi.org/10.1016/j.actaastro.2009.12.006

Fateri, M., & Gebhardt, A. (2015). Process parameters development of selective Laser Melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 12(1), 46–52. https://doi.org/10.1111/ijac.12326

Goulas, A., & Friel, R. J. (2016). 3D printing with moondust. Rapid Prototyping Journal, 22(6), 864–870. https://doi.org/10.1108/RPJ-02-2015-0022

Goulas, A., Harris, R. A., & Friel, R. J. (2016). Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. Additive Manufacturing, 10, 36–42. https://doi.org/10.1016/j.addma.2016.02.002

Hart, K. R., Frketic, J. B., & Brown, J. R. (2018). Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Additive Manufacturing, 21(February), 536–543. https://doi.org/10.1016/j.addma.2018.04.011

Hinterman, E. (2020). Simulating oxygen production on Mars for the Mars Oxygen In-Situ Resource Utilization Experiment. Acta Astronautica, 170(October 2019), 678–685. https://doi.org/10.1016/j.actaastro.2020.02.043

ISO/ASTM. (2015). INTERNATIONAL STANDARD ISO / ASTM 52900 Additive manufacturing — General principles — Terminology. International Organization for Standardization. https://doi.org/10.1520/ISOASTM52900-15

Jakus, A. E., Koube, K. D., Geisendorfer, N. R., & Shah, R. N. (2017). Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks. Scientific Reports, 7, 1–8. https://doi.org/10.1038/srep44931

Jakus, A. E., Taylor, S. L., Geisendorfer, N. R., Dunand, D. C., & Shah, R. N. (2015). Metallic Architectures from 3D-Printed Powder-Based Liquid Inks. Advanced Functional Materials, 25(45), 6985–6995. https://doi.org/10.1002/adfm.201503921

Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599–3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x

Liu, Q., Li, Q., Xu, S., Zheng, Q., & Cao, X. (2018). Preparation and properties of 3D printed alginate-chitosan polyion complex hydrogels for tissue engineering. Polymers, 10(6). https://doi.org/10.3390/polym10060664

Menezes, A. A., Cumbers, J., Hogan, J. A., & Arkin, A. P. (2015). Towards synthetic biological approaches to resource utilization on space missions. Journal of the Royal Society Interface, 12(102). https://doi.org/10.1098/rsif.2014.0715

Meurisse, A., Makaya, A., Willsch, C., & Sperl, M. (2018). Solar 3D printing of lunar regolith. Acta Astronautica, 152(September), 800–810. https://doi.org/10.1016/j.actaastro.2018.06.063

Meurisse, A., Beltzung, J.C., Kolbe, M., Cowley, A., & Sperl, M. (2017). Influence of Mineral Composition on Sintering Lunar Regolith. Journal of Aerospace Engineering. 30. 04017014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000721

Montes, C., Broussard, K., Gongre, M., Simicevic, N., Mejia, J., Tham, J., Allouche, E., & Davis, G. (2015). Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56(6), 1212–1221. https://doi.org/10.1016/j.asr.2015.05.044

Nieke, P., Kita, J., Häming, M., & Moos, R. (2019). Manufacturing dense thick films of lunar regolith simulant EAC-1 at room temperature. Materials, 12(3). https://doi.org/10.3390/ma12030487

Perrot, A., Rangeard, D., & Courteille, E. (2018). 3D printing of earth-based materials: Processing aspects. Construction and Building Materials, 172, 670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017

Pilehvar, S., Arnhof, M., Pamies, R., Valentini, L., & Kjøniksen, A. L. (2020). Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119177

Rueschhoff, L., Costakis, W., Michie, M., Youngblood, J., & Trice, R. (2016). Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions. International Journal of Applied Ceramic Technology, 13(5), 821–830. https://doi.org/10.1111/ijac.12557

Schleppi, J., Gibbons, J., Groetsch, A., Buckman, J., Cowley, A., & Bennett, N. (2019). Manufacture of glass and mirrors from lunar regolith simulant. Journal of Materials Science, 54(5), 3726–3747. https://doi.org/10.1007/s10853-018-3101-y

Schlordt, T., Schwanke, S., Keppner, F., Fey, T., Travitzky, N., & Greil, P. (2013). Robocasting of alumina hollow filament lattice structures. Journal of the European Ceramic Society, 33(15–16), 3243–3248. https://doi.org/10.1016/j.jeurceramsoc.2013.06.001

Sherwood, B. (2019). Principles for a practical Moon base. Acta Astronautica, 160(March), 116–124. https://doi.org/10.1016/j.actaastro.2019.04.018

Song, L., Xu, J., Fan, S., Tang, H., Li, X., Liu, J., & Duan, X. (2019). Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity. Ceramics International, 45(3), 3627–3633. https://doi.org/10.1016/j.ceramint.2018.11.023

Tang, S., Yang, L., Li, G., Liu, X., & Fan, Z. (2019). 3D printing of highly-loaded slurries via layered extrusion forming: Parameters optimization and control. Additive Manufacturing, 28(February), 546–553. https://doi.org/10.1016/j.addma.2019.05.034

Taylor, S. L., Jakus, A. E., Koube, K. D., Ibeh, A. J., Geisendorfer, N. R., Shah, R. N., & Dunand, D. C. (2018). Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronautica, 143(September 2017), 1–8. https://doi.org/10.1016/j.actaastro.2017.11.005

Taylor, S. L., Jakus, A. E., Shah, R. N., & Dunand, D. C. (2017). Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks. Advanced Engineering Materials, 19(11). https://doi.org/10.1002/adem.201600365

Toutanji, H. A., Evans, S., & Grugel, R. N. (2012). Performance of lunar sulfur concrete in lunar environments. Construction and Building Materials, 29, 444–448. https://doi.org/10.1016/j.conbuildmat.2011.10.041

Way, J. C., Silver, P. A., & Howard, R. J. (2011). Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology, 10(4), 359–364. https://doi.org/10.1017/S1473550411000218

Xu, J., Cao, H., Sun, X., Tang, H., Ma, H., Song, L., Li, X., Duan, X., & Liu, J. (2019). 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders. 1084208(February 2019), 9. https://doi.org/10.1117/12.2505911

Zocca, A., Fateri, M., Al-Sabbagh, D., & Günster, J. (2020). Investigation of the sintering and melting of JSC-2A lunar regolith simulant. Ceramics International, February, 0–1. https://doi.org/10.1016/j.ceramint.2020.02.212

Downloads

Published

2021-09-12