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Abstract
The reaction time to a deconfliction situation refers to the interval between detecting a potential loss of

separation and taking corrective action. For air traffic controllers, it represents the lead time between

identifying a conflict and issuing a deconfliction instruction to a pilot. For pilots, it corresponds to the de-

lay between receiving an ATC clearance and initiating the associated maneuver. Because both processes

are influenced by human factors, these response times constitute a significant source of uncertainty in

Air Traffic Management. While the controller’s reaction time is particularly difficult to estimate since

the exact moment at which a conflict is cognitively detected cannot be directly inferred from operational

data, this paper focuses on quantifying pilot response times. To this end, we propose a methodology

that combines Natural Language Processing techniques with surveillance and flight plan data. ATC–pilot

voice communications are transcribed using a fine-tuned Automatic Speech Recognition model, and air-

craft callsigns are identified through Named Entity Recognition. The transcriptions are then matched

with corresponding flights in ADS-B surveillance data. Using flight plans, we identify lateral deconflic-

tion maneuvers and align them temporally with the preceding ATC clearances to estimate the elapsed

time between instruction and execution. Because the approach depends on a sequence of emerging algo-

rithms whose robustness is still evolving, the study focuses on identifying the conditions under which the

methodology performs reliably, highlighting its current limitations and associated data challenges, and

proposing ways to overcome them.

Keywords: response time; air traffic controller audio; natural language processing; deconfliction actions extraction; ads-b

data

Abbreviations: ASR: Automatic Speech Recognition; ATC: Air Traffic Control; MUAC: Maastricht Upper Area Control

Centre; NER: Named Entity Recognition; NLP: Natural Language Processing; VAD: Voice Activity Detection

1. Introduction

The overall reaction time in Air TrafficManagement is generally defined as the elapsed time between

the detection of a potential conflict and the completion of the corresponding action to mitigate it. It

can be decomposed intomultiple components: (i) the air traffic control’s (ATC) reaction time, defined

as the interval between conflict detection and issuance of an instruction; (ii) the pilot’s response time,

defined as the interval between receipt of the controller’s clearance and initiation of the maneuver;

and (iii) the maneuver completion time, corresponding to the time between the ATC instruction and
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full execution of the maneuver. Pilot response time is particularly critical: even small delays of a

few seconds can lead to significant lateral or vertical deviations from the expected aircraft position

after a maneuver [1]. Such delays also determine how much separation margin remains available

to ATC before a conflict arises. Response times thus constitute an inherent source of uncertainty

that directly impacts trajectory prediction accuracy, conflict detection, and ultimately, separation

assurance.

Previous research has highlighted the operational consequences of such variability. For instance,

[2] showed that increased variability in pilot response times degraded the accuracy of separation

management. In current practice, controllers are trained to account both their own and the pilot’s

response times when issuing clearances, implicitly incorporating an expected delay margin. How-

ever, as Air TrafficManagement evolves toward greater automation and AI-driven tools, particularly

for trajectory prediction and strategic conflict resolution, a precise characterization of the distribu-

tion of global response times becomes indispensable.

Despite its operational importance, empirical quantification of response times remains limited. The

challenge lies both in measurement, synchronizing communications with trajectory data, and in

assembling sufficiently large datasets from real-world operations associated with ground truth. As

a result, simplified assumptions are often applied in safety assessments. For example, icao’s Safety

Assessment Panel historically adopted conservative fixed values in their collision risk models, such

as 30 seconds [3] for the pilot reaction time to a critical ATC instruction. With recent advances in

Natural Language Processing (NLP) and growing access to synchronized positional and audio data,

more precise measurements have become possible. For example, [4] combined ATCO–pilot audio

with surveillance data to estimate maneuver initiation delays. This study demonstrates that while

early work established basic timing distributions, new methodologies now enable a richer, more

operationally relevant quantification of response times.

With a similar approach as [4], our study builds upon the outcomes of the ATCO2 project [5] and

investigates the use of Automatic Speech Recognition (ASR) and Named Entity Recognition (NER)

to quantify pilot response times to lateral deconfliction clearances. Our contribution lies in the

integration of ATC communication broadcasting, NLP-based speech processing, surveillance data

fusion, and trajectory action extraction to estimate the time interval between the instruction delivery

and the initiation of the corresponding aircraft maneuver.

The proposed data pipeline proceeds as follows:

• ATC–pilot audio acquisition: we collect radio communications in the delta Sector of the Maas-

tricht Upper Area Control Centre (MUAC).

• Speech-to-text processing: we transcribe audio streams into text with a fine-tuned version of

the Whisper [6, 7] ASR model adapted for ATC communications.

• Surveillance data alignment: we collect ADS-B surveillance data from theOpenSkyNetwork [8]

for the same temporal and spatial ranges.

• Callsign association: we apply the ATCO2 NER model [9] to the transcripts to extract aircraft

callsigns. Each detected callsign is cross-matched against active callsigns from the ADS-B feed at

the corresponding time. This step yields a set of ATC communications linked to a flight in the

surveillance dataset.

• Trajectory action extraction: we apply the lateral deconfliction extraction methods described

in [10, 11] for flights with available flight plans. This enables the detection of trajectory modifica-

tions and their execution time due to lateral conflict-resolution instructions.

• Response time estimation: we estimate the execution delay required by the pilot to carry out
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the instruction, given the time at which a clearance is issued and the moment the pilot initiates

the corresponding deconfliction maneuver.

In this paper, we demonstrate the current capabilities of the proposed framework, identify its main

limitations, and analyze the challenges related to both the robustness of individual tasks and the

availability of supporting data. By examining representative scenarios, we expose the key tech-

nological barriers that currently prevent a large-scale analysis of response times and put forward

concrete recommendations to address these issues.

In the following, Section 2 presents the current state-of-the-art in response time estimation. Then,

Section 3 describes the data pipeline we propose to calculate the response time. Section 4 provides

insights about the ability of our pipeline to identify pilot-ATC conversations, and describes specific

situations highlighting the complexity of the problem at hand. Finally, Sections 5 and 6 respectively

discuss the results and conclude the work.

2. Literature Review

The human-induced delays play a critical role in the conflict resolution timeline. Because these

latencies consume precious seconds when resolving conflicts, underestimating them can decrease

safetymargins or force overly conservative buffer assumptions. Thus, any realistic conflict-detection

or resolution tool must model those delays accurately.

In practice, separation minima and conflict-alerting thresholds are often derived assuming a worst-

case controller and pilot latency. This assumption ensures that even slower-than-average responses

leave enough buffer to avoid loss of separation. For instance, the International Federation of Air Traf-

fic Controllers’ Associations explicitly notes that the controller’s intervention capability, including

communication and pilot reaction latency, is a key determiner of how tight separation minima can

be set [12]. Similarly, collision risk models such as those underlying icao standards, often include

human reaction delay within the safety margins [13]. Because these human delays effectively reduce

the time available for safe maneuvering, the more accurately we can characterize their distribution,

the more precisely we can calibrate alert thresholds, separation buffers, and automation aids.

The first investigations into controller reaction latency date back to the late 1980s and early 1990s,

primarily through human-in-the-loop simulations. With the introduction of automated conflict-alert

systems in en-route ATC, researchers conducted experiments to measure the interval between an

alert’s onset and the controller’s issuance of a verbal clearance. In one FAA simulation test of a

prototype Conflict Resolution Advisory tool [14, 15], response latencies typically ranged from 12

to 18 s, with 95th-percentile values approaching 30 s. These studies showed that human decision-

making and communication formulation can introduce non-negligible delays, particularly under

high workload or traffic complexity.

Once a controller issues a clearance, the pilot’s response can be divided into two phases: (1) ac-

knowledgment through readback, and (2) initiation of the corresponding maneuver. One of the ear-

liest empirical studies in this area is [16], which examined 64 hours of “time-critical” ATC messages

recorded at U.S. Air Route Traffic Control Centers. The authors decomposed the interval from the

start of the controller’s instruction to the end of the pilot’s correct readback, isolating the durations

of the controller’s speech, the pause before the pilot’s reply, and the readback itself. Their findings

showed that even under ideal conditions, the radio exchange alone accounts for a delay of several

seconds.

However, pilot acknowledgment represents only part of the latency picture, as several seconds may

elapse between the readback and the actual initiation of themaneuver. Recent research has leveraged

both audio and surveillance data to pinpoint the moment when the aircraft trajectory first begins



4 Timothé Krauth et al.

to change following an ATC instruction. [4] developed an automated pipeline that analyzes spoken

clearances and aligns them with tracking data. Their results indicate a mean pilot readback latency

of approximately 0.6 s, but, more importantly, an average maneuver initiation delay ranging from

17 s to 25 s, depending on the clearance type (e.g., 17 s for heading and altitude changes, and 25 s

for speed adjustments). They also reported corresponding maneuver completion times of about 69 s

for heading changes, 176 s for altitude, and 182 s for speed. Building on this line of work, [1] used

the large-scale SCAT dataset [17], comprising roughly 830,000 clearances, to predict pilot response

delays. Their analysis revealed initiation delays of around 20–21 s, with a pronounced right tail.

Moreover, while maneuver completion times were found to be relatively predictable based on the

magnitude of change, initiation delays proved much harder to model accurately, suggesting that

human factors introduce an element of intrinsic unpredictability. Overall, these empirical findings

outline a consistent pattern: readbacks occur almost instantaneously (within about one second),

maneuver initiation typically takes on the order of tens of seconds, and full completion may require

several minutes, particularly for large altitude or speed changes.

With the development of NLP in the recent years, the methodological paradigm has shifted from

hand-annotated voice recordings and small-scale simulations to automatic pipelines and large op-

erational datasets to scale and refine response-time estimation. The application of NLP techniques

to the analysis of ATC–pilot communications can be traced back to 2018 with the Airbus Air Traffic
Control Speech Recognition Challenge [18]. In this context, participating teams demonstrated that,

on a small-scale dataset, ASR and callsign detection could achieve strong performance, with word

error rates below 8% for ASR and callsign-detection F1 scores exceeding 80%. These results should

nonetheless be interpreted with caution, as the models were trained on approximately 40 hours of

high-quality audio collected in a single, well-defined airspace. Even so, they indicate that automatic

transcription of ATC communications can reach a level of accuracy sufficient to support downstream

tasks such as response-time estimation.

The pipeline from [4] is an example: using ASR to transcribe ATC communications, they extract

structured clearance data (callsigns, commands, values) through NER and synchronize them with

surveillance tracks. From those results, they automatically compute readback latencies, initiation

delays, and maneuver durations from real-world operations. However, the detection of pilot actions

from surveillance data remains simple, based on a thresholding over the changes in altitude, heading

and speed.

Another example in the domain of ATC communications analysis is [19]. The authors apply NLP

techniques such as sentiment analysis, topic recognition and part-of-speech tagging, to categorize

and distinguish miscommunications against regular messages in a corpus of transcribed communi-

cations. While their work is less focused on timing, it underscores how structured NLP can operate

over communication corpora to reveal latent patterns in ATC speech behavior. [20] proposes a

pipeline using ASR, and NER which extract relevant information from the communications to gen-

erate a spoken pilot response. Such systems not only assist in simulation and training of controllers,

but also illustrate how voice-to-action mapping can be automated, which is directly relevant for

measuring pilot response times in a real-time loop. Finally, [21] presents a real-time intelligent ATC

system using ASR, natural language understanding and natural language response generation to

transcribe, interpret and generate response to reduce pilot workload and improve communication

efficiency.

The literature indicates that quantifying controller–pilot response times is critical for aviation safety.

Whereas this was formerly a resource-intensive endeavor, often requiring human simulations and

manual annotation, recent advances in NLP now enable the direct analysis of operational ATC

recordings, substantially lowering the cost and effort of large-scale measurement.
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3. Data and Methodology

This section presents our proposed methodology to evaluate the response time for lateral deconflic-

tion instructions fromATC-pilot audio communications, ADS-B data and flight plans. The high-level

data processing pipeline is described in Figure 1.

Figure 1. Data processing pipeline of ATC voice communications, surveillance data and flight plans

The pipeline is composed of three processing modules: (i) an NLP-based module that transcribes

ATC voice communications and identifies spoken aircraft callsigns, (ii) an ADS-B trajectory analysis

module that matches ATC communications with active flights, and (iii) a deconfliction maneuvers

detection module that links those events with the corresponding ATC communication.

The proposed methodology shares conceptual similarities with the approach introduced in [4], as

both aim to leverage an automated voice communication processing pipeline to analyze large vol-

umes of ATC audio data with minimal human intervention. Accordingly, the overall structure of the

data-processing pipeline relies on comparable core components: an ASR module, a callsign iden-

tification mechanism, and a track-based analysis module. Despite these similarities, the proposed

methodology differs from [4] in several key aspects:

• Our speech-to-text module is based on an openly available model, enabling further performance

improvements through domain-specific fine-tuning. This is particularly relevant for ANSPs that

possess large volumes of high-quality ATC recordings, which can be leveraged to adapt the model

to local acoustic and operational characteristics

• In [4], commands and callsigns are identified using rule-based detection of triggering keywords

(e.g., “altitude” for altitude-change instructions, or airline telephony and the aeronautical alpha-

bet for callsign identification). In contrast, our approach relies on a machine learning–based NER

module trained within the ATCO2 project [5]. This design improves robustness to transcription

errors and provides greater flexibility when handling non-standard or unconstrained phraseology

used by controllers and pilots. In addition, we enhance the callsign–flight association step by re-

placing simple string-basedmatching (e.g., Levenshtein distance) with a semantic similarity–based
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matching algorithm, which better accounts for phonetic and transcription discrepancies.

• While [4] identifies maneuver initiation and completion using rule-based thresholds applied di-

rectly to surveillance data (e.g., detecting altitude changes exceeding ±100 ft), our maneuver de-

tection relies on a more sophisticated algorithm that compares observed trajectories against filed

flight plans [22]. This approach enables a more precise identification of maneuver initiation times

and reduces false positives due to weather conditions or inaccuracies in track data. The main

trade-off is that the current implementation is limited to deconfliction maneuvers.

The remainder of this section provides a detailed description of eachmodule composing the proposed

methodology.

3.1 Speech-to-text processing

The first component is the speech-to-text stage. Using raw hourly ATC voice recordings, we apply

the following steps:

• Speech segmentation: detect speech segments using Voice Activity Detection (VAD).

• Timestamping: anchor each detected segment to an absolute UTC time using the file start time

and the segment’s relative offset.

• Transcription: transcribe each speech segment with an ATC-tuned Whisper model, producing

time-stamped text sequences.

3.1.1 Speech segment detection

To identify regions of speech within the ATC audio recordings, we employ the WebRTC VAD
1
.

This lightweight, frame-based algorithm, originally developed by Google for real-time telecommu-

nication systems, classifies short audio frames as either speech or non-speech using signal-derived

features and an internal decision tree model optimized for low-latency voice detection.

The WebRTC VAD analyzes the input in fixed-length frames of 10, 20, or 30 milliseconds, process-

ing each frame independently. For each segment, it computes spectral and energy-based features

from the narrow-band audio and estimates the likelihood of speech presence. The aggressiveness

parameter (ranging from 0 to 3) governs the balance between sensitivity and precision: lower values

are more permissive, labeling ambiguous or noisy frames as speech, whereas higher settings reduce

false positives at the risk of missing weak or low-intensity utterances. Because the model operates

at the frame level, its raw output must be temporally smoothed to yield coherent speech segments.

To achieve this, our implementation applies an additional aggregation layer that enhances temporal

continuity and suppresses spurious detections.

Before processing, each audio file is standardized to meet theWebRTC VAD’s expected conditions: it

is converted tomono, resampled to 16 kHz, band-limited to the voice frequency range (150–3,800Hz),

and loudness-normalized to –20 dBFS. The waveform is then divided into 20 ms frames and passed

through the VAD, which produces a binary sequence of speech and non-speech decisions. This

sequence is smoothed using a hysteresis mechanism: speech onset is declared after approximately

60 ms of consecutive voiced frames (three frames), and speech offset after 120 ms of continuous

silence (six frames). This strategy mitigates fragmentation caused by short pauses or noise bursts.

Following smoothing, brief inter-speech gaps (< 200 ms) and short speech segments (< 300 ms) are

discarded to eliminate residual artifacts. Each retained segment is then padded by 120 ms before and

150 ms after the detected boundaries, providing acoustic context for transcription.

Finally, each segment’s onset time is mapped to absolute UTC timestamps by adding its local offset to

1
https://github.com/wiseman/py-webrtcvad
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the base timestamp of the source file. These timestamped speech intervals constitute the foundation

for the subsequent transcription stage using the Whisper model.

3.1.2 Automatic speech recognition

To transcribe the detected speech segments into text, we employ a fine-tuned version of OpenAI’s

Whisper model [6]. Whisper is a transformer-based ASR system trained on 680,000 of hours of

multilingual, multitask labeled audio data. Whisper performs end-to-end transcription: it converts

raw audio waveforms directly into text without requiring an explicit phoneme model or language-

specific decoder. Though it can be used on large chunks of audio, It is usually good practice to use

Whisper after VAD for better performance.

Whisper uses an encoder–decoder transformer architecture. The encoder converts 16 kHz audio

into a sequence of log-Mel spectrogram embeddings, while the decoder autoregressively predicts

text tokens conditioned on these embeddings and its previous predictions. It is trained using a

cross-entropy loss on transcribed speech segments, allowing it to model linguistic and acoustic de-

pendencies jointly. The model operates on 80-channel log-Mel spectrograms computed from 25

ms windows with 10 ms stride, providing robust features even under noisy or clipped conditions.

Because the model is fully sequence-to-sequence, it performs well on noisy, accented, or partially

overlapping speech, making it suitable for ATC communications.

While the original Whisper model performs well on general speech, its performance on aviation

phraseology and radio transmissions is limited. To address this, we use the ATC-Whisper model [7].

This model was fine-tuned specifically for air traffic control speech, achieving an 84% relative im-

provement in transcription accuracy compared to the base Whisper model. The fine-tuning process

combined two curated ATCO corpora: the free version of the ATCO2 [5] dataset with 871 samples,

and the UWB-ATCC dataset [23] comprising about 11,000 training annotated samples, and 3,000 test

samples. During fine-tuning, [7] augmented the training dataset with Gaussian noise, pitch shifts,

time stretching, and clipping distortion to simulate realistic radio conditions. According to [7], the

fine-tuned model achieved a word error rate of 15.08% on the test ATC audio set, compared to the

94.59% for the original Whisper baseline.

The resulting output of the speech-to-text module is then a tuple that associates an absolute UTC

timestamp with a transcribed sentence for each detected speech segment. These time-stamped tran-

scriptions form the basis for the subsequent callsign recognition and ADS-B trajectory matching

stages of the pipeline.

3.2 Callsign association

After the speech-to-text module, we associate the transcribed messages with aircraft that are active

in the airspace at the same time through the use of surveillance data. Association proceeds in three

stages:

• NER detection in transcripts: identify the tokens corresponding to callsigns in each transcribed
message using a domain-adapted NER model.

• Normalization of ADS–B callsigns: convert each alphanumeric ADS–B callsign into its spoken

radiotelephony form (airline telephony, nato letters, digit words).

• Time-gated semantic matching: for each message, the detected spoken callsigns are compared

with candidate ADS–B callsigns active within the same temporal window. The best-scoring match

is retained if its similarity score exceeds a predefined threshold; otherwise, the utterance remains

unmatched.
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3.2.1 Named-entity recognition for callsigns

Spoken callsigns directly detected in the transcribed text with a domain-adapted NER model de-

veloped in the ATCO2 context [9]. The model is a BERT-base token classifier fine-tuned for ATC

communications. Given a sentence, it assigns BIO-style labels over subword tokens for three se-

mantic classes: callsign (often airline telephony plus alphanumerics), command (e.g., “cleared to

land”), and value (e.g., “runway three four left”), together with confidence scores. Because callsigns

are frequently fragmented across adjacent sub-entities (e.g., “seven nine | whiskey | uniform”), we

apply a post-processing step that merges consecutive callsign entities into a single span, assuming

that each speech contains only one callsign. The output per utterance is a (possibly empty) list of

detected callsign strings expressed in spoken form.

3.2.2 Time-gated candidate selection in ADS–B

ADS–B callsigns are alphanumeric (e.g., EXS79WU), whereas NER-detected callsigns contain spoken

radiotelephony (e.g., “channex seven nine whiskey uniform”). To compare those, we map each ADS–B

callsign to a spoken form:

• airline icao prefix→ radiotelephony (e.g., EXS → channex, DLH → lufthansa);

• letters→ nato alphabet (e.g., W → whiskey, U → uniform);

• digits→ number words (e.g., 7 → seven, 9 → nine).

To narrow the search space, we precompute for each ADS–B callsign c its active interval, denoted as
[tmin(c), tmax(c)], corresponding to the earliest and latest observation times in the surveillance data.

Then, for a communication occurring at time tcomm, we retain as candidates only those callsigns

whose active intervals overlap with a predefined tolerance window centered on the utterance time:[
tmin(c), tmax(c)

]
∩
[
tcomm − ∆, tcomm + ∆

]
≠ ∅,

where ∆ is a small buffer (typically 60 s). This buffer is introduced because communications might

happen before entering of after exiting the airspace.

3.2.3 Semantic matching in the spoken domain

Once a callsign has been detected in the ATC transcript and a time-gated set of ADS–B candidates

has been assembled, we must associate the most plausible ADS–B callsign to the utterance. Exact

stringmatches are often unreliable due to (i) imperfect speech segmentation, (ii) ASR errors, (iii) NER

mislabeling or span fragmentation, (iv) controllers using partial or shortened callsigns and variable

phraseology, and (v) incomplete airline telephony mappings. To address this, we use a soft-matching
procedure in the spoken domain based on sentence embeddings and cosine similarity.

For each utterance with one or more NER callsign strings {qj} and its time-gated ADS–B candidate

set {ci} (each converted to spoken radiotelephony), we compute a semantic similarity as follows:

• Encode all candidate spoken forms {ci} with MiniLM-L6-v2 to obtain vectors ϕ(ci) ∈ Rd
.

• For each detectedNER callsign qj , encodeϕ(qj) and compute cosine similarities sij = cos

(
ϕ(qj), ϕ(ci)

)
.

• Select the best candidate i∗ = argmaxi sij and accept the association if si∗j ≥ τ (default τ = 0.7);

otherwise the utterance remains unmatched.

We report the winning ADS–B callsign, the detected spoken string, the similarity score, and the

original transcript timestamp. This spoken-space, semantic approach is robust to common ASR

variations (e.g., “x-ray” vs. “xray”), partial insertions/omissions, and minor lexical drift, while the

time gate suppresses false positives from unrelated traffic.

https://orcid.org/0000-0003-0601-4588
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3.3 Extracting aircraft conflict-resolution actions

To identify instances where controllers likely issued deconfliction instructions, we applied the ex-

traction algorithm introduced in [11]. The method detects lateral deviations in aircraft trajectories

and evaluates whether these deviations were performed to avoid potential conflicts with surround-

ing traffic.

The algorithm first isolates trajectory segments that deviate from the original flight plan. Each

detected deviation is then analysed within its local traffic context: surrounding aircraft at compatible

flight levels and within a relevant time window are retrieved, and for each potential encounter, the

observed lateral distance at the closest point of approach (CPA) with surrounding aircraft dmin is

compared with the predicted distance d̂min obtained from a reconstructed trajectory assuming the

deviation had not occurred.

A deviation is classified as a deconfliction when it satisfies the following:

• the deviation increases the minimum separation: dmin − d̂min > ε,

• the time between the start of the maneuver and the predicted CPA tCPA is above a threshold TCPA,

• two or more aircraft were at risk of loss of separation, such that d̂min < D.

The thresholds ε, TCPA and D are determined through statistical analysis of historical deviations.

Compared with [4], which treats the execution of an ATC instruction as a simple deviation from the

nominal aircraft trajectory, the proposed methodology enables a more detailed characterization of

the deconfliction maneuver actually performed by the aircraft. In particular, it can discriminate such

maneuvers from other sources of trajectory deviation, including routine turns between successive

route segments or persistent offsets caused by meteorological conditions.

4. Results

This section evaluates the performance of our data pipeline in accurately identifying ATC–pilot

conversations for each flight, thereby enabling reliable computation of reaction times. Section 4.1

first presents the dataset used for evaluation, selected as a trade-off between acquisition time and

the number of exploitable operational days. Section 4.2 then illustrates one minute of transcribed

communication, exemplifying both the strengths of the approach and its potential limitations. Next,

Section 4.3 introduces quantitative metrics that assess how effectively the pipeline reconstructs com-

plete conversation threads between ATC and individual flight crews. Finally, Section 4.4 examines a

series of situations in which deconfliction measures were identified, highlighting the improvements

required to achieve fully automated and reliable response-time computation.

4.1 Data

The proposed methodology was tested on ATC communications from the MUAC delta Sector,

shown in Figure 2, covering the period from 25 August to 17 September (UTC).

The MUAC airspace offers a particularly suitable testbed: it is legally permissible to collect and

process ATC audio in this region; recording quality is relatively high; and, as an en-route sector

with available flight plans, it places the deconfliction-event detection algorithm [11] in its intended

operating regime.

The radio communication between air traffic controllers and pilots operates make use of three dif-

ferent VHF frequencies:

• 135.958 MHz for delta Low (FL245 to FL335)
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• 135.508 MHz for delta Middle (FL335 to FL365)

• 132.083 MHz for delta High (FL365 and above)

The VHF receiver is set up on the roof of the Faculty of Aerospace Engineering at TU Delft. The

VHF signal is collected using a RSPdx-R2 software-defined radio. Each hour of audio for a single

frequency is saved in a single MP3 format audio file.

At the start of the data collection, the collected audio contains three frequencies at different times.

However, towards the later stage of the experiment, we focus primarily on delta High, aiming to

capture as much communication as possible on 132.083 MHz, as it contains only cruise flights.

For the surveillance context, ADS–B tracks were retrieved from the OpenSky Network [8] via the

traffic Python library [24], extracting trajectories over theMUAC sector with an additional∼50 km
spatial buffer for the same time span as the audio recordings. Days with missing audio or unavailable

ADS–B data were excluded from analysis (5–8 September and 13 September).

In addition to the surveillance data, flight plan information (field 15) was incorporated to describe

the planned trajectories of the identified flights. Each plan includes the sequence of navigation aids

(navaids) defining the intended route through the MUAC sector.

MUAC DELTA sector

Figure 2. MUAC delta sector

4.2 Example of transcribed conversation

Table 1 presents an excerpt of ATC communication transcriptions from 31 August 2025, covering

the interval between 23:58:55 and 23:59:29. Callsign (spoken) denotes the callsign detected by the

NER algorithm in the transcriptions, while Callsign (ADS–B) refers to the callsign present in the

ADS–B data that was associated with the same utterance. The Matched flag indicates whether a

transmission was successfully linked to an ADS–B callsign, and the Score column reports the cosine

similarity between the embeddings of the NER-extracted and ADS–B callsigns.

This conversation thread is representative of the typical challenges encountered in the matching

process. The overall audio quality in this excerpt is relatively high, resulting in mostly accurate tran-

scriptions. However, the transmission at 23:58:58 illustrates a limitation of the VAD: a slight hesita-

tion at the start of the recording led the VAD to trim the initial segment, causing a mis-transcription

(“navigator”) and a subsequent misidentification of the callsign by the NER model. Fortunately, the

soft-matching algorithm we developed is resilient to such localized errors and was still able to con-
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fidently associate the transcription with the correct ADS–B callsign. A similar trimming artifact

appears to affect the transmission at 23:59:27.

The communication at 23:59:19 poses another difficulty. Because it is short and partially unintelligi-

ble, the transcription likely contains an incorrect word (“austrian”), which in turn disrupted callsign

recognition by the NER. Nevertheless, the soft-matching mechanism mitigates the impact of such

misclassifications as long as the detected sequence remains reasonably close to the true callsign.

Finally, the communication at 23:59:29 illustrate another common situation: neither the pilot nor

the controller explicitly states the callsign when the intended recipient is contextually obvious. In

such cases, the system cannot automatically associate the message with a specific flight, underscor-

ing a fundamental limitation of automated conversation reconstruction.

Table 1. Callsign matching results for sample transcripts (UTC).

Time (UTC) Callsign (ADS-B) Callsign (spoken) Score Matched

2025-08-31 23:58:58Z EXS6AH navigator six alfa hotel 0.75 True
Transcript: navigator six alfa hotel we re just getting light continuous traffic three
six zero here have you got any report for further on route

2025-08-31 23:59:07Z EXS6AH channex six alfa hotel 1.00 True
Transcript: channex six alfa hotel earlier we had report of light navigational moder-
ate bump on your routing between level three one and three eight zero but standby
second

2025-08-31 23:59:19Z EXS79WU channex seven nine whiskey uniform aus-
trian

0.90 True

Transcript: channex seven nine whiskey uniform austrian

2025-08-31 23:59:23Z EXS79WU channex seven nine whiskey uniform 1.00 True
Transcript: channex seven nine whiskey uniform go ahead

2025-08-31 23:59:27Z EXS79WU yes seven nine whiskey uniform 0.83 True
Transcript: yes seven nine whiskey uniform any turbulence

2025-08-31 23:59:29Z — — — False
Transcript: yeah we have just experienced occasional moderate currently smooth
occasional light

4.3 Performance evaluation of conversation identification

The response time is calculated as the interval between an ATC instruction and the actual move-

ment of the aircraft. In order to reliably identify those, the pipeline must be capable of retrieving

all utterances belonging to a conversation between a controller and a specific pilot. In practice, pi-

lot–controller response times can only be computed if every transmission associated with the same

aircraft is consistently recovered; missing associations may render reaction time estimation impossi-

ble. Two components are therefore critical: the accurate detection of callsign spans in transcripts

via NER, and the robust association of these spans with ADS–B callsigns active within the same

temporal window. This section presents descriptive statistics summarizing daily communication

transcriptions and evaluating the quality and stability of the callsign-matching process.

Table 2 summarizes daily activity, including the number of transcribed communications, the number

of retrieved ADS–B trajectories, and the proportion of communications successfully associated with
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an ADS–B callsign. The daily communication load is generally high but varies substantially (me-

dian ≈ 6,035 communications; IQR: 4,777–6,795), with a comparable magnitude of observed flights

(median ≈ 5,258). The notable difference between the mean and median number of flights suggests

that a few days exhibit unusually low traffic counts. Given that MUAC is a centrally located en-

route sector where overflight volumes are typically stable, such deviations reflect acquisition gaps

in either the audio recordings or the ADS–B surveillance data. Moreover, the similar magnitudes

of communication and flight counts indicate that while a substantial portion of transmissions are

captured, many are still missed. Under routine operational conditions, at least four transmissions

per flight would typically be expected: an instruction and readback for both entry into and exit from

the sector. It implies that only a fraction of total communications are currently recovered.

The callsign detection andmatching results confirm these observations. The NERmodel successfully

identifies a callsign in approximately 80% of all utterances; however, only a subset of these can be

linked to a concrete ADS–B callsign. The medianmatch rate at a similarity threshold of 0.7 is ≈ 0.441

(IQR: 0.390–0.475), meaning that roughly two in five utterances are confidently associated with an

ADS–B aircraft callsign. The perfect match rate is lower (median ≈ 0.105), as expected given clipped

audio segments from the VAD, imperfections in ASR and NER outputs, the frequent use of partial

or shortened callsigns in radio communications, and occasional inconsistencies in airline telephony

mappings. These limitations justify the use of a scored association approach rather than strict string

matching.

Conditional on acceptance, similarity scores are tightly concentrated (median≈ 0.853; IQR: 0.840–0.862),

indicating that once a candidate passes the time-gating and thresholding stages, the semantic evi-

dence supporting the match is both strong and consistent across days.

Table 2. Daily communications, flights, and callsign–ADS-B matching summary. Means/medians are per day; Q1/Q3 are the
25th/75th percentiles. Rates are proportions in [0, 1].

Metric Mean Median Q1 (25%) Q3 (75%)

Communications per day
Count 5,624.6 6,035.0 4,776.5 6,795.0

Flights per day
Count 4,661.53 5,258.0 5,040.0 5,447.0

NER callsign detection
Proportion 0.787 0.804 0.756 0.830

Match rate (score ≥ 0.7)
Proportion 0.398 0.441 0.390 0.475

Perfect match rate
Proportion 0.090 0.105 0.059 0.126

Match score (conditioned on score ≥ 0.7)
Score 0.851 0.853 0.840 0.862

Day-to-day reliability is assessed through the fraction of utterances whose detected callsign could

be associatedwith anADS–B callsign using thematching algorithm, with a score threshold of τ = 0.7,

as shown in Figure 3. Sharp drops in matching performance on 10 September 2025 and 15 Septem-

ber 2025 correspond to the data acquisition issues identified earlier. On these days, only a limited

number of aircraft were captured in the ADS–B dataset, which led to amarked decrease in the overall

match rate.
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These results demonstrate that the pipeline is naturally sensitive to input data quality; however,

when this condition is satisfied, matching performance remains consistent across days. Typical

coverage ranges between 35% and 55%, indicating that roughly two in five transcriptions can be

confidently linked to a specific flight under the current selection method. While lowering the score

threshold could increase the match rate, it would also raise the risk of incorrect associations. In its

present configuration, a threshold of τ = 0.7 appears to provide a reliable balance between precision

and coverage.

Figure 3. Proportion of ATC transcription that were matched with callsigns from surveillance data. A match is considered
valid only if the matching score between the callsign detected in the transcription and the candidate callsign from surveil-
lance data is above 0.7.

Figures 4 and 5 characterize how effectively the pipeline reconstructs complete pilot–controller con-

versations for individual flights by illustrating the distribution of the number of communications as-

signed to each callsign. As shown in Figure 4, most conversations comprise between one and seven

communications, and only a few exceed eleven. This distribution is consistent with operational ex-

pectations, as most exchanges in en-route sectors are typically short. However, the large number of

callsigns associated with only a single communication indicates that, while callsign–communication

matches are generally accurate when they occur (high similarity scores), a substantial proportion of

transmissions remain unlinked.

Figure 5 provides amore detailed view by reporting the daily average number of communications per

callsign, along with the interquartile range and extreme values. A few callsigns are linked to more

than 20 communications—reaching up to 50 in rare cases—which likely reflects erroneous associa-

tions, often arising when two aircraft with similar telephony callsigns operate concurrently within

the same airspace. On average, each callsign is associated with approximately 2.5 communications

(third quartile around 3), which remains below operational expectations: for a typical overflight, at

least four transmissions are anticipated—two during sector entry and two during exit. This further

underscores the current pipeline’s difficulty in reconstructing complete conversation threads.

4.4 Pilot-ATCO conversation analysis
This section analyzes three situations that were identified as conflict-resolution events. The objective

of this analysis is to compute pilot response times for these maneuvers and to highlight the current

methodological limitations that hinder large-scale response time estimation.

Figure 6 illustrates a lateral deconfliction maneuver between flights RYR23LB and IBE07FE that oc-

curred on 31 August 2025. Focusing on flight RYR23LB, two distinct deviations from its planned route

were detected: the first at 19:38:54, corresponding to a pilot-initiated heading change, and the sec-

ond at 18:44:53, when the aircraft resumed navigation toward the BODSO waypoint. The transcribed
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Figure 4. Distribution of the number of communications assigned to each callsign. For instance, more than 8,000 callsigns
are linked to only one voice audio, and rougly 2,000 callsigns are associated to a thread of 3 voice audios. Uneven numbers
of communications indicate under-threading, meaning that though a decent proportion of communications are matched,
the algorithm struggled to capture both sides of a short exchange (instruction + readback).
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Figure 5. Scatter plot of the number of communications per callsign. The dark blue line shows the average number of
communications per day, and the shaded area the inter-quartile range. Days without data points (5–8 September and
13 September) indicate periods of VHF signal loss or missing ADS–B data.
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ATC–pilot communications generated by the proposed methodology are shown alongside their cor-

responding timestamps. Based on these, the pilot’s reaction times to the ATC instructions were

estimated as approximately 20 s for initiating the first diversion and 39 s for resuming the planned

route.

Several shortcomings were, however, identified. First, the pilot’s readback of the initial instruction

was mistranscribed: “two seven five” was incorrectly rendered as “csa five”. In addition, the match-

ing algorithm failed to associate the pilot’s readback of the second instruction with flight RYR23LB,
resulting in a missing segment in the reconstructed conversation. Both issues likely stem from poor

audio quality in the cockpit recordings, which is noisy. Finally, the ATC’s second instruction was

also mistranscribed: “tango taxi” was likely not part of the clearance, and the fix name was misiden-

tified as ODNOK instead of BODSO. This error is less related to signal quality and more to the clarity of

the controller’s speech, which was difficult to interpret in this instance.

Figure 6. Two detected maneuvers for aircraft RYR23LB.

Figure 7 illustrates a lateral deconfliction maneuver between flights RYR22UZ and DLH7K that occurred
on 4 September 2025. At 12:11:12, ATC instructed flight RYR22UZ to initiate a right turn, and the pilot
acknowledged the clearance three seconds later, at 12:11:15. The maneuver began at 12:11:34. The

resulting readback time is therefore 3 s, and the pilot’s response time to initiate the maneuver is 22 s,
which aligns well with findings from previous studies.

In this example, the conversation thread appears to have been correctly reconstructed by the algo-

rithm, and the pilot’s readback accurately transcribed. However, the ATC instruction itself was not

fully decoded: the transcription indicates a heading toward VEMUT, whereas this waypoint does not
correspond to the intended direction.

Figure 8 illustrates a lateral deconfliction maneuver between flights AFR53XE and EZY69HP that oc-

curred on 31 August 2025. At 13:52:34, ATC instructed flight AFR53XE to maintain its current head-

ing, despite a turn being scheduled in the flight plan. The corresponding maneuver was detected at

13:54:04. In this case, estimating the pilot’s response time is challenging, since no immediate action

was required. Instead, we can infer that the controller issued the “continue heading” instruction

approximately 90 s before the expected turn, reflecting a measure of the controller’s anticipation or

lead time rather than the pilot’s reaction time.

This example also reveals several limitations of the current pipeline. The pilot’s readback, though

clearly audible in the recording, was not captured by the transcription module. The segment was

correctly detected by the VAD, but the speech-to-text model failed to recognize the portion contain-
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Figure 7. One detected maneuver for aircraft RYR22UZ

ing the callsign due to strong echo in the audio, preventing successful callsign attribution. Similarly,

the callsign in the ATC instruction itself was imperfectly transcribed. Nevertheless, the matching

algorithm still associated the communication with AFR53XE, thanks to sufficient semantic similarity

to the ground truth.

Finally, the last exchange in the sequence was also incorrectly processed. In the audio, the pilot

requested confirmation of the “continue heading” instruction at 13:56:24, but this transmission was

missed because of echo distortion. The controller’s subsequent reply was captured, but the audio

was poor and largely unintelligible. The pilot then responded without repeating the callsign, leading

to a missed association.

5. Discussion

The proposed methodology shows strong potential for enabling large-scale processing and analysis

of ATC audio communications. While its immediate application lies in estimating pilot response

times, it can be extended to a broader range of human-factors analyses in air traffic management:

for example, assessing controller lead times between conflict detection and instruction issuance, in-

vestigating loss of attention due to excessive communication frequency, or analyzing instances of

ambiguous or non-standard phraseology. Nevertheless, as highlighted in Section 4, several limi-

tations currently prevent the methodology from being deployed in a fully automated, large-scale

setting.

A first challenge concerns data quality, since the pipeline relies on raw, openly available sources.

During our acquisition campaign, we encountered frequent disruptions either in the audio record-

ing setup or in the retrieval of ADS–B trajectories, resulting in missing or incomplete data. Such is-

sues directly affect the ability to assign accurate callsigns to transcriptions, as illustrated in Figure 3.

Moreover, the audio quality itself is often suboptimal, particularly for pilot transmissions, which are

typically affected by strong cockpit background noise. Poor signal quality degrades speech-to-text

transcription performance and, consequently, the accuracy of callsign matching. Another recurring

difficulty is the variability of radio phraseology: callsigns are sometimes omitted or only partially

pronounced. In partial cases, the algorithmmay still recover the correct callsign, though occasionally
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Figure 8. One detected "heading continuation" for aircraft AFR53XE

it misattributes it; in the absence of any callsign mention, however, conversations cannot be recon-

structed, as each utterance is treated independently without contextual linkage between controller

and pilot turns.

A second limitation arises from error propagation across the pipeline’s modular structure. Although

safeguards and post-processing steps are implemented at each stage (e.g., VAD smoothing, merging

of consecutive NER callsigns, soft-matching of candidate flights), errors in early modules can cascade

through subsequent components. For example, an overly restrictive VAD segmentation can truncate

voice segments, removing critical acoustic context and thus degrading transcription quality. This be-

havior was observed in Table 1, where a clipped audio segment led to incorrect callsign recognition.

Similar propagation effects occur when the speech-to-text or NER modules fail, ultimately resulting

in mis-transcribed communications or incorrect ADS–B associations.

Finally, identifying deconfliction maneuvers remains a particularly difficult task. Access to recent

and detailed flight plans is limited, and aircraft often deviate from their planned routes for oper-

ational reasons unrelated to conflict resolution. Furthermore, the current implementation focuses

solely on lateral deconfliction maneuvers, which are less frequent than altitude or speed adjust-

ments. Consequently, fewer than 1% of flights are flagged as potential deconflictions. Combined

with the fact that only about 40% of communications are matched, the probability of obtaining a

usable ATC–pilot exchange for a deconflicted flight remains low. Even among these, missing speech

segments within an ATC-pilot conversation can prevent accurate response time estimation. As a

result, manual inspection is still required to verify the completeness and usability of each identified

case, which currently prevents fully automated computation of response times at scale, and there-

fore the computation of the distribution of the response times for a large number of communications.

It is also important to note that the current maneuver identification algorithm is not applicable to

free-route airspaces, where no predefined flight routes exist. Such airspace structures are becoming
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increasingly common in Europe.

6. Conclusion and outlook

This study introduced a methodology for the automatic processing of ATC voice communications by

integrating speech processing, natural language understanding, and surveillance data. The proposed

pipeline was primarily applied to estimate pilot–controller response times, but it can readily be

extended to other tasks that currently require manual annotation of audio recordings. The MUAC

airspace was selected as a test environment because it legally permits the recording and processing

of ATC communications and provides access to flight plans—conditions that enable the application

of the deconfliction detection algorithm for quantifying pilot response times. More broadly, the

speech-to-flight association pipeline can be deployed in any airspace where both ATC audio and

surveillance data are available. Minor adaptations to the callsign-matching algorithmmay, however,

be necessary to account for regional variations in radio phraseology across different continents.

The results demonstrate that the proposed pipeline can reliably identify and align ATC–pilot ex-

changes under realistic operational conditions. When data quality is sufficient, the system achieves

consistent matching performance and produces response time estimates in line with empirical find-

ings from earlier simulation-based studies.

However, several challenges remain before the framework can be deployed for large-scale, fully

automated analyses. Chief among them is the dependence on high-quality input data: reliable au-

dio recordings and complete surveillance coverage are prerequisites for accurate conversation re-

construction. Furthermore, the current callsign-matching algorithm treats each utterance indepen-

dently, overlooking the temporal continuity that naturally exists in ATC dialogues. Incorporating

conversational context such as question–answer or instruction–readback sequences, would reduce

the number of missing associations within a thread, and improve readback detection.

Future work will also focus on improving the transcription stage by refining or fine-tuning theWhis-

per ATC model. Training on a larger and more diverse set of annotated ATC communications, or

performing domain-specific fine-tuning for individual centers or frequency bands, could substan-

tially enhance recognition accuracy. Finally, extending the deconfliction detection algorithm beyond

lateral maneuvers to include speed and altitude adjustments will broaden the range of detectable

events and enable a more comprehensive analysis of response behavior. Adapting the algorithm to

free-route airspaces also represents a natural next step toward broader applicability across different

operational environments.

Overall, this work represents a step further toward a scalable framework for the data-driven assess-

ment of human response times in air traffic control operations. With continued improvements in

data quality, model robustness, and event-detection capabilities, the proposed methodology has the

potential to support large-scale, real-world evaluations of controller and pilot performance.

While constraints on ATC audio data quality and availability currently limit large-scale reproducibil-

ity in airspaces governed by stricter privacy regulations (e.g., France), this work presents opportuni-

ties for operational stakeholders. In particular, the pipeline could be highly generalizable if deployed

directly by ANSPs, which legally possess access to high-quality ATC voice communications. Such

stakeholders could implement the methodology internally to monitor systemic safety performance

(for example, through sector complexity or workload analyses) without encountering the regulatory

barriers faced by open-source researchers. This would, however, require the establishment of appro-

priate governance frameworks, such as Just Culture principles and data anonymization procedures,

to address legitimate concerns related to individual performance monitoring.
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