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Abstract

EUROCONTROL’s Performance Review Commission launched the 2024 PRC Data Challenge in July 2024
with the aim of engaging with data scientists and aviation enthusiasts for the development of an open
model to estimate an aircraft’s take-off weight. The dataset for the challenge represents a unique instance
of otherwise difficult-to-obtain flight information and could be reused for educational purposes or to
further improve the outcome of the challenge.

Keywords: take-off mass; take-off weight; estimation; open data

Abbreviations: ATOW: actual take-off weight, TOW: take-off weight (estimated), ADEP: airport of departure, ADES:
airport of destination, AOBT: actual off-block time, ARVT: arrival time, WTC: wake turbulence category

1. Introduction

True to its values of openness, transparency, and reproducibility, the EUROCONTROL Performance
Review Commission (PRC), established in 1998 by EUROCONTROL’s Permanent Commission, pro-
vides objective information and independent advice to EUROCONTROL’s governing bodies on the
performance of the European Air Traffic Management (ATM). The insights are provided based on
extensive research, data analysis, and consultation with stakeholders. In 2023, PRC decided to pro-
mote a data challenge that could be of use to tackle the emerging issue of quantifying the impact of
aviation on climate.

The PRC decided to focus the challenge on predicting the Actual Take-Off Weight (ATOW). ATOW
is an essential input parameter for modeling the amount of fuel burnt during a flight and of gasseous
emissions produced such as carbon dioxide (CO;), nitrous oxides (NO,), sulfur dioxide (SO,) et al.
Also important was the possibility to freely use the result of the challenge with openly available
input data. The collaboration with OpenSky Network (OSN) and fellow researchers from TU Delft
and ONERA made it possible to design the challenge and the companion data set that are described
in the following sections.
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2. Background

During the design of the challenge, our initial hypothesis is that ATOW should depend on the fol-
lowing factors:

1. Parameters related to the origin and destination:

« The geographical distance between the two airports of a flight influences how much fuel an
aircraft will have to tank.

+ Aerodrome of Departure (ADEP) or Aerodrome of Destination (ADES) may dictate Air Traffic
Management (ATM) procedures like Standard Instrument Departure Route (SID)i and Standard
Arrival Route (STAR)? that influence the trajectory flown and hence the extra fuel required.

» Both ADEP and ADES affect how an Aircraft Operator (AO) might plan and execute flights,
for example, in selecting the potential airports for diversions, which can affect the decision on
extra fuel to be carried on-board.

2. Information related to time:

« Depending on the time of day or day of the week when flights are planned, the flights may
experience longer taxi times or measures influencing the capacity, such as re-routing, holding,
and vectoring, all of which would affect the fuel decision.

« seasonal trends, such as the International Air Transport Association (IATA) season schedulei,
local time, and flight duration, could also affect the weight of the flight.

3. Information on the aircraft (airframe): the International Civil Aviation Organization (ICAO) type*
will imply different aircraft performance profiles and hence different amounts of fuel needed

4. Airline: Policies vary for different airlines, which can affect the take-off weight. For the same
city-pair, airlines could select a different alternate aerodrome to be used in case of diversion due
to technical issues. Airlines could also have different fuel tanking policies.

5. Operational data: The actual flown route length, which is different from great circle distance, is
caused by ATM constraints like regularly allocated military areas. This parameter could better
refine ATOW estimation. A similar effect due to taxiway constraints also applies to the taxi-out
operations.

6. The 4D trajectory itself: The Automatic Dependent Surveillance-Broadcast (ADS-B) trajectory
data contains a lot of information that helps to classify the way a flight has been flown. For
example, the rate of climb and maximum level of cruise flight are all dependent on the aircraft’s
weight.

3. Method

Based on the previous hypothesis and availability of the data sources, we constructed the dataset for
the PRC Data Challenge. It consists of:

1A SID is a standard Air Traffic Service (ATS) route identified in an instrument departure procedure by which aircraft
should proceed from the take-off phase to the en-route phase.

2A STAR is a standard ATS route identified in an approach procedure by which aircraft should proceed from the en-route
phase to an initial approach fix.

3JATA Summer schedule for the year begins on the last Sunday of March and ends on the last Saturday of October of the
same year.
IATA Winter schedule for the year begins on the Sunday after the last Saturday of October and ends on the Saturday before
the last Sunday of March the next year.

*and possibly the engine types and age, but these data points are not reliably or openly available and as such were not
included in the Data for modeling dataset.
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1. Actual Take-off Weight (ATOW) data: Flight information from EUROCONTROL’s Network
Manager (NM) augmented with derived Take-Off Weight (TOW) from airlines. The airline infor-
mation is anonymized. We have extracted a total of 5.27162 x 10° flights that were flown through-
out Europe in 2022. This represents 6.1% of the flights from the EUROCONTROL airspace.

2. Trajectory data: State vector from the OpenSky Network [1] for the above flights, augmented
with meteorological items from Copernicus ERA5 [2] via the fastmeto library [3].

Due to data disclosure constraints, we could not identify the airline operators or the airframe (ICAO
transponder code or registration number). So these parameters are not included in the open dataset.

3.1 Flight list with take-off weight data

The flight list used in the data challenge is derived from EUROCONTROL data, containing scheduled
and non-scheduled flights, where we removed flights such as military, general aviation, sensitive,
and state flights. The resulting bare flight list accounted for around 8,686,000 flights in 2022.

We further removed:
« Flights with the same origin and destination airport
« Flights with unknown airport, where ADEP or ADES with value 2Z7Z or Air Filed (AFIL)’

« Flights without callsign or ICAO transponder address, which is required to match ADS-B trajec-
tories

« Flights with no complete weight data, such as missing fuel weight, or only having fuel weight
« Flights from airlines that have not shared or agreed to share the take-off weight data

After filtering, 1,006,051 flights, containing take-off weight information, have been retained for the
data challenge.

3.2 Trajectories from ADS-B data

Based on this list of flights with take-off weight information, we extracted the relevant ADS-B tra-
jectories from OpenSky’s historical data. The parameters used for extracting state vectors are:

1. icao24

2. callsign

3. date (the date of Actual Off-Block Time (AOBT))

4. start (five minutes before AOBT)

5. stop (thirty minutes after actual Arrival Time (ARVT))

The data extraction provided 527,162 trajectories, with the relevant flight list, which became the
final ground truth flight dataset for the challenge.

For the purpose of automatic ranking, we split the dataset into different training and testing sets, the
proportions are shown in Figure 1. The split between training and testing is random. We evaluated
the distribution of the aircraft types to ensure the consistency between training and testing datasets.

The difference between the datasets are:

1. Part A: The training dataset, train.csv. It was named challenge_set.csv in the 2024 PRC Data
Challenge. It consists of 369013 rows of state vectors. This dataset is the one from which to learn
and build the machine learning model: it contains the tow column with the ATOW values.

5 An AFIL is recorded by air traffic controllers and encodes a flight plan received from an aircraft already in flight.
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Figure 1. Flight list parts

2. Part B: The initial testing dataset, test.csv. It was named submission_set.csv in the 2024 PRC
Data Challenge. It consists of 105959 rows. This dataset was used for submissions and ranking
up to around one week before the deadline. It was the one to submit with a predicted value of
ATOW in the tow column, which was not disclosed during the competition.

3. Part B + C: the final test dataset, test_final.csv. It was named final_submission_set.csv in
the 2024 PRC Data Challenge. It consists of 158149 rows. This dataset was used for the final
ranking in the last phase of the challenge. It added 52190 rows to the test dataset, test.csv.

3.3 Parameters in the final dataset

After the end of the data challenge, we deliver the full ground truth dataset in flight_list.csv. It
consists of all the 527162 rows, i.e. A + (B + C) inclusive of tow values.

The parameter names, description and units are listed as follows:

1. Flight identifications:
« flight_id: unique flight ID generated using traffic library

« callsign: obfuscated callsign of the flight

2. Origin and destination airports:

« adep: departure airport ICAO code

« ades: arrival airport ICAO code

« name_adep: departure airport name

« country_code_adep: departure country code
« name_ades: arrival airport name

« country_code_ades: arrival country code

3. Date and time:
« date: date of flight (UTC)

« actual_offblock_time: Actual offblock time (UTC)
 arrival_time: Arrival time (UTC)

4. Aircraft information:

« aircraft_type: ICAO aircraft typecode
« wtc: wake turbulence category, see footnote in Table 1

5. Airline information:
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« airline: obfuscated airline code

6. Operational parameters:

« flight_duration: flight duration (in minutes)
« taxiout_time: taxi-out time (in minutes)
« flown_distance: route length (in nautical miles)

« tow: estimated take-off weight (in kg)

In terms of ICAO aircraft types, there are 30 distinct ones in the dataset; the top 10 account for
around 82% of the total flights, see Figure 2 and Table 1.

Flights
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A333
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Figure 2. The distribution of the aircraft types. The top 10 aircraft types account for more than 80% of the flights in the
dataset.

In terms of city-pairs, there are 2836 (undirected) city-pairs in the dataset. The top 132 cover 50% of
the traffic, see Figure 3.

Figure 3. All city pairs in the dataset (a.); the top 132 pairs accounting for 50% of the flights (b.) and all connections with at
least 100 flights (c.)

The dataset shows the typical seasonality of summer peak and winter trough but not for all aircraft
types, see Figure 4.
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Figure 4. Monthly number of flights per aircraft type.

4. Data Archive

The data set for the 2024 PRC Data Challenge is available at
https://doi.org/10.4121/8cb8484b-dbe7-4750-8b87-a5b1dbc621b4

The overall size is around 286 GiB, mainly due to the trajectory files. The dataset is licensed under
CC BY 4.0 license.

Appendix 1. Supplementary tables
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Table 1. The aircraft types in the dataset (performance info from (5))

ICAO Engine
type wTc! Name Flights % of flights Range (NM) Pax (max) Type N.
A320 M Airbus A320 113971 21.6% 2700 180 Jet 2
A20N M Airbus A320neo 54245 10.3% 3500 194 Jet 2
B738 M Boeing 737-800 53813 10.2% 2000 189 Jet 2
A321 M Airbus A321 41819 7.9% 2350 220 Jet 2
E195 M Embraer 195 35370 6.7% 2300 124 Jet 2
A21N M Airbus A321neo 33158 6.3% 4000 244 Jet 2
CRJ9 M Bombardier CRJ900 32846 6.2% 1550 90 Jet 2
A319 M Airbus A319 25074 4.8% 1800 142 Jet 2
A333 H Airbus A330-300 24316 4.6% 5650 335 Jet 2
B38M M Boeing 737 Max 8 17396 3.3% 3550 210 Jet 2
BCS3 M Airbus A220-300 17147 3.3% 3550 160 Jet 2
B77TW H Boeing 777-300R 13116 2.5% 7930 365 Jet 2
B772 H Boeing 777-200 11865 2.3% 5210 440 Jet 2
AT76 M ATR 72-600 9874 1.9% 5210 78 Turboprop 2
B788 H Boeing 787-8 Dreamliner 8511 1.6% 8000 250 Jet 2
B789 H Boeing 787-9 Dreamliner 8256 1.6% 7565 420 Jet 2
BCS1 M Airbus A220-100 6739 1.3% 3400 135 Jet 2
B737 M Boeing 737-700 5157 1.0% 2500 149 Jet 2
A332 H Airbus A330-200 3183 0.6% 6750 293 Jet 2
E190 M Embraer 190 3026 0.6% 2400 114 Jet 2
B739 M Boeing 737-900 2591 0.5% 2745 189 Jet 2
A359 H Airbus A350-900 XWB 2504 0.5% 8100 475 Jet 2
B763 H Boeing 767-300ER 1686 0.3% 6105 351 Jet 2
B39M H Boeing 737 MAX 9 782 0.1% 3550 220 Jet 2
A343 H Airbus A340-300 698 0.1% 7200 335 Jet 4
B752 M Boeing 757-200 10 0.0% 3900 228 Jet 2
B773 H Boeing 777-300 3 0.0% 5955 550 Jet 2
E290 M Embraer 190-E2 3 0.0% 2850 114 Jet 2
A310 H Airbus A310 2 0.0% 5100 247 Jet 2
C56X M Cessna 560XL Citation Excel 1 0.0% 2000 9 Jet 2

1M = Medium; aircraft types less than 136000 kg (300000 |b) and more than 7000 kg (15500 Ib). H = Heavy; aircraft types of 136000 kg
(300000 lb) or more (except those specified as J). J = Super; aircraft types with a maximum take-off mass in the order of 560000 kg
(at present, only the Airbus A380-800).

Open data statement

The open dataset can be donwloaded from:
https://doi.org/10.4121/8cb8484b-dbe7-4750-8b87-a5b1dbc621b4

Reproducibility statement

The source code of all the competition teams can be found at:
https://github.com/PRC-Data-Challenge-2024/
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