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Abstract – Growth depicts the behavior of a class of inventories whose weight and size increase during their storage. 

Although the phenomenon is fundamental in the food industry, it still faces a lack of academic heed. Our research sheds new 

light on this area by illustrating the inventory system of a rearing farm that breeds fast-growing newborn animals (like broiler 

chickens) and finally slaughters them. The items are prone to different diseases during their growth which can lead to their 

death. This is modeled by applying a mortality rate that can be controlled by investing in preventive practices. The slaughtered 

items (such as chicken meat) that fall into the category of deteriorating inventory are quality controlled and exploited to satisfy 

demand. An analytic solution approach is developed to derive the optimal order quantity of newborn animals, their growth 

period, and action level for preventive practices. Experimental results show that choosing a hatchery with the best purchasing 

cost should be the first priority of the system to manage its costs. It is also depicted that the breeding period is not influenced 

by all input parameters of the model, and the nature of the items plays a key role in this regard. 
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1. Introduction 

Inventory control is a central problem in the area of supply chain management, which attracts notable research 

endeavors due to the substantial role of the inventories in managing costs in the manufacturing and retailing 

industries. The introduction of new concepts in the related context opens up the path to dealing with the raised 

problems more efficiently. Growth is a recently heeded concept in the broad area of inventory management 

(Rezaei 2014), by investigation of which industrial animal farming is expected to experience a transformation in 

handling its inventories. 

Growth is generally referred to as natural development leading to positive physical changes such as size and 

weight increase. Growing items depict the behavior of a group of inventories whose level increases due to the 

weight gain of the items during the stocking. This is prevalent in poultry and livestock industries, and the items 

are the main components of fresh food supply chains. The inventory cycle of a growing item embraces two sub-

cycles: breeding and consumption. At the starting point of the breeding period, newborn animals enter the system 

of the rearing farm and subsequently are fed and raised. Growth is outlined by inventory level increase which 

keeps enhancing until the items are slaughtered, and the sub-cycle is brought to an end. Afterward, the 

consumption period starts, during which the slaughtered items (such as chicken meat) satisfy demand and the 

inventory level is depleted to zero. The slaughtered items usually tend to get spoiled during the time and are 

classified as deteriorating inventory.  

Growing items are prone to different diseases during their breeding, resulting in their death or lower quality of 

the slaughtered inventory. The disease can be controlled by incorporating preventive practices. As an instance, 
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poultry disease at the rearing farms can be effectively controlled by early vaccination, parasitic inspection, 

biosecurity procedures, and multi-age flock separation (Humphrey 2006). 

The inventory control of growing items is of great importance. The items have a propensity to undergo quality 

losses, disease, and even death. So, the costs incurred by any inappropriate replenishment policy are not 

comparable to the case of classic inventories. Besides, this is directly linked to food safety which might threaten 

the health of the consumers. Motivated by the mentioned significance, this research addresses the novel concept 

of growth in the area of inventory management. The paper investigates replenishment policies for growing items 

in a rearing farm. The growth of the inventory is outlined by weight increase which is measured by a weight 

function. To depict a pragmatic condition, the developed model accounts for the disease and death of the items 

during their breeding, and deterioration during the consumption period. It is considered that preventive practices 

can control the mortality rate. The negative impact of over-breeding is also taken into consideration by assuming 

quality degradations. 

Addressing growth in the context of inventory management is an emerging and young direction. There are 

limited related papers, most of which fail to outline the interactive impacts of the number of initial newborn 

animals and the length of their breeding period on the final inventory level. This is heeded in our model by firstly 

incorporating a weight function that can effectively project the growth behavior of the newborn animals and 

secondly taking the number of newborn animals and the breeding period as decision variables. As another 

contribution of our model, the mortality of the items and its link to preventive actions are taken into account. 

Moreover, an age-dependent cost term comprising feeding and holding expenditures is applied. Finally, the 

negative impact of overbreeding, disease, and quality losses is considered to preserve the quality standards of the 

items.  

The remainder of the paper is structured as follows. In Section 2, relevant literature is reviewed. Section 3 

provides the problem statement and the mathematical model. The solution approach is outlined in Section 4. 

Experimental results are derived in Section 5, and finally, Section 6 concludes the paper and proposes directions 

for future research. 

2. Literature Review 

In contrast to growth, deterioration is a rich area of academic research that has attracted numerous studies since 

its introduction. In this regard, the paper refrains from covering the literature body of the deterioration, and 

interested readers are referred to Rabbani et al. (2014), Rabbani et al. (2015), Janssen et al. (2016), Rabbani et al. 

(2016), Rabbani et al. (2017), Shi et al. (2019), Acevedo-Ojeda et al. (2019), Taleizadeh et al. (2019), Agi and 

Soni (2020), and Al-Amin et al. (2020) for studies in this area.  

Rezaei (2014) addressed the problem for the first time by developing an EOQ model for the growing items. A 

mathematical weight function measures the growth, and the feeding procedure is highlighted by linking the costs 

to the age of the items. The results suggest that the breeding period is highly affected by feeding costs. Sebatjane 

and Adetunji (2018) treated the breeding period of the items as a fixed value by defining a targeted final weight 

for each unit item. A portion of the slaughtered inventory is regarded as an imperfect quality that needs to be 

salvaged. This portion is considered to be probabilistic. They applied three growth functions, including linear, 

split linear, and logistics, among which the logistics function can illustrate the growth pattern more accurately. 

Sebatjane and Adetunji (2019) extended their previous research by taking an incremental discount scheme into 

account. Nobil et al. (2019) investigated the replenishment policies in a poultry farm while allowing for shortages. 

They treated the breeding period as a known parameter by specifying the initial and final weight of the chickens. 

Khalilpourazari and Pasandideh (2019) developed a multi-item EOQ model for the growing items under on-hand 

budget, warehouse capacity, and total allowable holding limitations. They applied sequential quadratic 

programming and two novel meta-heuristics to obtain near-optimal solutions for small and large sizes, 

respectively. Malekitabar et al. (2019) proposed an inventory model for Rainbow trout. They considered the initial 

inventory level of the growing items to be known and applied a deterioration rate to depict mortality and an 

increase rate to project growth. The nature of the items is identical during the cycle, which means the demand is 

for the growing items, not the slaughtered inventory. They optimized the periodic profit of the system, which 

implicitly suggests that the problem is analyzed for a one-period case. Gharaei and Almehdawe (2020) developed 

an economic quantity model for growing inventory where a fraction of the items die during their growth. They 

considered the weight of the items to be a linear function of the time. As shown by Sebatjane and Adetunji (2018), 
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it is not an appropriate estimation to reflect the weight increase pattern of the growing items. They showed that 

the system is highly dependent on the initial weight of the items as well as feeding and purchasing costs. 

As the items grow, the ratio of useless weight (such as fat) to their whole weight increases.  Accordingly, a 

fraction of the slaughtered inventory is discarded, which is linked to the length of the breeding period. 

Pourmohammadzia and Karimi (2020) took this point into account by conducting an instantaneous quality control 

process of the slaughtered items at the end of the breeding period. They defined an exponentially breeding-time-

dependent function for a fraction of the items being discarded after their slaughter. Pourmohammad-Zia et al.’s 

work (2021a) is among the few studies in the context of the supply chain, where the simultaneous impact of the 

initial number of newborn animals and the length of the breeding period on the final inventory level are considered. 

The growing items usually fall in the category of deteriorating inventory after slaughter. However, this is mostly 

overlooked in the related literature. Pourmohammad-Zia et al. (2021a) took this into account by modelling a 

continuous inventory level decline at the retailer. Sebatjane and Adetunji (2020) investigated optimal pricing, 

ordering, and shipment decisions in a three-level FSC, where the customer demand is price and freshness-

dependent. Pourmohammadzia et al. (2021b) proposed the other research in this area, where pricing, breeding, 

ordering, and production decisions are studied in a three-level FSC consisting of a rearing farm, a processed food 

manufacturer, and multiple retailers. The manufacturer applies Vendor Managed Inventory (VMI) to handle the 

inventory systems’ of its multiple retailers. Pourmohammadzia (2021c) has reviewed research developments in 

the area of growing inventory and showed that modeling growth of the inventory in the context of operations 

management is still in its infancy, and simplifications, as well as drawbacks, exist in the area. 

2. Model Development  

Notations 

 

𝐶𝑃 Unit purchasing cost  

𝐶𝐵 Breeding (feeding and holding) cost per unit item during the breeding period 

𝐶𝐻 Unit holding cost per unit time during the consumption period 

𝐶𝑂 Fixed ordering cost per cycle 

i Action level of preventive practices  

𝐶𝑃𝐴
𝑖  Preventive actions cost for level i per unit item  

D Annual demand rate 

𝑤𝑡 Weight of a unit item at time t 

𝐼(𝑡) Inventory level at time t 

𝜆(. ) Fraction of the slaughtered items which do not pass quality standards  

𝜂𝑖 Mortality rate under preventive actions of level i during the breeding period 

𝜃 Deterioration rate during the consumption period 

y Number of purchased newborn animals purchased (unit items) 

𝑌(𝑡) Number of animals at time t (unit items) 

Q Order quantity of the newborn animals (units) 

𝑇1 Breeding period 

𝑇2 Consumption period 

T Replenishment cycle (𝑇 = 𝑇1 + 𝑇2) 

TUC Total unit cost 

 

Assumptions 

The following basic assumptions are applied to form the structure of the model:  
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1. The planning horizon is infinite. 

2. Shortages are not allowed. 

3. Replenishment is instantaneous with an infinite rate and negligible lead-time. 

4. The growth and death of the items start to occur from the point they are effectively in stock. 

5. Deterioration and mortality rates are constant. 

Mathematical formulation 

Consider the system of a rearing farm which buys y newborn animals at the beginning of each inventory cycle. 

The items are raised during the breeding period, and growth is outlined by measuring the weight of the animals 

through time. In this regard, a mathematical function is applied which projects the weight of a unit item at time t 

as: 𝑤𝑡 = 𝐴(1 + 𝑏𝑒−𝑗𝑡)−1 (Richards 1959). 𝐴 is the ultimate limiting value (𝐴 > 0) reflecting the maximum 

threshold for the weight of a unit item. 𝑏 is the integration constant which specifies the weight of a unit item at 

time zero (𝑏 > 0), and 𝑗 is a constant rate illustrating the spread of growth curve during the time, which outlines 

the speed of growth (0 < 𝑗 < 1). Note that in this formulation, time is expressed in days. In order to change this 

to year, which is the time basis in our inventory model, 𝑘 = 365𝑗 is substituted (i.e. 𝑤𝑡 = 𝐴(1 + 𝑏𝑒−𝑘𝑡)−1, t in 

years). 

As the growing items are raised, the system bears higher feeding costs for each unit item which is due to their 

weight increase. This is heeded by applying an age-dependent function to drive the breeding costs of the growing 

items during the breeding period. The polynomial and exponential functions are the most vastly applied ones in 

the literature of animal farming (Goliomytis et al. 2003). In this paper, the exponential function (𝐵𝑡 = 𝑒𝛽𝑡, 𝛽 >
0) is applied. 

The growing items might experience disease, which results in their death during the breeding period. The 

mortality rate of the items can be controlled by carrying out preventive practices. Pragmatically, the preventive 

practices embrace several distinct action levels rather than a continuous scheme. In this paper, the preventive 

practices might hold various action levels ranging from very lenient control to very strict one, each of which 

imposes different costs on the system. We have considered five austerity levels for the preventive practices 

involving very lenient (1), lenient (2), normal (3), strict (4), and very strict (5). Apparently, as the austerity level 

increases, preventive practices lead to higher costs and a lower mortality rate.  

As the items grow in the system, the useless portion of their weight (such as fat) rises (Jensen et al. 1974). 

Furthermore, overbreeding can lead to quality losses due to diseases. In order to take these negative impacts of 

overbreeding into account, the slaughtered items are quality controlled, and a portion of them are regarded as 

useless and discarded. Overbreeding raises the risk of disease and fat deposition. Accordingly, the fraction of 

discarded items after quality control should be an increasing function of the breeding period. It also needs to hold 

two other features: First, in time zero, this fraction is negligible (i.e., 𝜆(0) = 0). Second, as the breeding period 

takes very large values, this fraction approaches one (i.e. lim
𝑇1→∞

𝜆(𝑇1) =1).  

Accordingly, 𝜆(𝑇1) = 1 − 𝑒−𝛼𝑇1 ,   𝛼 > 0 holds the mentioned features. The process of quality control is assumed 

to be instantaneous. 

The status of the number of animals at time 𝑡 ∈ [0, 𝑇1) is governed by the following differential equation: 

 (1)  𝑑𝑌(𝑡)

𝑑𝑡
= −𝜂𝑖𝑌(𝑡)      0 ≤ 𝑡 < 𝑇1 

Solving this equation with the boundary condition 𝑌(0) = 𝑦 yields: 

(2) 𝑌(𝑡) = 𝑦𝑒−𝜂𝑖𝑡  

The weight of each unit item at time 𝑡 is 𝑤𝑡 = 𝐴(1 + 𝑏𝑒−𝑘𝑡)−1. Accordingly, the inventory level during 𝑡 ∈ [0, 𝑇1) 
is illustrated by: 
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(3) 𝐼(𝑡) = 𝑌(𝑡)𝑤𝑡 = 𝑦𝐴𝑒−𝜂𝑖𝑡(1 + 𝑏𝑒−𝑘𝑡)−1, 0 ≤ 𝑡 < 𝑇1  

So, the initial inventory level is obtained as: 

(4) 𝑄 = 𝐼(0) = 𝑦𝐴(1 + 𝑏)−1  

Eq. (4) gives 𝑦 =
𝑄(1+𝑏)

𝐴
. Then Eq. (3) can be reformulated as: 

(5) 𝐼(𝑡) = 𝑄(1 + 𝑏)𝑒−𝜂𝑖𝑡(1 + 𝑏𝑒−𝑘𝑡)−1, 0 ≤ 𝑡 < 𝑇1  

The inventory level just before the quality control is 𝑄(1 + 𝑏)𝑒−𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)−1 

Therefore, the quantity of the discarded items yields: 

(6) 𝜆(𝑇1)𝑄(1 + 𝑏)𝑒−𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)−1 = 𝑄(1 + 𝑏)
1−𝑒−𝛼𝑇1

𝑒𝜂𝑖𝑇1(1+𝑏𝑒−𝑘𝑇1)
  

Consequently, the inventory level at time 𝑇1 is outlined as: 

(7) 𝐼(𝑇1) =
𝑄(1+𝑏)

𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1+𝑏𝑒−𝑘𝑇1)
  

This is the ending point of the breeding period when the system enters the consumption period, and the inventory 

is exposed to demand and deterioration. The status of the inventory level at any instant time 𝑡 ∈ [𝑇1, 𝑇] (𝑇 = 𝑇1 +
𝑇2) is ruled by the following differential equation: 

(8) 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝐷 − 𝜃𝐼(𝑡)      𝑇1 ≤ 𝑡 ≤ 𝑇   

Solving Eq. (8) with the boundary condition 𝐼(𝑇) = 0 gives: 

(9) 𝐼(𝑡) =
𝐷

𝜃
 (𝑒𝜃(T−t) − 1)     T1 ≤ 𝑡 ≤ T  

Eq. (9) at 𝑡 = 𝑇1 should provide the same value as in Eq. (7): 

(10) 
𝐷

𝜃
 (𝑒𝜃𝑇2 − 1) =

𝑄(1+𝑏)

𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1+𝑏𝑒−𝑘𝑇1)
  

Then, 𝑄 can be expressed as a function of 𝑇1 and 𝑇2: 

(11) 𝑄 =
𝐷

𝜃(1+𝑏)
 𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒𝜃𝑇2 − 1)  

The total cost of the system involves the following components: 

1. Purchasing cost:  

𝑃𝐶 = 𝐶𝑃Q=𝐶𝑃
𝐷

𝜃(1+𝑏)
 𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒𝜃𝑇2 − 1)  

 
    (12) 

2. Breeding cost: This cost is charged during the breeding period 

𝐵𝐶 = 𝐶𝐵 ∫ 𝑌(𝑡)𝐵𝑡𝑑𝑡 =
𝑇1

0
𝐶𝐵𝑦∫ 𝑒−𝜂𝑖t𝑒𝛽t𝑑𝑡 =

𝑇1

0
𝐶𝐵

𝑄(1+𝑏)

𝐴
∫ 𝑒(𝛽−𝜂𝑖)t𝑑𝑡

𝑇1

0
  

       = 𝐶𝐵
𝐷

𝐴𝜃(𝛽−𝜂𝑖)
𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)(𝑒𝜃𝑇2 − 1)  

 

(13) 

3. Preventive cost: This cost is charged per each unit item of the newborn animals 

𝑃𝐴𝐶 = 𝐶𝑃𝐴
𝑖 𝑦 = 𝐶𝑃𝐴

𝑖 𝑄(1+𝑏)

𝐴
= 𝐶𝑃𝐴

𝑖 𝐷

𝐴𝜃
 𝑒𝛼𝑇1𝑒𝜂𝑖𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒𝜃𝑇2 − 1)  

 
(14) 
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4. Holding cost: This cost is charged during the consumption period 

𝐻𝐶 = 𝐶𝐻 ∫ 𝐼(𝑡)𝑑𝑡 =
𝑇

𝑇1
𝐶𝐻

𝐷

𝜃
∫ (𝑒𝜃(T−t) − 1)𝑑𝑡 = 𝐶𝐻

𝐷

𝜃2 (𝑒𝜃𝑇2 − 𝜃𝑇2 − 1)
𝑇

𝑇1
  (15) 

5. Ordering/Set up cost 

OC = CO (16) 

The inventory cycle is repeated every 𝑇2 units of time. So, the total unit cost is given by: 

𝑇𝑈𝐶 =
𝑃𝐶 + 𝐵𝐶 + 𝑃𝐴𝐶 + 𝐻𝐶 + 𝑂𝐶

𝑇2
 (17) 

Solution Approach 

The first-order optimality conditions for 𝑇𝑈𝐶 are 
𝜕𝑇𝑈𝐶

𝜕𝑇1
= 0 and 

𝜕𝑇𝑈𝐶

𝜕𝑇2
= 0. 

The conditions under which these equations provide unique optimal solutions should also be established. Due to 

the complexity of the formulations, this cannot be done by incorporating the Hessian matrix. In this regard, a 

solution approach similar to (Pentico and Drake 2009) is applied.  

The necessary optimality condition, 
𝜕𝑇𝑈𝐶

𝜕𝑇1
= 0 gives: 

𝜕𝑇𝑈𝐶

𝜕𝑇1
= (

𝐶𝑃𝐷

𝜃(1+𝑏)𝑇2
+

𝐶𝑃𝐴
𝑖 𝐷

𝐴𝜃𝑇2
) (𝑒𝜃𝑇2 − 1) [

(𝛼 + 𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)

−𝑏𝑘𝑒(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1
]   

+
𝐶𝐵𝐷

𝐴𝜃(𝛽−𝜂𝑖)𝑇2
(𝑒𝜃𝑇2 − 1) [

(𝛼 + 𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

−𝑏𝑘𝑒(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

+(𝛽−𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)𝑒(𝛽−𝜂𝑖)𝑇1

] = 0   

 

 

 

(18) 

Then:  

(
𝐶𝑃

(1+𝑏)
+

𝐶𝑃𝐴
𝑖

𝐴
) [(𝛼 + 𝜂𝑖) + 𝑏(𝛼 + 𝜂𝑖 − 𝑘)𝑒−𝑘𝑇1)]  

+
𝐶𝐵

𝐴(𝛽−𝜂𝑖)
[

(𝛼 + 𝜂𝑖)(1 + 𝑏𝑒−𝑘𝑇1)(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

−𝑏𝑘𝑒−𝑘𝑇1(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

+(𝛽−𝜂𝑖)(1 + 𝑏𝑒−𝑘𝑇1)𝑒(𝛽−𝜂𝑖)𝑇1

] = 0       

 

 

(19) 

As shown, the value provided by Eq. (19) for 𝑇1 is independent of  𝑇2. That is to say, under the conditions that 
𝜕𝑇𝑈𝐶

𝜕𝑇1
 provides a unique optimal solution, different values of 𝑇2 establish an identical 𝑇1

∗. So, we need to focus on 

the convexity of 𝑇𝑈𝐶 when 𝑇2 is treated as a fixed value. 
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𝜕2𝑇𝑈𝐶

𝜕𝑇1
2 = (

𝐶𝑃𝐷

𝜃(1 + 𝑏)𝑇2
+

𝐶𝑃𝐴
𝑖 𝐷

𝐴𝜃𝑇2
) (𝑒𝜃𝑇2 − 1) [

(𝛼 + 𝜂𝑖)
2𝑒(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)

−2𝑏𝑘(𝛼 + 𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1

+𝑏𝑘2𝑒(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1

]  

+
𝐶𝐵𝐷

𝐴𝜃(𝛽−𝜂𝑖)𝑇2
(𝑒𝜃𝑇2 − 1)

[
 
 
 
 
 
 
 

(𝛼 + 𝜂𝑖)
2𝑒(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

−2𝑏𝑘(𝛼 + 𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

+2(𝛼 + 𝜂𝑖)(𝛽−𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)𝑒(𝛽−𝜂𝑖)𝑇1

+𝑏𝑘2𝑒(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1(𝑒(𝛽−𝜂𝑖)𝑇1 − 1)

−2𝑏𝑘(𝛽−𝜂𝑖)𝑒
(𝛼+𝜂𝑖)𝑇1𝑒−𝑘𝑇1𝑒(𝛽−𝜂𝑖)𝑇1

+(𝛽−𝜂𝑖)
2𝑒(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1)𝑒(𝛽−𝜂𝑖)𝑇1 ]

 
 
 
 
 
 
 

 

 

 

 

 

 

(20) 

To guarantee the convexity of  𝑇𝑈𝐶, Eq. (20) should be non-negative. It can be shown that if 
𝐶𝑃

(1+𝑏)
+

𝐶𝑃𝐴
𝑖

𝐴
≥

𝐶𝐵

𝐴(𝛽−𝜂𝑖)
 

or (2𝛼 + 𝜂𝑖 + 𝛽)(1 + 𝑏) ≥ 2𝑏𝑘, this is met. See Appendix A for details. Having  𝑇1
∗ on hand, the necessary 

optimality condition for  𝑇2 gives: 

𝜕𝑇𝑈𝐶

𝜕𝑇2
= (

𝐶𝑃𝐷

(1+𝑏)
+

𝐶𝑃𝐴
𝑖 𝐷

𝐴
+

𝐶𝐵𝐷𝑒(𝛽−𝜂𝑖)𝑇1

𝐴(𝛽−𝜂𝑖)
) 𝑒(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1) (

𝜃𝑇2𝑒𝜃𝑇2−𝑒𝜃𝑇2+1

𝜃 𝑇2
2 )   

+
𝐶𝐻𝐷

𝜃2 (
𝜃𝑇2𝑒𝜃𝑇2−𝑒𝜃𝑇2+1

 𝑇2
2 ) −

𝐶𝑂

 𝑇2
2 = 0  

 

(21) 

Consider 𝜒 = 𝑒(𝛽−𝜂𝑖)𝑇1 and 𝜑 = 𝑒(𝛼+𝜂𝑖)𝑇1(1 + 𝑏𝑒−𝑘𝑇1). Eq. (21) can be rewritten as: 

 

𝜕𝑇𝑈𝐶

𝜕𝑇2
=

𝐷

𝜃 𝑇2
2 [

(
𝐶𝑃

(1+𝑏)
+

𝐶𝑃𝐴
𝑖

𝐴
+

𝐶𝐵𝜒

𝐴(𝛽−𝜂𝑖)
)𝜑(𝜃𝑇2𝑒

𝜃𝑇2 − 𝑒𝜃𝑇2 + 1)

+
𝐶𝐻

𝜃
(𝜃𝑇2𝑒

𝜃𝑇2 − 𝑒𝜃𝑇2 + 1) −
𝜃𝐶𝑂

𝐷

] = 0    (22) 

Motivated by Eq. (22), the auxiliary function 𝜙(𝑇2) can be defined as the phrases in []. Since 
𝜕𝑇𝑈𝐶

𝜕𝑇2
= 0 and 

𝜙(𝑇2) = 0 are equivalent, it is enough to show that 𝜙(𝑇2) = 0 gives a unique optimal solution. 

 

𝑑𝜙(𝑇2)

𝑑𝑇2
= [(

𝐶𝑃

(1+𝑏)
+

𝐶𝑃𝐴
𝑖

𝐴
+

𝐶𝐵𝜒

𝐴(𝛽−𝜂𝑖)
)𝜑 +

𝐶𝐻

𝜃
] 𝜃2𝑇2𝑒

𝜃𝑇2    (23) 

 

Suggested by Eq. (23), ∀𝑇2 ∈ (0,∞)  
𝑑𝜙(𝑇2)

𝑑𝑇2
> 0. That is 𝜙(𝑇2) is a strictly increasing function of 𝑇2. On the other 

hand, 𝑙𝑖𝑚 𝜙(𝑇2)
𝑇2→0

= −
𝜃𝐶𝑂

𝐷
< 0 and  𝑙𝑖𝑚 𝜙(𝑇2)

𝑇2→∞
= ∞ > 0. Therefore, there exists a unique value of 𝑇2 where 

𝜙(𝑇2) = 0. Since, 
𝜕𝑇𝑈𝐶

𝜕𝑇2
= 𝜙(𝑇2)

𝐷

𝜃𝑇2
2, at point 𝑇2 = 𝑇2

∗: 

 

𝜕2𝑇𝑈𝐶

𝜕𝑇2
2 |=

𝑇2=𝑇2
∗

𝐷

𝜃

𝜙′−2𝜙

𝑇2
3 |=

𝑇2=𝑇2
∗

𝐷

𝜃

𝜙′

𝑇2
∗2

> 0  
(24) 
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So, there exists a unique optimal value for 𝑇2 which minimizes 𝑇𝑈𝐶(𝑇1
∗, 𝑇2).  

The following simple algorithm is applied to drive the optimal solutions of the problem: 

Algorithm 

Step 0- i=1 

Step 1- If  𝑖 ≤ 5, go to step 2; otherwise go to step 6 

Step 2- Apply a numerical root-finding approach to solve Eq. [19] and obtain 𝑇1
𝑖∗. 

Step 3- Apply a numerical root-finding approach to solve Eq. [22] and obtain 𝑇2
𝑖∗ for, 𝑇1

𝑖 = 𝑇1
𝑖∗.   

Step 4- Calculate 𝑇𝑈𝐶𝑖(𝑇1
𝑖∗, 𝑇2

𝑖∗) by Eq. [17]. 

Step 5- 𝑖 = 𝑖 + 1 and go to step 1. 

Step 6- 𝑖∗ = arg𝑚𝑖𝑛
𝑖

(𝑇𝑈𝐶𝑖), 𝑇𝑈𝐶∗ = 𝑇𝑈𝐶  𝑖∗ , (𝑇1
∗, 𝑇2

∗) = (𝑇1
𝑖∗∗, 𝑇2

𝑖∗∗). 

Step 7- End 

3. Experimental Results 

The proposed structure is illustrated through numerical experiments for a specific type of newborn animals 

named “broiler chickens”. The parameters of the weight function are estimated by function approximation 

techniques based on a real data set of an industrial rearing farm, according to which the parameters are outlined 

as: 

𝐴 = 3200, 𝑏 = 69.4 and 𝑔 = 0.12, 𝑘 = 0.12 ∗ 365 = 43.8. Then, the weight function is outlined as 𝑤𝑡 =
3200(1 + 69.4𝑒−43.8𝑡)−1. Moreover, the exponential breeding function 𝐵(𝑡) and the disposal rate 𝜆(𝑇1) are ruled 

by: 𝐵(𝑡) = 𝑒76𝑡 and 𝜆(𝑇1) = 1 − 𝑒−𝑇1  respectively. Identical parameters of the problem are taken from Rezaei 

(2014) and adapted to our model. The values of the applied parameters are as follows: 

 

𝜃 = 0.2, 𝜂 = (0.27,0.25,0.2,0.16,0.12), 𝐶𝑃 = 0.005 €/gr, 𝐶𝐵 = 0.02 €/unit item,  

𝐶𝐻 = 0.001 €/gr/year, 𝐶𝑂 = 500 €/cycle, 𝐶𝑃𝐴 = (0.04,0.05,0.06,0.07,0.08) €/unit item and 𝐷 = 100 ×
106gr/year. 

 

Solving this problem provides the following results: 

 

Preventive action level: Very lenient   

𝑇1 = 0.08345 year 𝑇2 = 0.09203 year 𝑄 = 409901.96 gr 𝑇𝑈𝐶 = € 50601.37  

 

The results suggest that 409.9 kg (roughly 9109 unit items) of newborn chicks are bought at the beginning of 

each cycle. These are bred for 31 days, during which the final weight of each chicken reaches 1.15 kg, and around 

2.5% of the growing items die due to disease. The items get slaughtered, and then quality is controlled when an 

additional 8% of the inventory is discarded due to quality losses. The slaughtered items, which are prone to 

deterioration, satisfy the customer demand for 33 days. This indicates that the inventory cycle recurs every 33 

days. The rearing farm takes “Very lenient” preventive practices as its optimal policy. This may stem from a very 

healthy breeding environment or considerably high preventive costs. Later, this will be discussed in further detail. 

Figure 1 projects the total unit cost for this problem, which, as shown, is a convex function. 
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Figure 1. The Total Unit Cost. 

The average age of broiler chickens in the EU (and some other regions) is 40-42 days (Mebratie et al. 2018), 

while our results suggest reducing it to 31 days. Solving the problem under known 𝑇1 = 42 days, yields the 

following results: 

 

Preventive action level: Very lenient 

𝑇1 = 0.1151 year 𝑇2 = 0.09534 year 𝑄 = 229251.93 gr 𝑇𝑈𝐶 = € 109426.64  

 

This indicates that the supplier buys 5094 newborn chicks at each cycle and raises them for 42 days when the 

final weight of each unit item reaches 2.21 kg. Then, 3.06% of growing items die during their breeding period, 

and 10.87% of the slaughtered inventory is discarded as low-quality items. As projected, food waste and the costs 

of the system are higher in this case.  

This 31-day breeding period is not a one-size-fits-all policy. The optimal slaughtering age of broiler chickens 

highly depends on the growth pattern of the items (outlined as the weight function) and can vary from one farm to 

another based on growth features and system costs. In particular, this is optimal for our data-set and the estimated 

weight function. This emphasizes the importance of incorporating the optimization method instead of empirical 

practice. The first step to use this optimization model is to accurately estimate the parameters of the weight 

function.  

Sensitivity analysis plays an efficient role in getting a better understanding of the behavior of the model. In 

this regard, sensitivity analysis on the key parameters of the model, including 𝐶𝑃, 𝐶𝐵, 𝐶𝐻, 𝐶𝑂 and 𝐶𝑃𝐴 is carried 

out by changing each parameter by -50%, -25%, +25%, and +50%, taking one at a time and keeping the others 

fixed. The results are provided in Table 1. Figure 2a to Figure 2d illustrate these results graphically. 
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Table 1. Sensitivity analysis on cost parameters. 

𝑻𝑼𝑪 𝑸 𝑻𝟐 𝑻𝟏 
Preventive 

Practice level 

Changes  

(%) 

Parameter 

38646.42 

(-23.63%) 

490524.39 

(+19.67%) 

0.09422 

(+2.38%) 

0.07789 

(-6.66%) 

1 -50% 

𝐶𝑝 

44853.33 

(-11.36%) 

442482.97 

(+7.95%) 

0.09307 

(+1.13%) 

0.08107 

(-2.85%) 

1 -25% 

56030.28 

(+10.73%) 

385716.69 

(-5.9%) 

0.09107 

(-1.04%) 

0.08535 

(+2.28%) 

1 +25% 

61220.22 

(+20.98%) 

366710.91 

(-10.54%) 

0.09016 

(-2.03%) 

0.08127 

(+4.17%) 

1 +50% 

42220.46 

(-16.56%) 

349660.96 

(-14.69%) 

0.09312 

(+1.18%) 

0.09019 

(+8.08%) 

1 -50% 

𝐶𝐵 

46761.56 

(-7.59%) 

382669.67 

(-6.64%) 

0.09252 

(+0.53%) 

0.08628 

(+3.39%) 

1 -25% 

53997.04 

(+6.71%) 

433529.39 

(+5.76%) 

0.09161 

(-0.45%) 

0.08123 

(-2.66%) 

1 +25% 

57078.49 

(+12.8%) 

454639.52 

(+10.91%) 

0.09123 

(-0.87%) 

0.07941 

(-4.85%) 

1 +50% 

47835.94 

(-5.46%) 

542565.64 

(+32.44%) 

0.1215 

(+32.22%) 

0.08345 

(0%) 

1 -50% 

𝐶𝐻 

49323.15 

(-2.53%) 

462638.16 

(+12.86%) 

0.1037 

(+12.68%) 

0.08345 

(0%) 

1 -25% 

51739.51 

(+2.25%) 

371861.59 

(-9.28%) 

0.08356 

(-9.2%) 

0.08345 

(0%) 

1 +25% 

52775.39 

(+4.29%) 

342756.65 

(-16.38%) 

0.07707 

(-16.25%) 

0.08345 

(0%) 

1 +50% 

47538.2 

(-6.05%) 

289583.91 

(-29.35%) 

0.06519 

(-29.16%) 

0.08345 

(0%) 

1 -50% 

𝐶𝑂 

49199.51 

(-2.77%) 

354839.58 

(-13.43%) 

0.07977 

(-13.32%) 

0.08345 

(0%) 

1 -25% 

51837.41 

(+2.44%) 

458450.24 

(+11.84%) 

0.1028 

(+11.7%) 

0.08345 

(0%) 

1 +25% 

52955.67 

(+4.65%) 

502371.33 

(+22.56%) 

0.1126 

(+22.35%) 

0.08345 

(0%) 

1 +50% 

48619.89 

(-3.91%) 

420171.02 

(+2.5%) 

0.09239 

(+0.39%) 

0.08268 

(-0.93%) 

1 -50% 

𝐶𝑃𝐴 

49615.78 

(-1.95%) 

414898.16 

(+1.22%) 

0.09221 

(+0.19%) 

0.08307 

(-0.45%) 

1 -25% 

51577.19 

(+1.93%) 

405157.65 

(-1.16%) 

0.09186 

(-0.18%) 

0.08382 

(+0.44%) 

1 +25% 

52543.78 

(+3.84%) 

400643.48 

(-2.26%) 

0.09168 

(-0.38%) 

0.08416 

(+0.85%) 

1 +50% 
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Figure 2a. Changes in the optimal 𝑇𝑈𝐶 with 

variations in input parameters. 

Figure 2b. Changes in the optimal 𝑄 with 

variations in input parameters. 

      

Figure 2c. Changes in the optimal 𝑇1 with 

variations in input parameters. 

Figure 2d. Changes in the optimal 𝑇2 with 

variations in input parameters. 

 

The numerical results provide fruitful insights as follows: 

 

1. By decreasing unit purchasing cost (𝐶𝑃) an increase in order size (𝑄) and a decrease in total unit cost 

(𝑇𝑈𝐶) are observed. Since a larger quantity of newborn chickens enter the system, the breeding period 

(𝑇1) gets shorter. A slight increase in 𝑇2 is also observed, which shows that the increase in 𝑄 outweighs 

the decrease in 𝑇1. The results imply that if the rearing farm has the option to choose among different 

hatcheries, it can effectively shorten its growth period by selecting the one with a smaller 𝐶𝑃. This is 

specifically advantageous under the conditions of a newly emerging disease among the broiler chickens 

or the desire of the customers to buy younger items.  

2. Decreasing unit breeding cost (𝐶𝐵) leads to an increase in 𝑇1 and a decrease in 𝑄. This is because by 

lowering 𝐶𝐵, the breeding costs of the system decrease. So it is optimal for the system to decrease the 

ordering quantity and increase the breeding period. The increase in 𝑇2 implies that the impact of the 

rise in 𝑇1 is higher than the decrease in 𝑄.  Decreasing 𝑇𝑈𝐶 as the result of lowering 𝐶𝐵 is trivial. The 

results also suggest that if the rearing farm confronts a limitation in the periodic purchasing budget, it 

can decrease the ordering quantity by decreasing the breeding costs. This is achievable by amending 

the holding and flourishment facilities as well as lowering the feeding costs. It also should be noted 

that, in comparison to other parameters, the breeding cost has the most influential effect on the breeding 

period. 
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3. The holding cost is charged during the consumption period. So, it comes as no surprise that decreasing 

𝐶𝐻 leads to an increase in 𝑇2. The breeding period is insensitive to changes in 𝐶𝐻 which builds a direct 

link between the changes in 𝑇2 and 𝑄. Precisely, longer 𝑇2 implies that higher inventory is required to 

satisfy the demand, which results in larger 𝑄.  Since 𝑇1 remains unchanged, the percentage of changes 

in 𝑇2 and 𝑄 are almost the same. 

4. Since the inventory cycle recurs every 𝑇2 units of time, decreasing 𝐶𝑂 leads to a significant decrease 

in 𝑇2. A shorter consumption period suggests a rise in the frequency of ordering. This leads to a 

decrease in ordering quantity (𝑄). 𝑇1 is insensitive to changes in 𝐶𝑂 and as a result, the percentage of 

changes in 𝑇2 and 𝑄 are almost identical. 

5. 𝐶𝑃𝐴 is charged per each unit item of the initial inventory. Therefore, decreasing the cost of preventive 

practices provides the rearing farm with the opportunity to increase the initial order size (𝑄). Larger 𝑄 

leads to a slight decrease in the breeding period. The increase in 𝑄 outweighs the decrease in 𝑇1 and 

consequently a slight increase in 𝑇2 is observed. 

 

Regarding the costs of the system, the unit purchasing cost is the most influential cost factor (see Figure 2a). 

It suggests that selecting a hatchery with the most reasonable 𝐶𝑃 should be the first priority of the rearing farm 

when handling the costs of the system. The breeding period is mostly dependent on in 𝐶𝑃 and 𝐶𝐵 (see Figure 2c). 

It should be noted that the nature of the items (shown in terms of growth pattern) is the most significant factor in 

the changes of the breeding period. The consumption period, in turn, is highly influenced by 𝐶𝐻 and 𝐶𝑂 (see Figure 

2d). Since the ordering quantity is characterized by both the breeding and consumption period, as expected, 𝑄 is 

highly sensitive to changes in  𝐶𝑃 ,  𝐶𝐵 as well as 𝐶𝐻 and 𝐶𝑂 (see Figure 2b). 

As Table 1 suggests, the preventive practice gets optimal at level 1 (very lenient actions) for different cases. 

This may stem from the following reasons: (1)The breeding environment is in a great condition such that very 

lenient preventive practice is efficient enough to manage the mortality rates of the items (𝜂 is low). (2)The cost of 

preventive practice is so high that maintaining it at the lowest possible level is more beneficial than lowering the 

mortality rate. (3)The cost increase of applying stricter preventive actions outweighs the benefits of decreasing 

the mortality rate. Accordingly, it is fruitful to investigate the effect of different pairs of 𝜂 and 𝐶𝑃𝐴 on the system, 

the numerical results of which are provided in Table 2. 

 

Table 2. Analysis on 𝐶𝑃𝐴 and 𝜂. 

𝑻𝑼𝑪 𝑸 𝑻𝟐 𝑻𝟏 
Preventive 

Practice  level 
𝑪𝑷𝑨 and 𝜼 

50601.37 406897.63 0.08784 0.08362 1 
𝜂 =(0.8,0.7,0.6,0.5,0.4) 

𝐶𝑃𝐴 =(0.04,0.05,0.06,0.07,0.08) 

47613.06 425748.92 0.09257 0.08227 1 
𝜂 =(0.27,0.25,0.2,0.16,0.12) 

𝐶𝑃𝐴 =(0.01,0.0125,0.015,0.0175,0.02) 

48801.75 423700.66 0.08863 0.08241 3 
𝜂 =(0.8,0.7,0.6,0.5,0.4) 

𝐶𝑃𝐴 =(0.01,0.0125,0.015,0.0175,0.02) 

48462.88 419926.29 0.09281 0.08266 5 
𝜂 =(0.8,0.65,0.5,0.35,0.2) 

𝐶𝑃𝐴 =(0.01,0.0125,0.015,0.0175,0.02) 

 

As the results project, either by raising the mortality rate (and keeping 𝐶𝑃𝐴 constant) or by lowering preventive 

action costs (and keeping 𝜂 constant), the level of preventive practice does not undergo any shifts. This suggests 

that, among the aforementioned three reasons for the constancy of the action levels, the first and second ones are 

not authentic. In order to check the validity of the third one, we have simultaneously increased 𝜂 and decreased 
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𝐶𝑃𝐴; so that a smaller cost increase would result in a larger reduction of mortality rate. The results depict that the 

action level shifts from very lenient to normal (level 3), implying that the reduction of mortality outweighs the 

increase in costs. By enlarging the difference of 𝜂 between variant action levels, we observe another shift from 

the normal action level to the very strict one.  

4. Conclusion  

 
In this paper, an inventory model for growing/mortal items is introduced. It illustrates the system of a rearing 

farm that buys newborn animals at the beginning of each cycle and breeds them. A fraction of the items dies during 

their growth due to disease. This mortality rate can be controlled by investing in preventive practices. The items 

are quality controlled after getting slaughtered which helps to preserve the quality of the inventory and prevent 

overbreeding. An analytic solution approach is developed to optimize the number of newborn items and the 

breeding period. Numerical results show that the unit purchasing cost has the most influential role on the total cost 

of the system. Furthermore, it is projected that the level of preventive actions totally depends on the benefits of 

the practices. Precisely, the system shifts to stricter levels only when the reduction in mortality rate is considerable 

enough in comparison to the rise in investments. 

There exist some promising directions to extend this work. Admissible shortages can be added to the 

assumptions to model the problem.  Embedding uncertainty into the problem is another future direction. 

Specifically, taking the uncertainty of growth pattern and mortality rate into account helps to outline a more 

practical situation. Finally, the impact of the quality of the slaughtered inventory on the customers’ willingness 

can be analyzed by linking demand to the length of the breeding period.   
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