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Abstract
This paper presents a Machine Learning (ML) model developed to detect holding pattern events in aircraft

trajectories. Holding patterns are racetrack-shaped flight paths that an aircraft follows while awaiting fur-

ther instructions or clearance from air traffic control (ATC). They are typically used to delay an aircraft’s

approach or to maintain flight without progressing towards its destination, often due to airport conges-

tion, adverse weather conditions, or other operational factors. Accurate detection of these patterns in

aircraft trajectories is crucial for performance evaluation studies within Terminal Manoeuvring Areas.

Although holding patterns are relatively straightforward to define, efficiently detecting them using rule-

based methods is challenging. This study details the process of labelling a dataset comprising over 130,000

aircraft trajectories landing at five major European airports and training a model to accurately identify

these patterns.

Keywords: air traffic management, ADS-B, trajectory analysis, data preprocessing, machine learning

1. Introduction

As air traffic control (ATC) is responsible for ensuring safe and efficient operations, this task be-

comes particularly complex within Terminal Manoeuvring Areas (TMAs), where numerous aircraft

converge towards one or more runways. In these areas, aircraft must reduce speed and altitude,

align for landing, and maintain safe separation distances, including wake turbulence separations.

The challenge intensifies under adverse conditions, such as fog or thunderstorms, which necessitate

greater separation distances, further complicating the management of air traffic flow.

Control strategies within Terminal Manoeuvring Areas (TMAs) include level-offs, path stretching,

point-merge techniques, and holding patterns [1]. Previous research [2] has demonstrated that hold-

ing patterns have the most significant adverse environmental impact among these strategies, re-

gardless of the underlying cause. Another study [3] investigated the factors contributing to holding

patterns at major European airports. These analyses were all based on the original detection method

implemented in the traffic library [4], a method which, until now, has not been formally published

in an academic context.

In this paper, we present the method used to label an original dataset [5] with holding pattern in-
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formation. Initially, we applied information extraction techniques based on autoencoding neural

networks, to explore the characteristics of holding patterns within the generated latent space. This

approach allowed us to identify areas where holding patterns tended to cluster, resulting in a prela-

belled dataset. This dataset was then meticulously and laboriously relabelled by the authors. Fol-

lowing this, the initial layers of the autoencoder were retained, and the downstream layers were

replaced with a conventional classifier trained to specialize in the identification of holding patterns.

This approach led to the development of a highly effective model for labelling holding pattern sit-

uations, which has since been published and is now widely adopted by the community through

the traffic library. Such a method is particularly helpful in monitoring airborne delays in terminal

airspace, supporting the SES Performance Scheme’s KPIs, including the ASMA Time metric for air-

borne holding. By detecting delays such as those caused by racetrack holding or vectoring using

open data, it could complement ANSP data and enhance the evaluation of operational efficiency and

environmental impact.

In the following, Section 2 provides the context and formal definition of a holding pattern, alongwith

the rationale for choosing a Machine Learning approach over a rule-based detection method. The

process of constructing a labelled trajectory dataset is detailed in Section 3, while Section 4 describes

the training procedure. Finally, the results and their implications are presented and discussed in

Section 5.

2. Definition of a holding pattern

A holding pattern is a manoeuvre where an aircraft flies a racetrack-shaped pattern in a designated

area. Such amanoeuvre can be implemented en route, when the crew needs to run through checklists

[6] and troubleshoot problems, or by refuelling aircraft [7]. They are often implemented in TMA as

a last resort to sequence aircraft using limited space. When operations are disrupted, it is a common

practice to stack holding patterns with aircraft flying the racetrack shape at various altitudes, the

lower aircraft having the higher priority. We have observed that this practice varies across airports:

some use holding patterns as a last resort during degraded conditions, while others implement them

during periods of congestion. For instance, in London Heathrow, holding patterns are not a sign of

degraded conditions, whereas they would occur in Paris area only in exceptional conditions, such

as limited visibility (fog).

Figure 1. Holding patterns may be entered according to different patterns: direct entry (a.), tear-drop entry (b.), and some
variants may also be implemented, with some oval shapes becoming circles (c.) or switching from a left-hand turn to a
right-hand turn upon entry (d.)

Holding patterns are defined from a navigational point, called holding fix which forms the end of an

inbound leg. Depending on the initial bearing of the trajectory, aircraft enter a holding with different

patterns (Figure 1). Holding patterns are mostly flown in a standard direction (right-hand turns) but

non-standard patterns are also common (Figure 1.c).

Historically, the racetrack shape has been preferred over circles, as the latter limit situational aware-

ness. The introduction of RNAVmade it easier to fly any pattern, but since the rules of aviation were
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standardized before GPS came into common use, racetrack patterns developed for holding at the time

have remained the norm.

Despite being carefully designed, holding patterns are very hard to properly label systematically due

to large variances in the way to enter a holding pattern and in the duration of the straight legs, if

any. Attempts to detect circles, or intervals where the track angle covers a range of 360 degrees, fail

in many corner cases.

Figure 2 shows various situations for holding patterns implemented on trajectories in a terminal

manoeuvring area: holding patterns have been highlighted in orange by the model we present in

this contribution. An ML model allows to detect situations even when they do not perfectly match

simple necessary conditions to define a holding pattern:

1. the trajectory is not self-intersecting;

2. the trajectory path is further stretched at the exit of the holding pattern;

3. two holding patterns are implemented in sequence; the first one (to the East) looks atypical;

4. the aircraft enters and exits a holding pattern without running a full loop;

5. the trajectory shows a tear-drop entry but exits the holding pattern before running a full loop;

6. this atypical trajectory with many landing attempts at Lelystad airport (EHLE) shows only one

short holding pattern; other “loops” should not be labelled as so.

Figure 2. The proposed model effectively detects and labels various types of holding patterns. ML helps to replace fuzzy
definitions, accounting for numerous corner cases, with example-driven learning for a more robust detection.

In this contribution, we prefer anML approach over traditional rule-basedmethods when developing

a method to detect and label various types of holding patterns. Rule based methods would rely

on fuzzy definitions, which will be prone to failure when faced with corner cases or unexpected

variations in the data. Machine Learning, on the other hand, allows us to train the model using

real examples of holding patterns, enabling it to learn from the inherent variability in the data. By

focusing on data-driven learning, we eliminate the need for a formal definition and substitute it with

a substantial dataset of examples.
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The drawback of this approach is that, at this time, there is no such labelled collection of examples.

We explain in Section 3 how we constitute such a dataset.

3. Constitution of a labelled dataset

To build an accurate ML model for detecting holding patterns, we must first construct a properly

labelled dataset. In the following, we detail the initial steps involved in creating this dataset, includ-

ing howwe automatically generated an initial labelling of the trajectories, which was later manually

verified by the authors of this contribution.

The data used for this study is collected by the OpenSky Network [8], a network of ADS-B receivers,

which offers querying capabilities on their database for academics. Recorded data contains times-

tamps (added on the receiver side, with many receivers equipped with a GPS nanosecond precision

clock), transponder unique 24-bit identifiers (icao24), space-filled 8-character callsign, latitude, lon-
gitude, barometric altitude, geometric altitude, ground speeds, true track angle, and vertical speed.

Trajectories of aircraft landing at major European airports are provided (see Table 1). Trajectories

are resampled and clipped to fit in a radius of a size that is different according to airports in order

to capture the area where holding patterns tend to be implemented. Illustrations in this paper may

use trajectories of aircraft landing at other airports, such as Zurich (LSZH) or Amsterdam Schiphol

(EHAM), but those are not part of the final labelled dataset.

Table 1. Description of the datasets used in the study

airport code area of interest size of the dataset number of holding patterns
(radius)

London Heathrow EGLL 50 nm 38,550 trajectories 13,680 (36 %)
London City EGLC 60 nm 4,364 trajectories 50 (1.2 %)
Dublin EIDW 50 nm 17,457 trajectories 4438 (4.5 %)
Paris Charles de Gaulle LFPG 90 nm 37,085 trajectories 78 (2.1 %)

The model’s objective is to identify segments of trajectories that can be labelled as holding patterns,

representing a detection task, as opposed to methods that simply determine whether a trajectory

contains a holding pattern or not, which would be a classification task. To simplify this detection

task, we frame it as a classification problem applied to segments of trajectories. Instead of analysing

full-length trajectories directly, we divide them into overlapping segments using a sliding window

approach (Figure 3).

A straightforward approach to classify data in unsupervised ML involves clustering techniques.

However, traditional clustering methods face challenges when applied to trajectory data, primar-

ily due to difficulties in defining meaningful distance metrics. A common practice is to sample the

trajectory and represent it as an n-dimensional vector of points, enabling the use of point-based

clustering algorithms and metrics like the Euclidean distance. Unfortunately, this approach is hin-

dered by the curse of dimensionality. Alternative distance measures have been developed to better

account for the geometry and shape of trajectories [9]. Among these, the Hausdorff distance [10]

and the Fréchet distance [11] are particularly well-known.

To overcome the limitations of traditional clustering methods, we can utilize deep clustering tech-

niques [12], which involve projecting samples into a lower-dimensional latent space and performing

clustering within this reduced space. In this study, we applied a trajectory clustering technique pre-

viously introduced in [13], leveraging autoencoders to construct the latent space. Autoencoders
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Figure 3. Trajectories are divided into overlapping segments using sliding windows of 6 minutes with a 2-minute shift. (For
this map, slightly different values are used, and a lateral offset is applied to the segments for improved legibility.)

are particularly suited for this task, as they compress input data into a compact latent representa-

tion while preserving its essential features. Autoencoders are a powerful tool for mapping high-

dimensional data into a lower-dimensional space, while effectively grouping samples with similar

features together. Figure 4 visualizes the latent space generated by the autoencoder, showcasing

clusters of holding pattern segments.

Figure 4. Latent space representation of a selection of trajectory segments, with holding patterns forming distinct clusters

Figure 5 illustrates how an entire trajectory, represented as a sequence of 6-minute segments, can

be mapped onto the previously defined latent space. In this visualization, all segments (depicted as

2-dimensional points in the latent space) that fall within the orange region are identified and should

be labelled as holding patterns.

For our approach, we implemented a basic Gaussian Mixture Model (GMM) to detect clusters con-

taining holding patterns; GMM works by modelling the data as a mixture of multiple Gaussian dis-

tributions, each representing a cluster. Figure 6 shows an effective clustering achieved by the GMM

with 4 components. To refine the clustering, we trained the autoencoder on a subset of trajectories
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Figure 5. Example of a trajectory mapped into the latent space, together with a subset of the input trajectories

containing only those with self-intersections, which reduced the density of negative samples in the

latent space and encouraged the formation of dense clusters for holding patterns.

Figure 6. Resulting clustering on the latent space with a 4-component Gaussian Mixture Model approach: the orange cluster
seems to capture a lot of the holding pattern segments.

The initial labelling obtained through clustering was applied to the entire dataset of trajectories,

creating a pre-labelled dataset. At this stage, the performance of the initial project-then-cluster step

was not critical, as the entire dataset was subsequently manually reviewed by the authors. During

this exhaustive process, all false positives and false negatives were corrected to produce the final

labelled dataset. This was the most time-consuming and least rewarding part of the work, yet it was

crucial for the accuracy of the training part.

It should be noted that the labelling was conducted by multiple authors, each bringing their own

definition on what constitutes a holding pattern. Moreover, their interpretations of holding patterns

may have evolved throughout the labelling process. While this variability might be viewed as a

limitation, it can also be considered a strength as it introduces variance and regularization into the

dataset, all that can be beneficial during the training phase of the model (Section 4).

https://orcid.org/0000-0002-2335-5774


Journal of Open Aviation Science 7

Technical implementation. Each trajectory was divided into overlapping sliding windows of 6

minutes with a 2-minute shift. These segments were then resampled into 30 evenly spaced points,

corresponding to one data point every 12 seconds. To handle discontinuities in the track angle, the

values were unwrapped to prevent abrupt jumps (e.g., from 359
o
to 1

o
) by continuing the sequence

beyond 360
o
(e.g., to 361

o
). Additionally, the track angle values were normalized by shifting them so

that the first timestamp starts at zero, followed by a min-max scaling (scikit-learn implementation).

The processed data was projected into a latent space using a simple autoencoder with four layers.

The architecture consisted of an input layer with 30 neurons, a second layer with 8 neurons, a

bottleneck layer with 2 neurons, and a symmetric decoder with 8 and 30 neurons, respectively. The

projection operator utilized only the first two layers, which produced the low-dimensional latent

representation of the trajectory segments. The code for processing trajectories and implementing

the methodology described in this section is available on GitHub and is based on the traffic library.

4. A supervised model for holding pattern detection

Once the dataset was fully constituted, we employed a cross-airport validation strategy and divided

the dataset into training and testing subsets: models were trained on data from a subset of airports

and tested on the remaining ones. As for metrics, due to the imbalanced nature of the dataset, we

let accuracy aside and focused instead on precision, recall, F1-score, and Intersection over Union

(IoU). Precision, recall and F1-score are implemented at the segment level (“Is the six-minute segment
part of a holding pattern?” ), while IoU is implemented at the full trajectory level. The IoU score was

anticipated to be lower, given the inherent ambiguity in precisely defining the starting and ending

points of a holding pattern.

We tested two architectures:

• a fully connected (FC) network resembling the autoencoder from Section 3, and

• a convolutional (CNN) network, as illustrated in Figure 7.

We trained the model on the resampled unwrapped track angle values, and compared the results

with the effect of including vertical rate values into the model (which would slightly change some

sizes in Figure 7).
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Figure 7. Structure of the convolutional architecture used for the model

A series of experiments were conducted to evaluate the performance of these architectures under

various configurations, including training on subsets of airports and testing on unseen airports. The

results, summarized in Table 2, indicate that the convolutional architecture generally outperformed

the fully connected network in terms of precision, recall and F1-score. The highest scores were
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achieved with the convolutional architecture when trained on data from EGLL, EGLC, and LFPG and

tested on EIDW, using both track angle and vertical rate as input features. We also noted a substantial

variability in the results was observed depending on the airport pairs used for training and testing.

Table 2. Performance Metrics

precision recall F1 train test features architecture

0.8504 0.7005 0.7682 * EIDW track + vertical rate CNN
0.8358 0.6959 0.7594 * EIDW track CNN
0.7628 0.7542 0.7584 EIDW * track CNN
0.7428 0.7704 0.7563 EIDW * track + vertical rate CNN
0.7891 0.7009 0.7423 EGLL * track CNN
0.7752 0.6619 0.714 EGLL * track + vertical rate CNN
0.395 0.6267 0.4845 * EGLC track FC
0.3655 0.7067 0.4818 * EGLC track + vertical rate CNN
0.3472 0.6757 0.4587 * LFPG track CNN
0.3063 0.6622 0.4188 * LFPG track + vertical rate CNN

Including the vertical rate provided a marginal improvement in performance across most configu-

rations, which led us to publish the second model in the list, using only track angle values, trained

on London and Paris airports and tested on Dublin airport.

The model was also tested on less typical data, such as practice go-arounds and aerial surveys,

yielding successful results. Although the dataset of these atypical trajectories is included in the

traffic library’s set of sample trajectories, it is not large enough to perform meaningful statistical

analysis.

5. Discussion and conclusion

In this contribution, we present the approach adopted to develop a model capable of detecting hold-

ing patterns in aircraft trajectories. While the model was trained and tested on labelled data from

four airports, it has demonstrated strong generalization capabilities, effectively labelling trajectories

from different contexts, as shown in Figure 2.

The model has already been widely implemented as part of the traffic library for various visualiza-
tions (e.g., Figure 8) and other contributions, such as [2, 3]. Further validation has been conducted

through its application to in-flight emergencies analyzed in [6], where holding patterns extend be-

yond terminal manoeuvring areas. The model has not shown any significant misclassification of

other trajectory loops that cannot be categorized as holding patterns.

The performance of the model has been deemed satisfactory by both the authors and the broader

community. However, as with many machine learning-based models, it lacks clear explainability

regarding why a particular trajectory is labelled as a holding pattern or not. To assist the community

in any effort to come up with a better model, the authors provide both the trajectories and the

corresponding labels alongside this contribution.
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Figure 8. Holding patterns labelled for trajectories landing at London Heathrow Airport
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