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Abstract
Aircraft trajectories can often be interpreted in terms of two fundamental path types: orthodromies (great-

circle routes, representing the shortest path on the globe) and loxodromies (constant track-angle paths).

While great circles typically define the reality of intercontinental flight planning, operational constraints,

such as waypoint routing and air traffic control instructions, mean that actual trajectories are composed of

multiple segments, not always conforming neatly to one type or the other. Recognizing which segments

correspond to orthodromies or loxodromies can provide semantic meaning to flight data, transforming

raw positional information into interpretable patterns of pilot intent or controller intervention.

We present a method to automatically identify these trajectory segments without any prior knowledge

about waypoints. The approach leverages map projections: with theMercator projection, by construction,

loxodromies appear as straight lines, while orthodromies do so in gnomonic projections. By detecting

straight-line portions in these transformed trajectories, we can classify corresponding segments of the

original flight path. This may enable the identification of even short segments, offering insights into flight

planning and deconfliction manoeuvres—for example, detecting when an aircraft temporarily deviates

from its planned orthodromic route under controller instruction. Using an open trajectories dataset where

13 % of the total duration is labeled as deconfliction maneuvers, the identified loxodromies have a duration

of 2 % of the total duration while 39 % of these 2 % can be matched with deconfliction maneuvers, higher

than the 13 % prior.
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1. Introduction

Automatic Dependent Surveillance-Broadcast (ADS-B) is basically a system where aircraft broad-

cast their positions approximately each second, and can be received by ground stations and other

aircraft equipped with ADS-B receivers. The development of crowd-sourced networks of receivers

such as the OpenSky Network [1] has popularized the analysis of ADS-N trajectory among the re-

search communities and even a larger audience. Post-analysis of ADS-B trajectory data often raises

a number of questions about what occurs to a flight along its trajectory. Typical questions that arise

are: Is the aircraft climbing, descending, or flying at a constant flight level? Is it turning, or flying

straight towards a navaid? Is it following its flight plan, or is it deviated by an air traffic controller
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so as to avoid a meteorological event or another aircraft? Answers to these questions are not readily

available in raw, unlabelled ADS-B data.

Previous works have studied how to detect flight phases [2, 3, 4], turns [5], holding patterns [6],

deconfliction actions [7], and more patterns [8] in ADS-B trajectories. Using additional data from

theAIP (Aeronautical Information Publication), [9] identifies the route being followed by the aircraft.

In previous works [10, 11], lateral deviations were extracted fromADS-B and flight plan data in order

to detect deconfliction events. These two papers rely on the method aligned_on_navpoint in the

traffic library, which requires flight plan data or at least a set of existing beacons/navaids.

In this paper, we propose a method to identify orthodromy and loxodromy segments in ADS-B

trajectories without any use of flight plan data nor beacons/navaids data. When applicable, this

approach can detect when an aircraft follows a fixed heading (loxodromy) or when it follows a

geodesic route (orthodromy) towards a navaid, without the help of any additional flight plan data.

The rest of this paper is organized as follows. Section 2 describes the proposed method, and gives

an illustration on a well-chosen example. In section 3, we describe the dataset used for a larger

experiment, as well as a baseline method and the metrics used for comparison. Section 4 provides

some results, and section 5 concludes the paper.

2. Method

Our method relies on two projections of the latitude and longitude positional data in an (x, y) space:
the gnomonic projection that transforms great circles into straight lines in the projected space, and

the Mercator projection, in which any course at constant bearing is a straight segment. Due to

the properties of our two projections, trajectory segments exhibiting a constant track angle in a

gnomonic (resp. Mercator) projection are likely orthodromic (resp. loxodromic) segments. The final

decision is based on the maximum distances between the actual trajectory, the orthodromy, and the

loxodromy.

2.1 Identifying constant segments

After projection (gnomonic or Mercator), each considered trajectory is smoothed and the track angle

is computed for each point. The trajectory segments having a constant track angle (see Figure 1) are

then extracted by applying two successive filters to the smoothed trajectory.

The first filter uses a maximum error threshold max_error_thresh to detect time intervals during

which the track angle remains approximately constant. This filter selects all the segments (i, j) such
that max

i≤k≤j
angles[k]−min

i≤l≤j
angles[l] is inferior tomax_error_thresh. Only the maximal valid segments

are considered i.e. valid segments that are not included in any other valid segment. In this paper, the

function generating such segments is named ConstantSegments(angles,max_error_thresh). It uses a
slidingwindow and its worst case complexity isO (n) where n is the number of points inside the array

angles containing the successive track angles of the trajectory. The max_error_thresh threshold in

this filter is supposed to account for small variations around a constant track angle value. However,

in some cases, this filter might select trajectory segments where the track angle is slowly increasing

(or decreasing) while staying within the bounds defined by this threshold. Also, even for segments

that are truly of constant track angle, there may remain a few points at the extremities that actually

belong to the end or the beginning of a turn.

In order to filter out all these cases, we fit a linear model to the track angle measurements in each

temporal segment selected by the first filter, and then consider both the deviation from the lin-

ear model at the extremities of the segment and the slope of the fitted line. The points at the ex-

tremities of the segment are recursively removed when the gap with the linear model is beyond
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a threshold thresh_border . This recursive process stops when both extremities have values closer

than thresh_border from the linear model. The resulting segment (if any) is then identified as be-

ing of constant track angle if the slope of the fitted line is strictly smaller than a chosen threshold

thresh_slope.

The function IsConstant implementing this second filter is described at the beginning of Algo-

rithm 1.

The above two-step filtering process might end up with many segments (i, j) satisfying the various

threshold conditions. The filtering procedure prevents from selecting segments included in other,

larger segments. However, it does not prevent from extracting overlapping segments.

In order to extract the largest possible non-overlapping segments, we prioritize segments by their

lengths and prune overlapping segments according to an Intersection over Union (IoU) threshold.

This Intersection over Union metric is described in SubSection 3.3.2. The algorithm first sorts all

segments, then iteratively selects the longest segment and discards others that overlap beyond the

allowed threshold thresh_iou. This ensures a non-redundant set of segments.

The Table 1 summarizes the thresholds and their values of the presented method in this paper, see

Algorithm 1 and Algorithm 2. They were found using a grid search to maximize a matching criteria

as described in Sub-Section 4.1.1.

The extraction process described above is summarized in the pseudo-codes Algorithm 1 and Algo-

rithm 2.

Table 1. Summarizes the thresholds and their values of the method identifying constant angle segments, see Algorithm 1
and Algorithm 2.

threshold parameter max_error_thresh [◦] thresh_border [◦] thresh_slope [◦/s] thresh_iou [-]
value 0.5 0.1 0.001 0.1

Algorithm 2 Sort by length and filter by IoU

1: function SORTBYLENGTHTHENFILTERBYIOU(L, thresh_iou)
2: L← sort(L,by = interval length)
3: R← [ ] ⊲ Initialize result set
4: while L ≠ ∅ do
5: x ← pop_last(L) ⊲ Take best element
6: append x to R
7: L← [ y ∈ L | IoU(x.interval, y.interval) ≤ thresh_iou, ]
8: end while
9: return R

10: end function

2.2 Discriminating between an Orthodromy and a Loxodromy

Before discussing the criteria for discriminating between orthodromy and loxodromy, let us remind

that there are cases when this is impossible. When an aircraft flies towards the North or towards the

South, it follows both an orthodromy (a meridian) and a loxodromy (constant track angle 0 or 180

degrees) and there is no way to assign the trajectory exclusively to one category. The same problem

occurs for flights following the equator.

However, in most cases, the orthodromy and loxodromy on the globe are distinct trajectories. Like-

wise, the farther from the equator and the more in a general East-West or West-East direction, the

more distinct they are. Finally, the longer the trajectory segment, the easier it is to discriminate
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Algorithm 1 Extract constant angle segments

1: function ISCONSTANT(i, j, t, angles, thresh_border , thresh_slope)
2: linear_model ← FitLinearModelonMedian(t, angles) ⊲ a linear model fitting the median, obtained with an absolute

value loss
3: newi← increase i till |angles[i] − linear_model.predict(t[i])| < thresh_border
4: newj ← decrease j till |angles[j] − linear_model.predict(t[j])| < thresh_border
5: if newi == i and newj == j then
6: if abs(linear_model.slope) < thresh_slope then
7: return (i,j)
8: else
9: return None

10: end if
11: else
12: return IsConstant (newi, newj, t, angles, thresh_border , thresh_slope)
13: end if
14: end function
15: functionEXTRACTCONSTANTAFTERPROJECTION(proj, t, lats, lons,max_error_thresh, thresh_border , thresh_slope, thresh_iou)
16: xs, ys← Projection(proj, lats, lons) ⊲ apply projection, gnomonic or Mercator
17: spline← CubicSmoothingSpline(t, xs, ys) ⊲ fit a spline on position measurements
18: dx_dt, dy_dt ← EvaluateFirstDerivative(spline, t) ⊲ compute derivative using the fitted spline
19: angles← arctan2(dy_dt, dx_dt) ⊲ compute angles using the speed along the x and y axis
20: res← empty
21: for (i, j) in ConstantSegments(angles,max_error_thresh) do
22: seg ← IsConstant(i, j, t, angles, thresh_border , thresh_slope) ⊲ refine and decide wether the segment is constant

or not
23: if seg is not None then
24: add seg to res
25: end if
26: end for
27: res← SortByLengthThenFilterByIoU (res, thresh_iou) ⊲ merge segments that are close to each other in terms of

intersection over union metrics, considering the indices (i,j) as intervals to be compared
28: return res
29: end function
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between orthodromy and loxodromy. To account for these limitations and identify when we cannot

discriminate between orthodromy and loxodromy, the maximum distance between the two curves is

computed. If this distance is large enough (larger than a threshold thresh_loxo_ortho), the curves
are deemed discriminable. When this is the case, we still need to evaluate how close the actual

trajectory is to the two curves in order to assign it to the corresponding category.

Formally, a trajectory segment is confirmed as an orthodromy if dist(traj, ortho) < r × dist(loxo, traj)
and dist(traj, ortho) < r × dist(loxo, ortho), and dist(loxo, ortho) > thresh_loxo_ortho, where r is

a factor smaller than 1 that guarantees that the trajectory is sufficiently close from one of the two

curves while being far enough from the other. The logic is similar for the loxodromy. For the example

in Figure 1, and all the results in this paper, we chose r = 0.5 and thresh_loxo_ortho = 30 m. The

obtained functions IsOrhtodromyOnly and IsLoxodromyOnly are described in Algorithm 3.

Algorithm 3 Algortihms to discriminate between loxodromy and orthodromy

1: function ISORHTODROMYONLY(segment, traj_adsb, r = 0.5, thresh_loxo_ortho = 30m)
2: (i, j)← segment ⊲ indexes of the starting and ending point
3: loxo← generating loxodromy connecting point i to point j of traj_adsb
4: ortho← generating orthodromy connecting point i to point j of traj_adsb
5: return max_dist(traj_adsb, ortho) < r · max_dist(traj_adsb, loxo)

∧max_dist(traj_adsb, ortho) < r · max_dist(ortho, loxo)
∧max_dist(ortho, loxo) > thresh_loxo_ortho

6: end function
7: function ISLOXODROMYONLY(segment, traj_adsb, r = 0.5, thresh_loxo_ortho = 30m)
8: (i, j)← segment ⊲ indexes of the starting and ending point
9: loxo← generating loxodromy connecting point i to point j of traj_adsb

10: ortho← generating orthodromy connecting point i to point j of traj_adsb
11: return max_dist(traj_adsb, loxo) < r · max_dist(traj_adsb, ortho)

∧max_dist(traj_adsb, loxo) < r · max_dist(ortho, loxo)
∧max_dist(ortho, loxo) > thresh_loxo_ortho

12: end function

2.3 Illustration of the method on one example
Figures 1 and 2 illustrate the method on a selected example. Table 2 shows the pairwise maximum

distances between the actual, loxodromic, and orthodromic trajectories for the segments identified

in Figure 1. The segment just before the loxodromy segment was discarded and does not appear

in Table 2 because it did not meet our distance criteria. The loxodromy is most likely a "turn left"

deconfliction manoeuvre instructed by an air traffic controller, with a heading that resulted in a

constant 80
◦
track angle (see Figure 2).

Table 2. Flight duration, and pairwise maximum distances between loxodromy, orthodromy and actual ADS-B trajectory,
for each identified segment.

identified segment number duration [s] ortho-loxo [m] adsb-loxo [m] ortho-adsb [m]

loxodromy 1 157 34.70 13.72 42.63
orthodromy 1 304 114.82 107.64 13.68
orthodromy 2 507 375.17 383.71 31.60
orthodromy 4 387 207.00 199.88 27.34

On this example, we see that it is possible to identify and discriminate loxodromy and orthodromy

segments that are fairly short (a few minutes in Table 2). A more comprehensive study is required to

explore the limits of this method regarding the possibility to isolate constant track angle segments

in noisy data, and the ability to discriminate between loxodromy and orthodromy for trajectories

close to a meridian direction.
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Figure 1. Illustration on how the method works on a well-selected example.
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ADS-B trajectory
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Orthodromy #3
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Deviated (predicted)
Closest neighbour
Flight plan navaid

Figure 2. Loxodromy is likely a deconfliction manoeuvre
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3. Experiment setup

To our knowledge, there is no dataset that contains the ground truth on whether the aircraft flies an

orthodromy or a loxodromy. However, we can compare the method presented in this paper with a

baseline method of the Python traffic library, on a dataset of traffic samples. The baseline used for

comparison is the method aligned_on_navpoint of the library traffic. It identifies orthodromic

segments only, by testing the alignment to the orthodromic routes leading to candidate navaids.

This method requires knowing the set of navaids that the flight might align to.

3.1 Data set

In order to have a good chance to actually observe both orthodromic and loxodromic segments in

aircraft trajectories that are usually made mostly of orthodromic segments, we shall consider traffic

samples where lateral deconfliction actions were taken.

Many of the deconfliction instructions issued to pilots by air traffic controllers are "turn left or right"

lateral maneuvers enforcing a relative heading change (e.g. "turn left 10 degrees") or an absolute one

(e.g. "turn left, heading 260 degrees). The new trajectory resulting from such a heading change is a

loxodromy.

The data set used in this section is the catalogue of deconfliction cases extracted in [12], using a data-

driven heuristic method. This dataset contains traffic samples where some flights are tagged by the

heuristic as being deviated due to a conflict resolution. Each sample contains the deviated aircraft

and the surrounding traffic, as well as additional information concerning the ATC sector geometry

and the flight plans of the involved aircraft. These flight plans are the last ones filled before flight,

and they contain the waypoints of the planned route of each aircraft. In the following results, these

waypoints are used as candidates for alignment by the baseline method aligned_on_navpoint to

detect orthodromic trajectory segments.

The dataset of deconfliction cases in [12] considers only lateral deviations occurring at a constant

altitude, above 20,000 ft and that last at least 30 s. To be able to compare ourmethod to the baseline on

the maneuvered aircraft identified in this dataset, a similar filter is applied to the trajectory segments

identified by both methods. We select from the dataset of deconfliction cases a subset from the

AIRAC cycle 2207, with 3,816 deviated trajectories where the lateral deviation lasts at least 120 s.

3.2 Baseline method

The method aligned_on_navpoint of the Python library traffic takes a trajectory as input an re-

turns the list of trajectory segments that are aligned to a waypoint of the flight plan. An aircraft

is said to be aligned to a given waypoint if its track angle is close to the one required to follow an

orthodromic (great-circle) trajectory toward this waypoint. A threshold of 0.5
◦
is used for our ex-

periments. This threshold is consistent with the 1
◦
threshold for max_error_thresh of the method

presented in the paper. Two segments may have a non-empty intersection: at a given time, the air-

craft may be aligned on two waypoints simultaneously. To avoid this, we apply the method to the

return list of segments.

3.3 Metrics used to compare our method with the baseline

The output of both the baseline and the proposed method are sets of temporal segments. The base-

line produces segments tagged as orthodromy, whereas our method generates two sets: one tagged

as orthodromy and the other as loxodromy. Comparing two sets of interval segments is not straight-

forward. We use a metric used in object detection in Machine Learning: the intersection over Union

(IoU), it looks for exact match between the predicted segment and the ground truth segments. In Sec-

tion 4.3, we compare the predicted segments to deconfliction segments. Each deconfliction segment
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may contain several heading change, and hence several loxodromy/orthodromy. As a consequence

when evaluating the predicted segments we look for inclusion in the deconfliction segments, leading

us to use the Intersection over Length (IoL) metric.

3.3.1 Intersection over Union (IoU)

A common metric used to evaluate the performance of object detection and segmentation models

is the Intersection over Union (IoU). Given a predicted region
ˆB and the corresponding ground-truth

region B, the IoU is defined as the ratio between the area of overlap and the area of union:

IoU(B, ˆB) =
|B ∩ ˆB|

|B ∪ ˆB|
, (1)

where |B ∩ ˆB| denotes the area of intersection between the predicted and ground-truth regions, and

|B ∪ ˆB| denotes the area of their union. The IoU value ranges from 0 to 1, where IoU = 1 indicates

perfect alignment and IoU = 0 indicates no overlap.

In practice, a prediction is often considered a correct detection if its IoU with the ground truth

exceeds a predefined threshold (e.g., 0.5 or 0.75). This makes IoU a crucial evaluation criterion in

benchmarks for object detection and semantic segmentation.

In order to quantify how well a specific trajectory segment A identified by a method matches one of

the segments in the set IntervalSet returned by the other method, we define the following metric:

MaxIoU(A, IntervalSet) = max

X ∈IntervalSet
IoU(A,X ), (2)

Note that the roles of the sets being compared with the MaxIoU metric are not symmetric. In Eq. 2,

the set IntervalSet is considered as the ground truth and we are trying to assess how close a segment

A predicted by another method is from this ground truth. In the following of this paper, when

comparing two methods X and Y (our method and the baseline, typically), we can assume either

one or the other to be the ground truth. We can plot the distribution of {MaxIoU(x, SY ) | x ∈ SX )} to
assess how the individual segments of SX returned by method X match the segments SY found by

method Y . In this case SY is considered as the ground truth. We can also plot the distribution of

{MaxIoU(y, SX ) | y ∈ SY )} if we consider SX as the ground truth. In the following we shall plot both

distributions (see Figure 6 for example).

3.3.2 Metric quantifying whether the segments are included in another segments set

The metrics based on the the intersection over union (IoU) are not well suited to test if a segment A
is included in another segment B. To quantify the inclusion, we define the Intersection over Length

(IoL) metric:

IoL(A,B) =
|A ∩ B|
|A|

, (3)

The IoL(A,B) metric quantifies the proportion of A included in B.

Finally, we define the following metric MaxIoL(A, IntervalSet) that quantifies the maximum inclusion

of a segment A in any of the segments of set of intervals IntervalSet

MaxIoL(A, IntervalSet) = max

X ∈IntervalSet
IoL(A,X ), (4)
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4. Results

Let us denote respectively SegmentsProjOrtho and SegmentsProjLoxo the sets of orthodromic and

loxodromic segments identified by our method, and SegmentsBaseline the set of orthodromic seg-

ments identified by the baseline method. In this section, we study segments with a duration superior

to 30 s.

4.1 Results on the identified orthodromies

Let us first compare our method with the baseline on the detection of orthodromies only.

4.1.1 Parameters tuning

The algorithm presented in this paper has four parameters to be tuned described in Section 2.1

(max_error_thresh, thresh_border , thresh_slope and thresh_iou). As stated in Sub-Section 3.2, choos-

ing max_error_thresh = 0.5
◦
is consistent with the parameters of the baseline algorithm. This

leaves us with only three parameters to tune. To tune these parameters, the orthodromies set

SegmentsBaseline given by the baseline algorithm, described in Sub-Section 3.2, will be used as

ground truth. To quantify howmuch a set of segments IntervalSet1 is included in an other IntervalSet2,

we define the metric below:

IsIncluded (IntervalSet1, IntervalSet2) = Average

X ∈IntervalSet1
MaxIoU(X , IntervalSet2)

The IsIncluded (IntervalSet1, IntervalSet2) value will be 1 if any segment in IntervalSet1 can be found

in IntervalSet2, whereas this value will be 0 if each segment in IntervalSet1 has an empty intersec-

tion with all segments in IntervalSet2. As can be seen, this metric is asymmetric, and using a grid

search, the selected parameters are the ones generating a set of orthodromies SegmentsProjOrtho
that maximizes the criteria below:

criteria (SegmentsProjOrtho) = min(IsIncluded (SegmentsBaseline, SegmentsProjOrtho) ,

IsIncluded (SegmentsProjOrtho, SegmentsBaseline))
(5)

The baseline and our algorithm can both contains false positive and false negative. In order to avoid

adjusting parameters over noise, we use only segments with a duration superior to 120s that are

empirically more reliable segments. As can be seen in Figure 3, this criteria seems to be in local

maxima when using thresh_border = 0.15
◦
, thresh_slope = 0.0005

◦
/s and thresh_iou = 0. These will

be the values used in this study.

4.1.2 Descriptive statistics

The SegmentsBaseline set contains 10191 segments whereas SegmentsProjOrtho contains 8706

segments. Our method seems to detect more orthodromies than the baseline method. This might

come from the fact that the baseline method considers only waypoints from the flight plan to test

for alignment. Consequently the trajectory of an aircraft flying toward a navaid that is not in its

flight plan will not be identified as an orthodromy by the baseline method.

The distribution of the maximum distance between the orthodromy and the trajectory on the iden-

tified segments is plotted on Figure 4. The maximum distance obtained with the method presented

in this paper is smaller, suggesting a better segment delimitation than the baseline method.

The distribution of the duration of the orthodromies is plotted on Figure 5. The baselinemethod iden-

tifies more very short segments than the projection method developped in this paper. Conversely,

the projection method identifies more segments in the 3-10 minutes range.
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Figure 3. Plot of criteria (SegmentsProjOrtho) for different combination of values for the parameters max_error_thresh,
thresh_border, thresh_slope and thresh_iou.
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Figure 4. Comparison of the “quality” of the orthodromies identified by the baseline method and the segments
SegmentsProjOrtho obtained with the method described in this paper.
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Figure 5. Comparison of the duration of the orthodromies identified by the baseline method and the segments
SegmentsProjOrtho obtained with the method described in this paper.

4.1.3 Segments sets comparisons

Figure 6 plots the histograms of MaxIoU values (see section 3.3 for a definition of this metric) when

comparing the two segments sets SegmentsBaseline and SegmentsProjOrtho obtained with the

baseline method and our method, respectively. The histogram at the top of Fig. 6 shows how the

individual segments obtained with the baseline method match the set of segments (here considered

as the ground truth) obtained with our method. In the histogram at the bottom, the perspective

is reversed (the baseline segments are considered as the ground truth) and the histogram shows

how the segments obtained with our method match the set obtained with the baseline. In both his-

tograms, the transparent bars show the MaxIoU values obtained when considering all segments in

SegmentsBaseline and SegmentsProjOrtho, whereas the plain bars account only for the segments

with a duration superior to 300 s.

Looking at the transparent bars in the histograms of Fig. 6, we can observe a peak at MaxIoU = 1 on

the right of each histogram, indicating a number of approximately 3400 perfect matches between

the predictions of both trajectories. However, we also observe a non-negligible peak at MaxIoU = 0

on the left, indicating that each method detects orthodromic segments that were not detected by the

other. When looking at segments with a duration superior to 300 s (plain bars in Fig. 6) we can see

that this discrepancy is drastically reduced, suggesting that both methods detect mostly the same

orthodromic segments in that case.

4.2 Results on the discrimination between loxodromy and orthodromy

Let us now consider the set SegmentsProjLoxo of loxodromic trajectory segments found by our

method. There is no baseline method to compare with, for the loxodromy detection. However,

we can search for matches with SegmentsProjOrtho to see when trajectories are tagged both as

loxodromies and orthodromies.

As stated in section 2.2, some overlaps are expected between the loxodromies in SegmentsProjLoxo
and the orthodromies in SegmentsProjOrtho. Considering the latitudes at which our traffic samples

are located (Bordeaux ATC center in France) these overlaps are mostly expected for aircraft flying

either toward the North or the South, following a meridian.
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Figure 6. Histogram of the MaxIoU values obtained when matching the segments found by the baseline with the segments
found by our method (top), and when matching the segments found by our method with the segments found by the baseline
(bottom). Transparent bars account for all segments whereas plain bars account for segments with a duration above 300 s.

The proportion of theoretically indistinguishable orthodromy and loxodromy may vary according:

1) the latitude of the airspace, 2) the noisiness of the data, and 3) the track angle of the considered

flight. In our experiments, the considered sector is located at a latitude of approximately 44
◦
. This

latitude is intermediate within the European airspace, being neither the closest to the equator nor

the most northerly. The data used are real ADS-B data which are somewhat noisy data, we did not

quantify this noise nor tried to lower or increase it as it is not a simple thing to do. Lastly, concerning

the track angle, the Figure 7 plots the average MaxIoU at different track angles for SegmentsProjLoxo
and SegmentsProjOrtho. This allows to quantify how much orthodromies overlaps with at least

one loxodromy. This overlap is almost complete with a MaxIoU around 0.9 for track angles in the

North-South part ±10◦. This overlap falls drastically to a MaxIoU below 0.3 when considering track

angles in the East-West part ±60◦. The overlap is even lower when considering long segment with a

duration superior to 300 s. All this suggests that in this East-West track angle interval, the identified

orthodromy and loxodromy segments do not overlap, they aremostly distinct parts of the trajectories

and hence orthodromies and loxodromies are distinguishable inside this track angle interval, in the

considered sector’s latitude.

As expected, many loxodromic segments oriented in a direction close to ameridian are also identified

as orthodromic, and we have much less overlaps between loxodromies and orthodromies for aicraft

flying East or West.

Applying the rules described in Algorithm 3 in SubSection 2.2, we obtain two other sets of seg-

ments noted SegmentsProjLoxoNotOrtho containing 741 segments and SegmentsProjOrthoNotLoxo
containing 4822 segments. This rule successfully separates loxodromies and orthodromies when

comparing these sets using the MaxIoU metric (Figure 8).
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Figure 7. Average MaxIoU for different track angle when trying to match each segment in SegmentsProjLoxo with segments
in SegmentsProjOrtho.
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Figure 8. MaxIoU distributions when comparing segments in SegmentsProjLoxoNotOrtho with segments in
SegmentsProjOrthoNotLoxo.
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4.3 Results onwhether the pure loxodromy can bematchedwith a deconflictionmanoeu-
vrer

The dataset in [12] contains deviations that are tagged as deconflictionmanoeuvrers by a data-driven

heuristic method. Each lateral deconfliction manoeuvrer is associated with a temporal segment.

Let us note SegmentsDeconfliction this set of segments. The duration of these conflict segments

amounts to 15 days, 7:57:49 among the 114 days 12:53:34 total flights duration, so a ratio of 13 %.

To investigate whether the pure loxodromy in SegmentsProjLoxoNotOrtho can be matched with a

deconfliction maneuver in SegmentsDeconfliction, we look at the MaxIoLmetric. As the deconflic-

tion temporal segment does not necessarily contain only a loxodromy, we prefer this inclusionmetric

to the MaxIoUmetric that measures exact matching between segments. The MaxIoLmetric value is 1

if the pure loxodromy is fully included in one deconfliction temporal segment, this value reduces if

one part of the pure loxodromy is not included, it can reach the value 0 if the pure loxodromy have

no intersection at all with any deconfliction temporal segments.

The bottom histogram in Figure 9 shows the MaxIoL values for the loxodromies, with a logarithmic

scale, measuring their inclusion in the segments of the deconfliction maneuvers’ set. The total du-

ration of these pure loxodromies is 3 days, 2:48:33 , and the duration of these loxodromies inside

the deconfliction maneuvers amounts to 1 day, 5:24:50 , so a ratio of 39 %, which is greater that the

prior ratio 13 %. As a sanity check we have plotted a similar figure for the pure orthodromies (top

histogram in Figure 9). The total duration of these pure orthodromies is 43 days, 23:14:47 , and the

duration of these orthodromies inside the deconfliction maneuvers amounts to 22:58:24 , so a ratio

of 2 %, which is way lower than the prior ratio 13 %. We can see that only a small proportion of the

pure orthodromies is included in a deconfliction maneuver.

0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00
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Figure 9. The distribution of the proportion included in segment in SegmentsDeconfliction.

5. Conclusion

This paper presented a geometric method for identifying orthodromic and loxodromic segments

within ADS-B trajectory data, based solely on projection properties and without reliance on flight

plan information. By combining gnomonic andMercator projections with an algorithm for detecting

constant track-angle segments, the approach provides a data-driven means to interpret the structure
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of real-world flight trajectories.

The results demonstrate that orthodromic segments detected through this projection-based approach

are consistent with those obtained from a baseline method relying on waypoint alignment, while the

additional identification of loxodromic segments offers new insight into controller-induced heading

maneuvers. Using an open trajectories dataset where 13 % of the total duration is labeled as de-

confliction maneuvers, the identified pure loxodromies have a duration of 2 % of the total duration

while 39 % of these 2 % can be matched with deconfliction maneuvers, higher than the 13 % prior.

Contrastively, the pure orthodromies identified amounts to 38 % of total duration while only 2 % of

these 38 % can be matched with deconfliction maneuvers.

Future work will investigate the robustness of the method under varying noise conditions, its inte-

gration with flight plan reconstruction techniques, and its application to large-scale datasets to bet-

ter characterize navigation practices and air traffic management behavior across different airspaces.

Overall, the proposed framework contributes to enriching the semantic interpretation of ADS-B data

and paves the way for automated detection of tactical flight patterns.
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