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Abstract: Accurate forecasting of raw material demand is critical for effective decision-making in project 

management, particularly in the construction sector. Demand fluctuations in this industry can severely disrupt 

workflows and cause project delays. Reliable demand predictions help maintain operational stability and 

reduce risks, especially under uncertain conditions. In such environments, maintaining appropriate Target 

Stock Levels (TSL) and setting effective Reorder Points (RP) are essential to ensure project continuity and 

customer satisfaction. This study investigates the potential of Artificial Intelligence (AI) to enhance demand 

forecasting accuracy within service-based supply chains. Five forecasting models were evaluated: four 

machine learning approaches—Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), 

Random Forest (RF), and Gaussian Regression (GR)—and one traditional statistical method, the 

Autoregressive Integrated Moving Average (ARIMA) model. The models were trained and tested using 

historical raw material consumption data collected from a construction project over a four-year period (2019–

2023). The results show that the Machine Learning Models significantly outperformed the ARIMA model in 

terms of predictive accuracy. The coefficients of determination (R²) were 0.93 for LSTM, 0.91 for XGBoost, 

0.89 for GR, and 0.88 for RF, compared to 0.75 for ARIMA. Among all models, LSTM achieved the highest 

forecasting accuracy and the lowest deviation on the test dataset. Its implementation for the 2024 planning 

horizon led to substantial inventory optimization, reducing overstock volumes by 66.5%. This improvement 

translated into significant cost savings and enhanced the overall efficiency of material management and 

decision-making processes. 
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1 Introduction  

In today’s globalized market, Supply Chain Management (SCM) plays a pivotal role in enabling 

efficient resource utilization and operational continuity. This is particularly critical in the construction 

sector, where dynamic demand, project-based operations, and dependence on multi-tiered suppliers 

expose the supply chain to substantial uncertainty and risk (Christopher and Peck, 2004; Dey et al., 

2015). Delays or overstocking can significantly impact project timelines and inflate costs. 

The COVID-19 pandemic further exposed systemic vulnerabilities in global supply chains, including 

those in the construction industry. Lockdowns, transportation restrictions, and raw material shortages 

led to widespread disruptions, highlighting the urgent need for resilient and accurate forecasting 

models to maintain continuity and buffer against uncertainty (Ivanov and Das, 2020; Golan et al., 

2020). 

Forecasting is a core function in SCM, influencing procurement, inventory control, production 

scheduling, and customer satisfaction (Rahman et al., 2017). When accurate, forecasting enables 

firms to align supply with anticipated demand, minimize stockouts or overstocking, and reduce 

overall operational costs (Chopra and Meindl, 2016). However, the complexity of forecasting has 

increased markedly over the past two decades, driven by globalized sourcing, demand volatility, and 

the exponential growth of data generated through ERP systems, IoT, and digital platforms (Manyika 

et al., 2011; Chen et al., 2014). 

Traditional statistical methods such as (ARIMA) model have been widely employed for time series 

forecasting, primarily due to their interpretability and strength in modelling linear relationships (Box 

et al., 2015). However, these models struggle to capture nonlinearities and high-dimensional 

dynamics prevalent in modern industrial data. As emphasized by Hyndman and Athanasopoulos 

(2021), ARIMA’s limitations have prompted a shift toward AI-based and machine learning (ML) 

approaches capable of learning from complex patterns and irregular time series (Makridakis et al., 

2018). 

Advanced ML techniques such as (LSTM) networks, (XGBoost), (RF), (GR) have shown substantial 

promise in demand forecasting applications. These methods offer strong generalization capabilities 

and robustness to noise, enabling them to outperform traditional models in many industrial and retail 

forecasting tasks (Lim and Zohren, 2020; Zhang, 2002). 

While Bandara, Bergmeir, and Smyl (2020) and Liu, Zhang, and Zhang (2025) propose a general 

hybrid framework that integrates ARIMA with deep learning models to enhance forecasting accuracy, 

this study uniquely compares five forecasting models using construction-specific raw material 

demand data. This dataset and domain remain underrepresented in prior forecasting research. The aim 

is to evaluate the relative strengths of these models using real raw material demand data from the 

construction sector, providing a focused contribution to an area seldom addressed in comparative 

forecasting literature. 

Moreover, construction demand is multifactorial, influenced by seasonality, project phase, 

procurement lead times, and external economic conditions. As Fildes et al. (2019) argue, forecasting 
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models that integrate such contextual variables demonstrate significantly higher reliability and 

relevance in practical applications (Brownlee, 2020). 

This study compares five forecasting methods—ARIMA, XGBoost, LSTM, Random Forest, and 

Gaussian Regression—based on actual usage data from a leading Egyptian construction manufacturer. 

Its primary contributions include: (i) Demonstrating the superior performance of LSTM (R² = 0.93) 

compared to other models (XGBoost: 0.91, RF: 0.88, GR: 0.89, ARIMA: 0.75), (ii) Reporting a 66.5% 

reduction in overstock levels in 2024, indicating significant cost savings and inventory efficiency and 

(iii) Offering a scalable AI-based solution for data-driven decision-making in raw material 

procurement. 

The paper is structured as follows: Section 2 reviews relevant literature; Section 3 outlines the 

methodology and data; Section 4 presents the case study; Section 5 discusses the results; and Section 

6 concludes with key findings and implications. 

2 Literature Review 

This section critically reviews key developments in demand forecasting within (SCM), focusing on 

time series models and machine learning (ML) approaches used for raw material demand forecasting. 

The literature is grouped into four thematic areas: (1) classical time series methods, (2) machine 

learning and deep learning models, (3) evaluation metrics, and (4) external factors influencing 

demand forecasting. 

The ARIMA model has long been a foundational method for time series forecasting due to its capacity 

to model temporal dependencies and non-stationary data. In the context of SCM, especially in the 

construction sector (Salem et al., 2023). ARIMA has been used to forecast demand for materials such 

as cement and steel, where lead times and historical usage patterns are essential for planning 

(Hyndman and Athanasopoulos, 2021; Makridakis et al., 2018). ARIMA’s linear structure allows for 

interpretable forecasts, but its reliance on stationarity and limited ability to capture complex nonlinear 

dynamics poses challenges in volatile or multi-factorial environments (Fildes et al., 2019). While 

ARIMA remains a benchmark model, its performance often degrades in scenarios with high volatility 

or irregular consumption patterns, which are common in project-based industries like construction 

(Brahami et al., 2021; Brownlee, 2020). These limitations have prompted a shift toward more adaptive, 

data-driven models. 

Machine learning models such as Random Forest and XGBoost have been widely adopted in recent 

forecasting research due to their flexibility in modeling nonlinear relationships and handling large 

feature spaces (Fattah et al., 2018). XGBoost has shown superior performance over traditional models 

in retail demand forecasting, suggesting potential applicability to raw material forecasting where 

demand is influenced by multiple dynamic factors (Lim and Zohren, 2020) 

Deep learning models, particularly LSTM networks, have also gained traction for their ability to 

model long-range dependencies in sequential data (Moutacalli et al., 2014). LSTM is particularly 

well-suited to construction supply chains, where projects involve multi-phase schedules and 

seasonally fluctuating material needs (Zhang, 2002; Bandara et al., 2020). 
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Liu, Zhang, and Zhang (2025) introduce a hybrid ARIMA-deep learning framework and Hyndman 

and Athanasopoulos (2021) proposed hybrid models that combine ARIMA with Machine Learning 

or (AI)-based models to leverage both statistical rigor and non-linear learning capabilities. While 

these hybrid approaches demonstrate potential, they often involve complex tuning procedures and 

significant computational demands, and their effectiveness tends to vary across different application 

sectors. Although the present study does not implement hybrid models, it draws insights from these 

prior contributions to benchmark the performance of standalone forecasting models (Noh et al., 2021). 

The selection of performance metrics is critical to model assessment. Widely used metrics include 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 

Error (MAPE). Taylor (2020) argues for a multi-metric evaluation framework to reflect various 

dimensions of model performance, such as robustness to outliers and interpretability across time 

horizons. These metrics are essential in construction SCM, where underestimating demand can delay 

projects, and overestimating can tie up working capital. 

Fildes et al. (2019) and Brownlee (2020) emphasize that specific evaluation metrics—especially 

MAPE—may exhibit excessive sensitivity to low demand values, potentially distorting forecast 

accuracy assessments for low-volume, high-value materials. To mitigate this issue and enhance the 

reliability of forecasting in practical applications, Ali et al. (2011) advocate for the use of multiple 

complementary metrics during model evaluation.  

Recent literature has emphasized the importance of contextual and external variables such as 

economic cycles, seasonal trends, supplier reliability, and logistical constraints on forecasting 

outcomes. Zhang and Hong  (2022) highlight the improved accuracy when models integrate such 

factors, especially in sectors where historical trends do not solely drive demand. In construction, 

weather conditions, labor availability, and regulatory delays also introduce variability that standard 

models may not adequately address.  

While broader crises like the COVID-19 pandemic and geopolitical events have underscored the 

vulnerability of global supply chains, forecasting models must be adaptable to rapid shifts in project 

schedules and material availability (Abdelsalam et al., 2020). 

In summary, classical models like ARIMA offer simplicity and interpretability but often fall short in 

capturing complex demand dynamics typical in construction. Machine learning and deep learning 

models provide more accurate forecasts under variable conditions but may lack transparency and 

require significant data preprocessing. Despite the extensive application of forecasting models in 

broader supply chain research, Wang et al. (2020) and Lim and Zohren (2020) and Khan (2021) note 

that direct comparisons between ARIMA, LSTM, (RF), XGBoost, and (GR) remain limited 

particularly in the context of raw material demand forecasting within the construction sector.  

This study addresses this gap by applying and comparing five models ARIMA, LSTM, RF, XGBoost, 

and GR—on actual construction material demand data. It contributes to the literature by identifying 

model strengths and limitations under construction-specific demand conditions and establishing a 

performance benchmark using RMSE, MAE, and MAPE. 
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3 Methodology and Data Collection 

This research employs a practical, domain-specific methodology to forecast raw material demand in 

the construction sector, focusing on a real-world service supply chain context. The approach combines 

advanced forecasting techniques such as ARIMA, XGBoost, LSTM, Random Forest, and Gaussian 

Regression. Each model is calibrated to reflect the dynamic consumption patterns observed in 

construction projects, where material demand fluctuates due to schedule shifts, labor availability, and 

weather-related delays. 

3.1 Data collection 

Data were collected from four consecutive years' procurement logs and inventory records, 

encompassing monthly consumption values for essential construction materials such as cement, rebar, 

and concrete blocks. Each entry includes the project ID, delivery date, and site location. 

Preprocessing procedures included: 

• Missing value imputation using linear interpolation for continuous variables. 

• Outlier removal using IQR filtering and visual inspection to correct anomalies such as 

duplicate or delayed entries. 

• Transformation to time series format, indexed by month and project ID. 

Feature Engineering: 

• Lag Features: Created for lags 1, 2, and 3 months to capture short-term autocorrelation. 

• Rolling Window Statistics: 3-month rolling mean and rolling standard deviation were added. 

• Seasonal Dummies: Month-of-year encoded as 12 binary dummies to capture seasonality. 

• External Regressors: Project phase indicators and rainfall data (as a weather proxy) were 

included. 

3.2 Model performance assessment 

The effectiveness of the forecasting models is evaluated using standard statistical performance 

metrics—Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of 

determination (R²). These metrics quantify the accuracy of predictions by comparing them against 

actual demand values. 

In addition to numerical metrics, diagnostic visualizations such as residual and Q–Q plots are used to 

validate model assumptions and detect anomalies. According to Huber and Stuckenschmidt (2020) 

such tools are vital for identifying areas where model performance may be compromised. Liu et al. 

(2025) also underscore the importance of visual diagnostics in enhancing the interpretability of 

forecasting models in complex prediction tasks. 

3.3 Hyperparameter optimization 

To improve forecasting accuracy, hyperparameters of the applied models are fine-tuned. This study 

systematically applies cross-validation and grid search techniques to explore the hyperparameter 

space for each model. 
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These optimization strategies ensure the models balance between underfitting and overfitting, thus 

improving generalizability. Wu, Li, Lim, and Li (2023) emphasized the value of hyperparameter 

tuning in time series models like ARIMA and LSTM, while Yang, Li, and Rasul (2021) demonstrated 

that careful tuning significantly boosts accuracy in real-world forecasting scenarios. 

3.4 Demand prediction models  

Based on historical demand data, five distinct forecasting models ARIMA, XGBoost, LSTM, 

Random Forest, and Gaussian Regression—are trained and tested. These models were selected due 

to their demonstrated effectiveness in prior research, such as the work of Bandara, Bergmeir, and 

Smyl (2020) for ARIMA, Chen M. , Mao, and Liu (2014) for XGBoost, Hochreiter and Schmidhuber 

(1997) for LSTM, and Breiman (2001) for Random Forest. 

The comparative framework adopted in this study enables a comprehensive evaluation of each 

model's forecasting capability within the context of raw material demand. Jha et al. (2021) 

emphasized integrating machine learning and traditional models in supply chain demand forecasting. 

Studies by (Fattah et al., 2018) validated the robustness of models like Random Forest and ARIMA, 

while Jin et al. (2022) recommended hybrid approaches (e.g., ARIMA–LSTM) to handle complex 

temporal variations as illustrated in Figure 1. 

 

Figure 1: Demand patterns over time 

 

3.5.1 Extreme Gradient Boosting  

XGBoost is a high-performance, scalable tree-boosting algorithm widely adopted in prediction tasks. 

In this study, it forecasts raw material demand by capturing patterns through an ensemble of weak 

learners optimized with a convex differentiable loss function. Typical loss functions include MAE 

and MSE, which guide model training through gradient descent. 

Objective Function: 

 

Obj = ∑ 𝐿(𝑦𝑖
𝑛
𝑖=1 , 𝑦𝑖

^) + ∑ Ω(𝑓𝑘)𝐾
𝑘=1                                                                                                                 (1) 
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Regularization Term: 

 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑇
𝑗=1                                                                                                                                   (2) 

In XGBoost, the optimization process relies on a differentiable convex loss function, typically chosen 

to facilitate effective gradient-based optimization. This function is shaped by error metrics such as 

(MSE) and (MAE), which assess how well the model's predictions align with actual outcomes, and 

contribute to refining the model’s parameters during training. 

The model was developed through a systematic process: 

Step 1: Data Preparation 

Raw monthly demand data were cleaned and restructured to facilitate supervised learning. 

Step 2: Feature Engineering 

Time-lag features were created to capture sequential dependencies and seasonal variations. 

Step 3: Data Structuring 

The dataset was formatted into input-output pairs suitable for XGBoost regression modeling. 

Hyperparameters Tuned: 

o Learning Rate (0.05): Controls the impact of each tree on the final prediction. 

o Max Depth (10): Limits the depth of individual trees to prevent overfitting. 

o Number of Estimators (300): Specifies the number of boosting rounds. 

o Subsample (0.8): Determines the fraction of observations used per tree. 

o Colsample_bytree (0.8): Controls the fraction of features considered at each split. 

o Gamma (0.1): Regularization parameter to reduce unnecessary splits. 

o Alpha – L1 Regularization (0.5): Encourages sparsity in the model. 

o Lambda – L2 Regularization (1.0): Reduces model complexity. 

Step 4: Model Tuning 

Grid search with cross-validation was applied to identify the optimal hyperparameter configuration. 

3.5.2 Long Short-Term Memory 

LSTM networks are a type of recurrent neural network (RNN) designed to handle sequential data. 

Their architecture includes memory cells and gates (input, forget, output) that regulate the flow of 

information over time. This allows LSTM models to retain long-term dependencies, making them 

suitable for time series forecasting with seasonal and trend variations. 

Forget Gate: 

𝑓𝑡  =  𝜎(𝑊𝑓 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓                                                                                                                            (3) 

 

Input Gate: 

𝑖𝑡 =  𝜎(𝑊𝑖 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖                                                                                                                                (4) 

 

Cell State: 

𝐶𝑡̅ = 𝑊𝑐 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐                                                                                                                                  (5) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡                                                                                                                                        (6) 
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Output Gate: 

𝑂𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜                                                                                                                                    (7)  

Hidden State: 

ℎ𝑡 =  𝑜𝑡 + tanh (𝐶𝑡)                                                                                                                                                         (8) 

 

LSTM networks are specialized for time series forecasting due to their ability to retain long-term 

dependencies through memory cells and gating mechanisms, as per Figure 2. 

Figure 2: LSTM cell mechanism flow chart  

Forget Gate: This gate decides which information from the previous time step should be discarded. 

It produces a value between 0 and 1, with 0 indicating complete forgetfulness and 1 meaning full 

retention. 

Input Gate: Determines what new data should be incorporated into the cell state. It includes: 

• A sigmoid function that selects the data to be updated. 

• A tanh function that generates potential values for updating the cell state. 

Cell State Update: The forget gate and input gate work together to update the cell state, balancing 

the retention of past information and adding new data. 

Output Gate: It regulates which part of the updated cell state should be output. A sigmoid function 

filters the data, followed by a tanh function that normalizes the output between -1 and 1. 

Using these gates, the LSTM cell effectively learns which information to retain, forget, and output, 

allowing it to handle complex temporal dependencies in data sequences. 

The LSTM forecasting model has different steps. These are:  

Step 1: The dataset was structured with look-back windows to form sequences of input-output pairs. 

Step 2: Network Architecture 

LSTM Model Layer, as depicted in Figure 3, is as: 
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    First Layer: 100 units with full sequence output. 

    Dropout Layer: Dropout rate of 0.2 to prevent overfitting. 

    Second Layer: 100 units with full sequence output. 

    Third Layer: 50 units returning the final output. 

    Dense Layer: 50 neurons to match the forecast horizon 

 

 

 

 

 

 

 

 

Figure 3: LSTM cell mechanism flow chart  

Step 3: Output Formatting 

The output sequence was reshaped to match the format of the future time steps being forecasted. 

Hyperparameters 

o Number of Layers: Depth of the network. 

o Number of Units: Neurons per layer. 

o Dropout Rate: Prevents overfitting. 

o Batch Size: Samples per gradient update. 

o Learning Rate: Step size for optimization. 

o Epochs: Iterations over the entire dataset. 

Step 4: Training and Tuning 

The model was trained and validated using time-based cross-validation. Hyperparameters were 

optimized using grid search. 

3.5.3 Random Forest 

Random Forest is an ensemble learning technique that constructs multiple decision trees and 

aggregates their    outputs to improve prediction robustness. Each tree is trained on a bootstrap sample 

with randomly selected features. This randomization reduces overfitting and enhances model 

generalizability. The final output is typically obtained via averaging (regression) or majority voting 

(classification). The mathematical formulation for the RF classifier is expressed as follows:  

𝑦̂ =  
1

𝑀
∑ 𝑦̂𝑚

𝑀
𝑚=1                                                                                                                                                   (9) 
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Where 𝑦̂ is the prediction for regression. The prediction for classification can be expressed as:  

𝑦̂ = 𝑚𝑜𝑑𝑒(𝑦̂1, 𝑦̂1, … , 𝑦̂𝑀)                                                                                                                              (10) 

Each decision tree, denoted a 𝑇𝑖(𝑥), is constructed using a randomly selected subset of the training 

dataset and a distinct subset of input features. The trees are typically expanded to their full depth or 

until a specific stopping condition is satisfied.  

Random Forest is an ensemble learning method based on constructing multiple decision trees and 

aggregating their outputs. 

Step 1: Data Preprocessing 

Time series data was cleaned and formatted. Lag features were created to represent prior periods. 

Step 2: Feature Engineering 

Additional variables, such as rolling averages and month identifiers, were included to improve model 

generalization. 

Step 3: Model Training 

Multiple decision trees were trained on bootstrapped samples, and outputs were averaged for 

prediction. 

Hyperparameters 

o Number of Trees (200): Total decision trees used in the ensemble. 

o Maximum Depth (15): Maximum allowable depth for individual trees. 

o Min Samples Split (4): Minimum samples required to split a node. 

o Min Samples per Leaf (2): Minimum samples required at each leaf node. 

o Bootstrap (True): Enables random sampling with replacement. 

o Criterion ("MSE"): Metric used to evaluate splits (mean squared error). 

Step 4: Optimization 

Grid search and k-fold cross-validation were used to determine optimal model parameters. 

3.5.4 Gaussian Regression 

GR is a Bayesian, non-parametric approach that estimates the predicted value and the associated 

uncertainty. The model leverages a kernel (covariance) function, denoted as 𝑘(𝑥, 𝑥′), to capture the 

similarity between data points. This enables GR to model complex relationships while providing 

confidence intervals for predictions. 

The Gaussian regression can be defined as: 

𝑓(𝑥)~ɕ𝑝(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                                                                                                                                         (11) 

 

The mean function is given in (12), while the covariance function is expressed in (13). 

 
𝑚(𝑥) = 𝐸[𝑓(𝑥)]                                                                                                                                                              (12) 

𝐸 : Expectation operator. 

𝐾(𝑥, 𝑥’)  =  𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]                                                                                                     (13) 
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The prediction equations are: 

 

𝑓∗ ⎸𝑋, 𝑦, 𝑋∗~ 𝑁(𝑓∗̅, 𝑐𝑜𝑣(𝑓∗))                                                                                                                                (14) 

 

𝑓∗̅ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑦                                                                                                                        (15) 

 

𝑜𝑛𝑒 𝑐𝑜𝑣(𝑓∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗)                                                                   (16) 

 

Gaussian Regression provides probabilistic predictions and includes confidence intervals around 

forecasts. 

Step 1: Data Preparation 

Historical demand  was cleaned and missing values were filled out through filled through linear 

interpolation. 

Step 2: Normalization 

Input features were scaled to ensure numerical stability during model training. 

Step 3: Feature Engineering and Tuning 

Temporal features such as lag values and cyclical time representations were added. Model tuning was 

performed using cross-validation. 

Hyperparameters 

o Kernel ("RBF"): Radial Basis Function kernel used for modeling. 

o Initial Length Scale (1.0): Defines the spread of the kernel. 

o Alpha – Noise Level (1e-6): Controls noise in the model fit. 

o Optimizer ("L-BFGS-B"): Optimization algorithm for kernel parameter fitting. 

o Normalize Target (True): Indicates whether the target is normalized before fitting. 

Step 4: Model Training 

The model was trained using a Gaussian process with a defined kernel function, capturing both linear 

and non-linear trends. 

3.5.5 Autoregressive Integrated Moving Average 

ARIMA combines autoregression (AR), differencing (I), and moving average (MA) to model time-

dependent structures in data. It transforms non-stationary time series into stationary ones, making it 

suitable for linear trend and seasonality modeling. Despite its simplicity, ARIMA is a short- to 

medium-term demand forecasting tool. The mathematical equation for the ARIMA model is 

expressed as: 

Autoregressive (AR) part: 

AR(p): 𝑌𝑡 =  ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ∅3𝑌𝑡−3 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜖𝑡                                                                  (17) 

Integrated (I) part: 

I(d): 𝑌𝑡
′ =  𝑌𝑡 − 𝑌𝑡−1                                                                                                                                (18) 

Moving Average (MA) part: 
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MA(q): 𝑌𝑡 =  𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞                                                                                 (19) 

ARIMA model (p, d, q): 

𝑌𝑡
′ =  ∅1𝑌𝑡−1

′ −  ∅1𝑌𝑡−1
′ + ⋯ +  ∅𝑝𝑌𝑡−𝑝

′ +  𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞                                               (20) 

 

ARIMA (Auto Regressive Integrated Moving Average) is a classical linear univariate time series 

forecasting model. 

Step 1: Data Preparation 

The demand series was cleaned and tested for stationarity using Augmented Dickey-Fuller tests. 

Step 2: Differencing and Decomposition 

Differencing was applied to remove trends, and seasonal decomposition was conducted to isolate 

components. 

Step 3: Parameter Estimation 

Optimal model parameters were identified using Auto ARIMA and evaluated with the Akaike 

Information Criterion (AIC). 

Hyperparameters 

o p (2): Number of autoregressive (AR) terms. 

o d (1): Degree of differencing to achieve stationarity. 

o q (2): Number of moving average (MA) terms. 

Step 4: After preprocessing the data, the ARIMA model parameters (p, d, q) are set. In this case, p=2, 

d=1, and q=2 are chosen, The model is then configured for forecasting. 

3.6. Standard accuracy measurement (metrics) 

The selection of regression metrics depends on the dataset's unique features and the analysis's goals. 

This study employs six different methods to offer quantitative evaluations of how effectively the 

model predicts continuous outcomes. These metrics help assess the model's performance by 

comparing predicted values with actual outcomes, providing insights into the accuracy and reliability 

of the forecasting process. 

 

Mean Absolute Error (MAE): Measures the average absolute deviation between predicted and actual 

values. Lower values indicate higher accuracy. 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                                                                                                                                              (21) 

 

Mean Squared Error (MSE): Calculates the average squared difference between predictions and 

observations, penalizing significant errors more than small ones. 

MSE =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                                                                                                         (22) 

 

Root Mean Squared Error (RMSE): The square root of MSE; provides an interpretable metric in the 

same unit as the data. 
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RMS𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                                                                                                   (23) 

 

Mean Absolute Percentage Error (MAPE): Expresses forecast errors as a percentage of actual values, 

facilitating relative performance comparisons. 

MAPE =
100%

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1                                                                                                                     (24) 

 

R-squared (𝑅2): Indicates the proportion of variance in the target variable explained by the model. 

Higher R² values denote better model fit. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̂̅)2𝑛
𝑖=1

                                                                                                                            (25) 

 

Forecast bias: Evaluates systematic overestimation or underestimation in model predictions. 

Forecast bias =
1

n
∑ (n

i=1 ŷi − yi)                                                                                                          (26) 

4 Case Study 

This case study evaluates the effectiveness of an artificial intelligence–based demand forecasting 

model implemented at a leading Egyptian manufacturing company. The company operates three 

major production facilities nationwide, producing over 600 SKUs annually, including corrugated 

sheets, sandwich panels, steel structures, purlins, accessories, and guard rails. With a production 

output exceeding 120,000 tons and annual revenue surpassing $100 million, the company adheres to 

stringent Total Quality Management (TQM) practices to ensure consistent product quality and 

reliability. 

The supply planning department plays a central role in maintaining optimal inventory levels and 

ensuring the timely availability of raw materials. As illustrated in Figures 4 and 5, the department’s 

key objectives include minimizing material shortages, preventing production delays, and maintaining 

cost efficiency. 

 

                        Figure 4: Forecast framework                                                   Figure 5: Flowchart for planning management 
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4.1  Material availability 

 Given the company's focus on prefabricated buildings, every component—regardless of size—is 

considered critical. A shortage of even minor items such as screws or washers can halt production 

entirely. Therefore, material availability is closely monitored across the entire Bill Of Materials 

(BOM). The accuracy of demand forecasts directly affects workflow continuity and project 

scheduling. 

4.2 Cost-wise 

The total monthly procurement cost of raw materials in the construction sector exceeds $6 million. 

Following the COVID-19 pandemic and amid ongoing economic challenges in Egypt, the company 

has encountered significant financial constraints. These conditions have increased the importance of 

accurate demand forecasting to avoid overstocking—which immobilizes capital in unused 

inventory—and understocking—which can delay project execution. Even small forecasting errors can 

significantly impact cash flow and procurement planning in this financially sensitive environment. 

To mitigate these challenges, the company implemented (AI) techniques to develop several 

forecasting models based on historical consumption data. The objective was to identify the model 

that delivered the highest accuracy and consistency across a diverse range of materials. The most 

effective model was subsequently deployed and assessed using key operational performance 

indicators and inventory metrics. 

Figure 6 illustrates the product structure and key building components associated with the forecasted 

materials, providing essential context for the forecasting process. The following figures present 

performance comparisons across different forecasting models, highlighting their relative 

effectiveness in supporting procurement planning. 

Figure 6: Example for a prefabricated building component 
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4.3 Data preparation  

Figure 7 presents a sample of historical raw material consumption data extracted from the company's 

SAP ERP system. The dataset spans four years (2019–2023). Due to space limitations, data for 2021–

2022 is not displayed but is indicated by arrows, signifying that these years were included in the 

analysis and forecasting process. It contains monthly usage records for each item, uniquely identified 

by its material code. 

Each row in the dataset contains the following: 

Material Code: A system-generated unique identifier. 

Material Description: A brief textual label describing the item. 

Unit: The unit of measure (e.g., "EA" for Each). While values appear in decimals, this results from 

averaging partial consumption across production lines and months. 

Monthly Consumption: Quantities used per month over the 48-months. The data is divided into 

training and testing subsets for model development and evaluation. 

Descriptive statistics such as mean, standard deviation, and min–max ranges were computed. For 

instance, Item #A321 showed a monthly average of 154.3 EA with a standard deviation of 47.6, 

indicating moderate variability. During preprocessing, missing values were imputed using linear 

interpolation, and outliers were treated using interquartile range (IQR) filtering. 

Prior to AI adoption, the company relied on manual judgment and simple moving average methods. 

While intuitive, these methods lacked consistency and adaptability to dynamic demand fluctuations, 

prompting the shift to advanced predictive models. 

 

Figure 7: Case study input data starting from Aug-2019 to Jul-2023 
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4.4 Descriptive statistics of demand data 

Descriptive statistics were calculated to summarize the central tendency and variability of monthly 

consumption for each material over the 48-month period (2019–2023). These statistics provide 

essential insights into consumption behavior, which are crucial for selecting suitable forecasting 

models as shown in Table 1. 

• Mean indicates the average monthly consumption. 

• Standard Deviation (SD) measures how much consumption fluctuates from month to month. 

• Higher standard deviations suggest more erratic demand, which poses forecasting challenges 

and may require more advanced or robust models (e.g., LSTM or ensemble methods). 

• Lower standard deviations indicate relatively stable demand, which simpler models (e.g., 

ARIMA or moving average) may handle effectively. 

 

       Table 1: Examples of descriptive statistics for selected raw materials 

Material 

Code 

Description Unit Mean Monthly 

Demand 

Standard 

Deviation 

Notes 

45670 Hex Head Bolt 

M12 

EA 154.3 47.6 Moderate variability 

43960 Galvanized Sheet SQM 2,180.7 582.4 High variability 

44653 Sandwich Panel 

10cm 

EA 384.9 91.3 Stable seasonal demand 

44321 Steel Beam H200 EA 1,045.6 276.8 Sensitive to project 

cycles 

45331 Anchor Bolt Set EA 58.4 12.1 Low variability, high 

accuracy 

5 Result and Discussion 

This chapter presents the results of applying various forecasting models to predict raw material 

demand within a service-oriented construction supply chain. The primary objective is to evaluate the 

accuracy and robustness of five forecasting techniques—XGBoost, Long Short-Term Memory 

(LSTM), Random Forest (RF), Gaussian Regression (GR), and the classical ARIMA model—using 

real-world monthly consumption data. Each model is assessed based on forecasting error and its 

ability to detect temporal demand patterns. 

A standardized data preparation framework was employed to ensure consistency across model 

comparisons. This process included time series cleaning, where missing monthly consumption values 

were filled using linear interpolation, a statistical method that estimates unknown values by fitting a 

straight line between adjacent known data points. This approach preserved temporal continuity and 

ensured the dataset remained complete for model training and evaluation. Additionally, relevant 

temporal features were engineered to enhance the models' ability to learn seasonality and trends. 
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5.1 Forecasting models for demand prediction 

This section describes the development and evaluation of forecasting models for predicting the raw 

material demand in a construction service supply chain. The primary objective is to identify the most 

accurate and reliable predictive model for aiding procurement planning under uncertainty. 

The models implemented include: 

• XGBoost (Extreme Gradient Boosting): A machine learning technique based on decision trees 

that efficiently handles non-linear relationships and interactions as visualized in Figure 8. 

• LSTM (Long Short-Term Memory): A recurrent neural network architecture designed for 

time-series forecasting with long-term dependencies as visualized in Figure 9. 

• Random Forest (RF): An ensemble learning model using multiple decision trees, effective in 

managing overfitting and variance as visualized in Figure 10. 

• Gaussian Process Regression (GPR): A non-parametric Bayesian model offering flexibility 

and uncertainty quantification. as visualized in Figure 11. 

•  ARIMA (AutoRegressive Integrated Moving Average): A traditional statistical model suited 

for linear time-series data as visualized in Figure 12. 

The relevant figures have been consolidated into a single panel using distinct colors for clarity, as 

shown in Figure 13. It is important to note that the consolidated figure exclusively illustrates the 

results for the test period, which spans from the beginning of 2023 to July 2023. 

      Figure 8: XGboost forecasting model graph 
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      Figure 9: LSTM forecasting model graph 

      Figure 10: Random forest model mechanism flow chart  

 

 

 



Fouad et al. / AI-Driven Raw Material Demand Forecasting   

Journal of Supply Chain Management Science, Vol. 6 No. [1-2] 19 

 

Figure 11: Gaussian regression forecasting model graph 

Figure 12: ARIMA forecasting model graph 
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 Figure 13: Forecasting models comparison graph 

5.2 GridsearchCV for Hyperparameter Tuning 

To improve the predictive performance of the developed forecasting models, a systematic 

hyperparameter tuning process was carried out using GridSearchCV. This widely adopted method 

performs an exhaustive search over specified parameter grids in conjunction with cross-validation. 

By evaluating multiple parameter combinations, GridSearchCV helps identify the optimal 

hyperparameters, thus reducing the risk of overfitting and enhancing the model’s generalizability to 

unseen data. 

5.2.1  Validation methodology 

Due to the sequential and autocorrelated nature of time series data, the validation process employed 

a time series–aware cross-validation approach. Specifically, five sequential splits were implemented, 

preserving the chronological order of the data and ensuring that future observations were never 

included in training subsets. This strategy replicates real-world forecasting scenarios and enhances 

the robustness of the tuning process. 

Hyperparameters and Ranges: 

The hyperparameter grids were carefully designed based on prior domain knowledge and empirical 

experimentation. The search ranges for each model are summarized in Table2. 
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Table 2: Key hyperparameters for gridsearch adjustment 

Cross-Validation Methodology  

A cross-validation strategy was adopted to ensure the reliability and generalizability of the forecasting 

models. This method preserves the temporal sequence of data, preventing information leakage from 

future observations, an essential consideration in time series forecasting. The procedure involved five 

sequential splits, where the training set was progressively expanded, and validation was performed 

on subsequent time intervals. 

During hyperparameter optimization, the cross-validation process was integrated with GridSearchCV, 

using Root Mean Squared Error (RMSE) as the primary performance metric. Additionally, R-squared 

values shown in Table 3 were computed to evaluate the models’ explanatory power across folds.     

Table 3: Cross-validation result for the five models 

 

The results demonstrate that LSTM and XGBoost consistently outperformed other models, achieving 

superior accuracy (lower RMSE) and stability (low standard deviation) across validation folds. The 

cross-validation outcomes confirm the robustness of these models in capturing demand variability 

while mitigating overfitting risks. Consequently, model selection was grounded in cross-validated 

performance, ensuring applicability to unseen operational data. 

The integration of cross-validation within GridSearchCV ensured a rigorous selection of 

hyperparameters while maintaining temporal data integrity. Results show that models such as LSTM 

and XGBoost achieved both superior predictive accuracy and robustness, as evidenced by low RMSE 

values and minimal variance across folds. These findings confirm that hyperparameter tuning, when 

coupled with appropriate cross-validation, significantly enhances model performance and 

generalizability. 

5.2.2  Analysis of tuning effectiveness 

The hyperparameter tuning process yielded consistent improvements across most models, as 

evidenced by reductions in error metrics and enhancements in explanatory power (R-squared). Key 

observations include: 

Model Key Hyperparameters Search Range 

XGBoost n_estimators: 1000–10000 (step 1000), max_depth: 3–10, learning_rate: 0.01–

0.3 

Grid Search 

LSTM epochs: 50–150, batch_size: 16–64, units: 32–128, learning_rate: 0.001–0.01 Grid Search 

Random Forest n_estimators: 1000–10000, min_samples_split: 2–5 Grid Search 

Gaussian 

Regression 

Kernel: RBF variations, Noise level: 1e–3 to 1e–1 Grid Search 

ARIMA p: 0–5, d: 0–2, q: 0–5 Grid Search 

Model Mean CV RMSE RMSE Std. Dev. Mean CV R-squared 

ARIMA 121.4 5.8 0.74 

XGBoost 76.2 3.1 0.90 

LSTM 69.1 2.4 0.92 

Random Forest 93.5 3.7 0.87 

Gaussian Regression 85.2 3.3 0.88 
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• XGBoost: Demonstrated notable performance gains, with RMSE reduced by approximately 3.5% 

(from 78.00 to 75.23) and R-squared improved from 0.88 to 0.91. Fine-tuning of n_estimators and 

learning_rate significantly enhanced model fit and reduced forecast bias. 

• LSTM: Reduced RMSE from 70.00 to 68.21 (2.5% improvement), alongside an R-squared increase 

from 0.91 to 0.93. Adjustments to the network architecture and learning rate contributed to these 

gains. 

• Random Forest: Exhibited moderate improvements, with RMSE decreasing by 2.75% and R-

squared increasing from 0.86 to 0.88 following adjustments in tree depth and minimum sample splits. 

• Gaussian Regression: Improvements were also observed, with RMSE reduced by approximately 

3.6% and R-squared increasing from 0.86 to 0.89 after refining kernel parameters and noise levels. 

• ARIMA: No significant changes were detected, indicating that the initial configuration represented 

a local optimum, or that ARIMA's inherent limitations in capturing complex nonlinear patterns were 

a contributing factor. 

While some improvements in error metrics might appear marginal, in the context of large-scale 

manufacturing operations, even slight enhancements in forecast accuracy translate into substantial 

operational and financial benefits. For a company managing over $6 million in monthly raw material 

procurement, improved forecasting accuracy directly supports more efficient inventory management, 

reduces working capital requirements, and mitigates risks of production disruptions. 

5.2.3 Significance of hyperparameter tuning in forecasting performance 

The pivotal role of hyperparameter optimization lies in its ability to significantly enhance both the 

accuracy and stability of machine learning models by systematically tuning critical parameters that 

govern learning behavior.The observed improvements in R-squared values across XGBoost, LSTM, 

Random Forest, and Gaussian Regression highlight the importance of tailoring model configurations 

to dataset-specific characteristics. These findings align with existing literature, emphasizing that 

hyperparameter tuning is not merely a procedural step but a critical determinant of model efficacy in 

practical forecasting applications. 

5.2.4 Statistical validation of model superiority 

The LSTM model significantly outperformed other forecasting models; a statistical comparison was 

conducted using paired t-tests on the cross-validated RMSE values obtained during the five-fold. This 

analysis evaluated whether the observed performance differences were statistically significant or 

potentially due to random variation. As presented in Table 4 the p-values across all comparisons are 

well below the 0.05 significance threshold, indicating that the LSTM model's superior performance 

is statistically significant and not due to chance. 

The results from both the t-tests and confidence intervals clearly demonstrate that LSTM statistically 

and practically outperforms other models in this forecasting application. This strengthens the validity 

of selecting LSTM as the optimal model for demand prediction in this context. 

Table 4: Paired t-test results (LSTM vs other models) 

 

Comparison Mean RMSE Difference t-Statistic p-value Conclusion 

LSTM vs XGBoost -7.1 -5.23 0.006 Significant at 95% CI 

LSTM vs Random Forest -24.4 -9.87 0.001 Significant at 99% CI 

LSTM vs Gaussian Reg. -16.1 -8.45 0.001 Significant at 99% CI 

LSTM vs ARIMA -52.3 -11.12 <0.001 Significant at 99% CI 
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5.3 Model metrics and comparison 

The performance of the five forecasting models—XGBoost, LSTM, Random Forest, Gaussian 

Regression, and ARIMA—was assessed using a comprehensive set of evaluation metrics: Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Forecast Bias, and the R-squared (R²) coefficient. 

Previously defined in Section 4.6, these indicators were used to evaluate training and testing datasets. 

Each metric offers a unique perspective on forecast accuracy and error behavior. For example, RMSE 

penalizes significant errors more than MAE, while MAPE expresses error as a percentage of actual 

values. R-squared helps measure the model’s explanatory power. 

The comparison illustrated in Figure 14 shows that machine learning-based models—particularly 

Random Forest, LSTM, and XGBoost—consistently outperform the traditional ARIMA approach. 

Notably, the LSTM model demonstrated superior error reduction and trend capture performance, 

reinforcing its suitability for time-dependent demand data. 

Figure 14: Comparison of metrics for five algorithms for train and test data 
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This analysis emphasizes the importance of selecting appropriate models and carefully tuning 

hyperparameters to maximize forecasting accuracy and operational value. The consistent superiority 

of ML models underlines the benefits of leveraging data-driven, non-linear methods in environments 

with fluctuating demand patterns. Moreover, the robustness of these models across multiple 

evaluation metrics demonstrates their reliability in real-world forecasting tasks. 

Impact of Hyperparameter Tuning 

Figure 14 presents a comparative analysis of model performance metrics before and after the 

hyperparameter tuning process. The metrics include (MSE), (RMSE), (MAE), (MAPE), Forecast 

Bias, and the R-squared (coefficient of determination). 

Significant improvements were observed post-tuning, particularly in models like LSTM and 

XGBoost, highlighting the critical role that careful hyperparameter optimization plays in enhancing 

model precision. The results underscore that tuning not only reduces error rates but also improves 

generalizability across different material types and demand profiles. 

 

     Figure 15: Comparison of metrics for five algorithms before and after gridsearch adjustment 
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5.4 Forecasting results for 2024 

Based on the comparative evaluation of model performance metrics, the Long Short-Term Memory 

(LSTM) model was identified as the most suitable algorithm for forecasting raw material demand for 

the year 2024. The LSTM model forecasted demand from August 2023 to August 2024, with 

predictions rescaled for interpretability. 

Figure 16 illustrates the LSTM-based forecasted demand over the designated period. The prediction 

reveals two distinct performance phases: 

• Phase 1 (November 2023 – March 2024): A larger discrepancy is observed between predicted 

and actual values during this phase, which is likely attributable to external shocks, such as 

economic fluctuations and supply chain instabilities. 

• Phase 2 (August 2024-November 2023) + (March 2024 – August 2024): Forecast accuracy 

improves significantly, indicating that the model successfully captures the trend during periods of 

market stabilization and reflects better generalization from the trained LSTM 

• Supporting data is included in Table 5 validating the reliability of LSTM predictions  

 

 

            Figure 16: LSTM forecast of raw material demand (Aug 2023–Aug 2024) 

 

Table 5: Metrics result for each LSTM forecasting model for 2024 

 

Phase MSE RMSE MAE MAPE Forecast Bias R-squared  

Phase 1 6120 76.3 56.8 79% -0.83 0.893 

Phase 2 5830 71.2 53.5 71% -0.82 0.905 
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5.5 Operational and financial impact 

This section evaluates the impact of LSTM-based demand forecasting on the operational and financial 

performance of the case-study manufacturing company. By comparing actual outcomes with LSTM-

generated forecasts over a 12-month period, the strategic advantages of integrating predictive 

analytics into supply chain operations are clearly demonstrated. 

5.5.1 Operational improvements 

The integration of LSTM forecasts into inventory and procurement planning yielded measurable 

improvements across several key operational areas:  

• Reduced Stockouts: 

As shown in Table 8, the stockout rate declined significantly from 15% under traditional 

planning to just 3% after the adoption of LSTM-based forecasting—an improvement of 12 

percentage points (an 80% reduction). This substantial decline minimized production 

interruptions and significantly enhanced on-time delivery performance. 

• Lower Overstock Costs: 

Overstock-related expenses were reduced from $253,300 to $84,850, resulting in annual 

savings of $168,450 (a 67% reduction), as detailed in Tables 7 and 8. This improvement is 

attributed to the improved accuracy of LSTM forecasts, which enabled the company to 

maintain leaner inventory levels and minimize unnecessary storage costs. 

• Improved Supplier Coordination: 

The frequency of last-minute order modifications dropped by 45% due to the enhanced 

stability and reliability of monthly forecasts. As a result, supplier alignment improved, leading 

to better adherence to lead times and increased responsiveness throughout the supply chain 

(see Table 8). 

5.5.2 Financial outcomes 

The operational enhancements achieved through LSTM-based forecasting translated directly into 

measurable financial and service performance gains: 

Annual Cost Savings: 

The LSTM forecasting approach resulted in annual cost savings of $168,450, primarily due to 

reductions in overstock-related procurement and inventory holding costs as reported in Table 8. 

Improved Customer Satisfaction: 

The company experienced a 20% improvement in service level performance, driven by improved 

product availability, fewer backorders, and consistent production flows. 

Supply Chain Efficiency: 

The Inventory Turnover Ratio increased from 3.5 to 6.5, reflecting more efficient inventory utilization 

and faster cycle times across departments, an 85% improvement over the traditional approach. 

Comparative results across stockout rates, overstock costs, and supply chain metrics are visualized in 

Table 6, Table 7, and Figure 17, demonstrating the economic and strategic value of LSTM-based 

predictive analytics in modern supply chain management.  
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Figure 17: Overstock cost graph for actual and LSTM forecasting model for 2024 

 

Table 6: Overstock cost result for actual and LSTM forecasting model for 2024 

 

Table 7: Metrics result for actual and LSTM forecasting model for 2024 

 

 

 

Metric Actual Value  Model Value Improvement 

Stockout Rate (%) 15% 3% 12% 

Inventory Turnover Ratio 3.5 6.5 85% 

Cost of Overstocking (USD) $253,300  $84,850  67% 

Month Actual overstock Cost 

(USD) 

Model Overstock Cost 

(USD) 

Difference (USD) Difference 

Percentage  

Aug-23 15,000 3,750 11,250 4% 

Sep-23 13,500 3,000 10,500 4% 

Oct-23 16,500 4,500 12,000 5% 

Nov-23 18,750 6,000 12,750 5% 

Dec-23 19,250 7,500 11,750 5% 

Jan-24 20,300 9,000 11,300 4% 

Feb-24 18000 4500 13,500 5% 

Mar-24 16200 3600 12,600 5% 

Apr-24 19800 5400 14,400 6% 

May-24 22500 7200 15,300 6% 

Jun-24 25200 9000 16,200 6% 

Jul-24 23800 10800 13,000 5% 

Aug-24 24500 10600 13,900 5% 

Total 253,300 84,850 168,450 67% 
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6 Conclusions  

This research introduced a structured framework for evaluating the effectiveness of time series 

forecasting models in predicting raw material demand within the operational context of an Egyptian 

manufacturing firm. Using a three-year dataset, the study applied a comparative analysis of five 

forecasting techniques—Long Short-Term Memory (LSTM), XGBoost, Gaussian Regression, 

Random Forest, and ARIMA—using a unified methodology comprising data preprocessing, 

hyperparameter tuning (via GridSearchCV), and performance assessment based on standard error 

metrics.  

Key Findings 

Among the five models tested, LSTM exhibited the most robust forecasting capabilities. It achieved 

the highest accuracy, with an R² value of 0.93, and delivered the lowest error values across multiple 

indicators: MSE (0.014), RMSE (0.118), MAE (0.092), and MAPE (4.3%). These results confirm 

LSTM’s superior ability to capture non-linear patterns and temporal dependencies in demand data. 

Operationally, the improved forecast accuracy led to reduced overstocking and stockouts, saving the 

company approximately $168,450 annually. Enhanced forecast reliability also improved supplier 

coordination and boosted customer satisfaction by 20%, reinforcing the tangible benefits of predictive, 

data-driven demand planning. 

Clarification of Methodological Scope 

This study focused on global forecasting methods, applying each model to the full dataset without 

disaggregation by region or product category. The forecasting framework was designed to capture 

seasonal patterns and temporal trends across all observations.  

Limitations and Generalizability 

Although the study yields valuable insights, its findings are limited by the scope of a single 

manufacturing company and a one-year implementation period. These results may not generalize 

across industries, regions, or different economic conditions. Additionally, while the methodology 

employed was rigorous, it does not guarantee similar outcomes in settings with different demand 

characteristics or external influencing factors.  

Recommendations for Future Research 

To extend the applicability and robustness of the current findings, future studies are considering the 

following directions: 

• Incorporation of external variables, such as macroeconomic indicators, promotional 

events, supplier lead times, and seasonal factors, to enhance model sensitivity to external 

shocks. 
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• Exploration of ensemble forecasting strategies, combining multiple models to capture 

diverse data patterns and mitigate individual model limitations. 

• represent the methodological framework employed accurately, to evaluate the scalability 

and adaptability of the models under more complex operational settings. 
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Appendix  

    

𝑂𝑏𝑗. : Overall objective function  

𝐿 : Loss function, measuring the difference between actual 𝑦𝑖 and predicted ŷ𝑖  

𝑦𝑖 : Observation 𝑖 actual value  

ŷ𝑖  : Observation 𝑖 predicted value  

𝑛 : Total number of observations  

Ω : Regularization term for model complexity  

𝐾 : Number of trees in the ensemble  

𝛾 : Parameter controlling model complexity (penalty for leaves)  

𝑇 : Total number of leaves in the tree  

𝜆 : Regularization parameter  

𝜔𝑗 : Weight of leaf 𝑗  

𝑓𝑡 : Forget gate output at time 𝑡  

𝜎 : Sigmoid activation function  

𝑊𝑓 : Forget gate weight matrix  

ℎ𝑡−1 : Hidden state from the previous time step  

− − − − − − − − : Input at time 𝑡  

𝑏𝑓 : Bias for the forget gate  

𝑖𝑡 : Input gate output at time 𝑡  

𝑊𝑖 : Input gate weight matrix  

𝑏𝑖 : Bias for the input gate  

𝐶̅𝑡 : Candidate cell state at time 𝑡  

𝑊𝑐 : Cell state weight matrix  

𝑏𝑐 : Cell state bias  

𝐶𝑡 : Cell state at time 𝑡  

𝐶𝑡−1 : Previous cell state  

𝑂𝑡 : Output gate at time 𝑡  

𝑊𝑜 : Output gate weight matrix  

𝑏𝑜 : Output gate bias  

ℎ𝑡 : Hidden state at time 𝑡  

tanh(𝐶𝑡) : Hyperbolic tangent activation  

ŷ : Prediction for regression  

𝑀 : Number of trees in the forest  

ŷ𝑚 : Prediction from tree 𝑚  

𝑀𝑜𝑑𝑒 () : Classification prediction (mode of trees)  

𝑓(𝑥) : Function values at input 𝑥  

𝒩 : Normal distribution notation  

𝑚(𝑥) : Mean function  

𝑘(𝑥, 𝑥′) : Covariance function between points 𝑥 and 𝑥′  

𝐸 : Expectation operator  

𝐾(𝑥, 𝑥’) : Covariance (Kernel) matrix  

𝑓∗ : Function values at new inputs  

𝑋 : Observed input data  

𝑋∗ : New input data for prediction  
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𝑓∗̅ : Predictive mean  

𝑐𝑜𝑣(𝑓∗) : Predictive covariance  

𝜎𝑛
2 : Variance of noise  

𝐼 : Identity matrix  

𝐴𝑅(𝑝) : Autoregressive model of order 𝑝  

∅𝑗 : AR coefficient for lag 𝑗  

𝜖𝑡 : White noise error term  

𝐼(𝑑) : Differencing of order 𝑑  

𝑀𝐴(𝑞) : Moving average model of order 𝑞  

𝜃𝑗 : MA coefficient for lag 𝑗  

𝑀𝐴𝐸 : Mean Absolute Error.  
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