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Abstract
Aircraft arrivals and departures significantly affect nearby populations, primarily through noise pollution

and the release of pollutants that degrade air quality. Estimating these environmental impacts can be a

lengthy process and is typically mandated by legal regulations governing airport operations. This paper

proposes a methodology to automate the estimation of environmental impacts for historical scenarios,

specifically noise and pollutant emissions in the vicinity of airports, by utilizing open-source data. The

automation pipeline developed retrieves the necessary databases and ADS-B data for a specified airport

and time frame, and validates, pre-processes and enhances the data before estimating noise and local air

quality emissions with it. The developed automation pipeline is applied to the Cologne Bonn Airport for

the year of 2019. In addition to the open-source data, confidential datasets were made available containing

the airport flight logs and the records from the airport noise measurement stations. This confidential

dataset is used to assess the coverage of the ADS-B data and to validate the noise estimates generated

with the automated process. The number of flights obtained from the ADS-B network covers ca. 82% of

the flights in the airport flight logs, and the mean noise levels derived from ADS-B data deviate between

0 and 3 dB(A) from the ones recorded by the noise measurement stations, depending on the flight type

and location of the noise stations. Possible reasonings for the different discrepancies observed include the

assumptions made in the ADS-B data enhancement, as well as the underlying noise model and databases

used. As a final step in the Cologne Bonn Airport use case, aircraft emissions reported according to the

Landing & Takeoff cycle are compared with emissions estimates derived from ADS-B data. Significant

discrepancies are observed between the two estimation methods which can be attributed to variations in

time spent below 3000 ft AGL, average fuel flow and average EIs for each pollutant. This contribution

provides an initial step toward automating the estimation of environmental impacts from arriving and

departing aircraft. Further work shall focus on addressing the limitations of the methodology used to

enhance the ADS-B tracks obtained and further validation of the environmental impacts estimated.

Keywords: Open-data; Noise; Emissions; Automation

Abbreviations: ANP: Aircraft Noise and Performance, EI: Emission Index, LTO: Landing and Takeoff, ICAO: International

Civil Aviation Organization

1. Introduction

The direct environmental impacts of aircraft operations on the population, such as noise and air

pollution, are highly concentrated within a small radius around airports. The estimation and report-

ing of these impacts to the public is currently driven by the legal frameworks airports must adhere
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to, such as the Environmental Noise Directive (END) [1] for noise and the EU Directive 2008/50/EC

[2] regarding the assessment and management of pollutant concentrations. The studies conducted

within this legal framework take place at irregular intervals, involve extensive data collection and

preprocessing steps and are usually performed separately for each environmental impact.

The use of detailed trajectory data to estimate airport environmental impacts, particularly aircraft

noise, has been an area of research even since before the widespread availability of flight tracking

data, despite not being a standard practice within the regulatory frameworks followed by airports

[3] [4]. Since crowdsourced flight tracking data, such as the Opensky Network [5], have become

available, this topic has been further researched. For noise, Pretto et al. in [6], [7] have focused on

reconstructing ground tracks and flight profiles with the models specified in Doc 29 [8] to adapt the

trajectories produced to the ones observed in the data obtained from the Opensky Network. For

aircraft emissions, the use of flight tracking data has seen more use with at-altitude emissions or

complete trajectories from origin to destination airport, aiming at comparing different modelling

approaches for the influence of flight characteristics on emissions [9] [10].

While significant progress has been made in leveraging detailed trajectory data for environmental

impact analysis, developing noise and local air quality studies for each airport remains a complex and

resource-intensive task. These studies are often hindered by inconsistent data availability, workload-

intensive preprocessing requirements, and the need for tailored approaches for each airport and

scenario. The lack of standardized methodologies further complicates efforts to compare results

across different airports or studies, limiting transparency and the ability to derive broader insights.

This work addresses these challenges by proposing an automated and standardized process for es-

timating noise and emissions affecting local air quality in the immediate vicinity of airports, using

open-source datasets. By automating the workflow and utilizing publicly available data, the pro-

posed approach enhances reproducibility, transparency, and enables direct comparability of results

across different airports. For a specified airport and time-frame, arrival and departure trajectories are

obtained from ADS-B data, then filtered, processed, and enhanced before being associated with rel-

evant noise and emissions databases. The airport environmental impact calculation engine GRAPE

is subsequently used [11]. Noise is estimated with the noise model specified in Doc 29 [8] and lo-

cal air quality emissions estimated by first calculating fuel flow as specified in ICAO Doc 9889 [12]

and thereafter applying the Boeing Fuel Flow Method 2 (BFFM2) [13]. The pollutants in the scope of

this work are hydrocarbonates (HC), carbon monoxide (CO), nitrogen oxides (NOx) and non-volatile

Particulate Matter (nvPM), from here on referred to as local air quality pollutants. The scope of this

work is restricted to emission inventories, without addressing the dispersion of pollutants through

the atmosphere, which is heavily influenced by meteorological conditions.

The proposed automated process is demonstrated using a case study at Cologne BonnAirport, where

confidential datasets containing flight logs and noise measurement records were used for validation.

This dataset is used to assess the coverage of the trajectory data obtained and validate the noise

estimation performed.

This paper is organized as follows. Section 2 describes the data sources used, their access, and how

they are associated. The specifics of the automated process built upon open source data are detailed

in Section 3. Section 4 presents the application of this process to the Cologne Bonn Airport use case.

Finally, Section 5 outlines the main conclusions and suggests directions for further research.
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2. Data Sources and Association

2.1 Data Sources

To estimate the environmental impacts of each arrival and departure at a given airport within a

specific time frame, the first challenge is obtaining complete trajectory data for each operationwithin

a specified distance from the airport. For this, we rely on ADS-B data provided by the Opensky

Network. The task of identifying the departure or arrival airport for a given trajectory has been

addressed in previous research [14], and the solution has been integrated into the available API.

This allows direct access to arrival and departure trajectories. Note that a trajectory is defined as a

series of ADS-B data points associated with the same transponder code and callsign, with no more

than a 10-minute gap between consecutive points. Each trajectory obtained must be associated with

the databases used to estimate noise and emissions. To do so, the aircraft database available from

the Opensky Network is used. The airport identification, coordinates and runways are obtained

from airport data in the public domain. Airport METAR reports are used to obtain weather data for

each ADS-B trajectory point and obtained from the archive maintained by the Iowa Environmental

Mesonet (IEM), available in the public domain. Finally, the noise and emissions specific datasets are

obtained from EASA and are accessible without restrictions. The Aircraft Noise and Performance

(ANP) database and the respective substitution table are used to support the Doc 29 noise model

and the Engine Emissions Databank (EEDB) in the estimation of emissions. This emissions database

is complemented with a database containing data for turboprop engines from the Swedish Defence

Research Agency (FOI). Table 1 summarizes the data used in the automated process and where it is

sourced from.

Table 1. Data sources used in the automated environmental impact estimation

Data Source Remarks

ADS-B data Opensky Network Accessible after obtaining credentials.
Aircraft data Opensky Network Accessible after obtaining credentials.
Airports data https://ourairports.com Airport data in the public domain.
METAR reports IEM Airport weather observations in the public domain.
ANP Database EASA Published online, accessible without restrictions.
ANP Substitution Table EASA Published online, accessible without restrictions.
EEDB EASA Published online, accessible without restrictions.
FOI Database FOI Available upon request.

2.2 Aircraft Abstraction

Each trajectory obtained from the Opensky Network is associated with an individual physical air-

craft, of a certain model and with a specific engine type. However, the noise and emissions databases

used do not contain data for each specific physical aircraft. Instead, each group aircraft according

to specific criteria, mostly justified by the context in which they are developed. The ANP database

provides data for its self-defined aircraft types, but is accompanied by a substitution table which

offers two groupings:

• aircraft grouped according to ICAO code, engine type, maximum takeoff weight (MTOW) and

maximum landing weight (MLW).

• simplified grouping according to just aircraft ICAO code and engine type.

The emissions databases are developed in conjunction with the aircraft engine certification process
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and therefore are split into each specific engine. The aircraft data available from the Opensky Net-

work, which contains data for each individual physical aircraft, contains among others the aircraft

ICAO code and a description of the aircraft type. Based on this data availability, the ANP substitution

table grouping according to aircraft ICAO code and engine type is used as the overarching aircraft

abstraction in this work. Aircraft with ICAO codes not found in this dataset are not considered.

For each trajectory, the ICAO code of the aircraft is used to retrieve the respective ANP data entry.

For the cases in which there is a differentiation in the ANP substitution table by engine type, the

entry with the most similar engine description to the one obtained from the Opensky Network data

is used. Unfortunately, the association with the emissions databases cannot be automated, as the

engine descriptions available in these databases are significantly different than the ones obtained

from the Opensky Network. For this reason, for each aircraft and engine combination defined in the

ANP grouping, a suitable engine ID was manually selected. The principal selection criterion is the

commonality of the engine for a given aircraft ICAO code and variant. For the few cases for which

more than one unique engine in the emissions databases fit the criteria, the engine with the highest

rated thrust is used.

3. Automated Environmental Impact Estimation

The automated process developed in this work involves all the steps required for the estimation of

environmental impacts. A simplified view of the steps involved is presented in Figure 1. The au-

tomation is implemented in python in two separate libraries. The first is a fork of traffic [15], an
open source library that provides functionality for working with and processing air traffic data, in-

cluding the Opensky Network. The fork adds functionality to traffic required in the processing steps

described below, such as accessing the ANP and IEM databases and the computation of calibrated

airspeed and acceleration for each trajectory point. The second library was developed specifically

for this automated process, and connects the air traffic data obtained to the functionality provided

by GRAPE. The behaviour of the process can be controlled via configuration files, e.g. to specify

which versions of the environmental impact databases to use or to override access to other datasets.

The only mandatory configurations are the access credentials to the Opensky Network historical

data and the file path to the GRAPE executable.

Figure 1. Data flow and automation steps

3.1 Processing Steps

The trajectory processing steps are performed on a per operation basis and can be summarized into

the following categories:

• Filtering stage: perform both data integrity checks on each operation as well as outlier detection

on trajectory points.
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• Trajectory modification: enforce homogeneity in the trajectories obtained and discard parts of the

trajectory not in scope.

• Feature enhancement: add features to each trajectory point to enable the estimation of noise and

local air quality emissions.

These steps are described in detail below.

Filtering Stage

The automated process starts by accessing trajectory data for all arrivals and departures for the

selected airport within the selected time frame, limited by a configurable bounding box. Initial pro-

cessing discards invalid data as well as outliers in positional and kinematic variables with a median

filter pass (e.g. latitude, longitude or ground speed). Thereafter, the following integrity checks are

performed:

• runway: a departure or arrival runway must be found for departure and arrival operations re-

spectively. An operation is associated with a runway if it is aligned with it for more than one

minute.

• ANP aircraft: the ICAO code of the aircraft must be found in the ANP substitution table. The

corresponding ANP aircraft thrust type must be given in either pounds of force or percentage of

maximum static thrust, as other thrust types are not yet supported by GRAPE.

• go around and runway change (arrivals): based on the same approach as for the runway integrity

check, arrivals which perform a go around are discarded. Furthermore, if the arrival operation

changes runway on final approach, it is also discarded (only applicable to airports with parallel

runways). This filtering step was introduced to avoid non-standard aircraft states in the data,

which would most likely provoke outliers in the environmental impacts estimated.

• total ground distance: at least 10 nautical miles must be traversed. This value is chosen rather

arbitrarily and can be adjusted in order to account for specificities at different airports.

Trajectory Modification

Following filtering, a smoothing step is performed in order to avoid strong variations that would not

occur in reality. A rolling mean over a five second window is performed on altitude, ground speed

and climb rate. This is followed by an enforcement of commonality between all operations. While the

filtering step ensures the data has a certain quality, for example at least 10 nautical miles traversed,

there is no matching in the data at a certain geographical location or feature value. However, this

commonality is required especially to compare different approaches in the estimation of local air

quality emissions. To achieve this, points which are after the last point aligned with the runway for

arrivals (i.e. after the aircraft has crossed the landing threshold), or before the first point aligned

with a runway for departures are discarded. Thereafter, for arrivals, a point at the landing threshold

is added to the end of the trajectory. The last minute aligned on the runway is used to estimate the

values at the threshold. Ground speed and climb rate are set as themean value, and altitude estimated

through linear regression. For departures, the departure threshold is added to the beginning of each

departure. Both ground speed and climb rate are set to zero. The trajectory processing is finalised

with a resampling step that interpolates points at every second.

Feature Enhancement

The final processing step is to enrich each trajectory point with the features required to estimate

noise and local air quality emissions which are not available in the ADS-B data. For the Doc 29

noise model, these features are bank angle, true airspeed, corrected net thrust per engine, and an

identification of the points belonging to the takeoff roll and the landing roll. For this automated
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process, bank angle is not considered and set to zero for all trajectory points. The true airspeed is

estimated based on ground speed and the wind vector obtained from the METAR reports. For each

operation, the respective airport METAR report which is closest in time to each trajectory point

is used, both for true airspeed as well as for all other variables where weather data is required. A

significant hurdle is the estimation of net thrust for every trajectory point. The existing models

to estimate net thrust can be split into physics models and regression models. For physics models,

the thrust is estimated through either the force balance or conservation of energy equations. In

order for them to be applied, the other forces actuating on the aircraft, namely weight, lift and

drag also need to be estimated. Regression models on the other hand apply empirical correlations

for each aircraft between net thrust and the variables on which it depends, such as altitude, speed

and atmospheric conditions. The downside of regression models is that they provide regression

coefficients for a specific aircraft state (high lift devices configuration and thrust lever setting), when

in reality different configurations are used (e.g. the use of thrust reduction procedures). The choice of

thrust model for this automated process needs to guarantee its applicability to all aircraft considered,

namely the ones available in the ANP substitution table. For this reason, the approach used by this

automated process follows the performance model within Doc 29, which uses a mixture of both

model types described above.

For arrivals, corrected net thrust per engine is calculated with the following force balance equation:

Fn
δ

=

W
N × δ

× (R × cosγ + sinγ + a/g) (1)

Acceleration a and descent angle γ (negative by convention) can be directly calculated from the

ADS-B data. The pressure ration δ is obtained with the ISA atmospheric model and the closest

METAR report as described above. To estimate weight W and drag to lift coefficient R, certain
assumptions are required. In this automated process, the weight is set to 90% of theMLWas provided

by the ANP database, aligning with the Doc 29 methodology for default arrival profiles [8]. The R

coefficient is also obtained from the ANP database where different values are specified for different

flap settings. The flap setting for each trajectory point is determined using a fixed flap deployment

schedule specific to each ANP aircraft, derived from the default arrival profiles in the ANP database.

Since the flap schedule is defined based on calibrated airspeed, this parameter is estimated from true

airspeed, accounting for both air density and compressibility effects.

For departure operations, net thrust calculations are split into jet engine and turboprop engine pow-

ered aircraft. Both are based on regression models, derived separately for the two common thrust

ratings used during a departure operation, maximum takeoff followed by maximum climb. The fol-

lowing formulas are used:

Fn,jet
δ

= E + F × Vc + GA × h + GB × h2 + H × T (2)

Fn,prop
δ

=

η × PP
δ × VT

(3)

Calibrated airspeed Vc , true airspeed VT , temperature T and pressure ratio γ are all calculated as

described above for arrival thrust. The regression coefficients E, F , GA, GB and H , propeller effi-

ciency η and propulsive power PP are aircraft and thrust setting specific and obtained from the ANP

database. They are available for two thrust settings, maximum takeoff and maximum climb. This

automated process does not consider the use of reduced thrust procedures. The thrust cutback point

(change from maximum takeoff to maximum climb thrust setting) is estimated by finding the first
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local maximum of the variation of climb rate with time for points between 500 and 3500 ft AGL. This

method assumes that thrust reduction takes place between this limiting altitudes, which is in par

with the ICAO noise abatement departure procedures recommendations.

Finally, the Doc 29 noise model requires an identification of points belonging to the takeoff and

landing roll in order to apply corrections to the noise estimation specific to these phases of flight.

As described above, arrival trajectories are clipped at the landing threshold, for which the landing

roll is not considered. We further simplify the noise estimation in this work by not attributing the

takeoff roll phase to any trajectory point, effectively disregarding the noise corrections specific to

this flight phase.

The trajectory enhancements applied in order to use the Doc 29 noise model cover most of the

requirements to use the ICAO Doc 9889 fuel flow model and the BFFM2 emissions model, namely

true airspeed and thrust estimation. The only missing information required for each trajectory point

is the Landing and Takeoff (LTO) phase as defined in the LTO cycle. For arrivals, all points are

attributed the approach phase as the trajectory is clipped at the landing threshold. For departures,

the thrust cutback point obtained in the thrust estimation process above is used to split the trajectory

into the takeoff and climb out phases.

3.2 Environmental Impact Calculation

The environmental impacts are estimated with GRAPE, also developed by the authors. GRAPE is

open-source and provides an implementation of the required noise, fuel flow and emissions models,

with configuration parameters which control the exact behaviour of the implemented models. Fur-

thermore, it provides full automation capabilities and is database independent, as it requires the user

to provide all the necessary data to perform the calculations. These characteristics are extensively

used by the automated process developed in this work. First, the command line tool provided by

GRAPE is used to create an empty study and import the ANP database selected by the user (in this

study the ANP version 2.3 is used), which transforms it to the GRAPE internal format for Doc 29

data. Note that a GRAPE study is simply a sqlite database which follows a predefined schema. This

database can be further edited to automatically import data into the study. This functionality is used

to import all further input data, namely the EEDB and FOI databases, the aircraft abstraction defined

and the trajectories obtained from the ADS-B data. Before importing, the ICAO Doc 9889 approach

to deal with missing smoke number (SN) values is implemented and applied for values obtained from

the EEDB.

The next step is to define the calculation runs and their parameters. GRAPE uses a parent/child

structure, where a performance run is the parent of noise and local air quality emissions runs. The

parameters of the parent performance run (e.g. weather data, coordinate system) are used by all

children runs. For this automated process, a performance run is created which uses the WGS 84 co-

ordinate system and the automatically obtained METAR reports containing temperature, pressure,

wind conditions and relative humidity, typically at 30 minutes intervals. The METAR report closest

in time to each operation is used where weather data is required. As trajectory data is already avail-

able as described above, the only further action performed by the performance run is to estimate

fuel flow. This is estimated for each trajectory point according to the ICAO Doc 9889 model which

interpolates from the LTO fuel flow values based on aircraft thrust. The option to correct fuel flow

at MSL to the conditions observed at the aircraft with the BFFM2 is used. A noise run is created

which uses the Doc 29 noise model and the atmospheric absorption defined in the SAE-ARP-5534.

The list of receptors for which to estimate noise is obtained from the automated process configura-

tion file. Finalising, two different emissions runs are defined. Both runs calculate gas and particle

emissions, and use the FOA 4 method to estimate nvPM emission indices (EIs) in case they are not

available in the EEDB [16]. The first run uses the segments obtained with the ADS-B trajectories,
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and the BFFM2 method to obtain gas pollutant EIs based on fuel flow and correct to the atmospheric

conditions observed at the aircraft. The second emissions run serves as a baseline and calculates

emissions according to the LTO cycle, disregarding any trajectory data or weather conditions. As

the trajectories are clipped at the runway thresholds, the time attributed to the taxi/idle mode is set

to zero seconds.

After inserting all the input data and defining all the necessary parameters in the GRAPE study, the

command line tool capabilities of GRAPE are once again used to automatically launch the program,

open the defined study, and run the noise and emissions calculation runs defined. Upon finish, the

results are directly available in the same sqlite file for further analysis.

3.3 Limitations

The main limitations of this automated process to report airport environmental impacts lie in the

assumptions and approximations made to enhance the trajectory data obtained from ADS-B. First,

relying onMETAR data for atmospheric parameters introduces inaccuracies in the thrust estimation,

as well as in the methods used to estimate noise, fuel flow, and local air quality emissions. Utilising

atmospheric models with high-resolution weather data would enhance accuracy and is a crucial

step toward integrating emissions dispersion into the automated process. Furthermore, estimating

net thrust according to the procedure described above makes significant assumptions. For arrival

thrust estimation with Equation 1, the aircraft weight is set to 90% of MLW and the flap retraction

schedule is static. These variables are not readily available, and estimating them from ADS-B data is

only possible to a certain degree. Recent studies have focused on training machine learning models

with data sets where weight and flap settings are known, to then predict these variables based solely

on trajectory data [17] [18]. However, such models are not yet available for a significant amount

of aircraft. For departures, using the regression models described assumes that full takeoff thrust is

used for every flight. In reality, thrust reduction is a common procedure used to improve the life cycle

of engines and reduce maintenance costs. The thrust reduction percentage used for each departure

is dependent on a multitude of variables such as weight, runway length, inclination and condition

as well as weather. The availability of runway and weather information for this automated process

covers some of the data requirements to estimate the thrust reduction parameter for each departure.

However, one major influencing parameter, takeoff weight, is not readily available. Similar to the

missing parameters for arrivals, recent studies have focused on developing predicting algorithms

with machine learning techniques [18] [19] [20]. The unavailability of such models for a significant

number of aircraft also applies for departures. When such models become available, the automated

process defined in this work can be improved to account for those variations.

A further improvement to the automated process described lies in improving the modelling of the

landing and takeoff rolls. The approach used may be enhanced by using landing or takeoff roll

data from ADS-B data if available. As commonality between all flights must be guaranteed, this

approach must be complemented with an estimation method for the takeoff and landing roll (e.g.

the performance model within Doc 29) for missing data. Finally, the approach described in Section

2 introduces limitations in the accuracy of environmental impact estimations. Currently, each flight

is associated with noise and emissions databases based solely on the aircraft ICAO code and, for a

limited number of aircraft, the engine type. This simplification does not fully capture the actual fleet

mix operating at a given airport. Given sufficient data availability, the automated process could be

enhanced by incorporating a more granular aircraft classification, enabling a more precise linkage

between flight trajectories and environmental impact databases.
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4. Use Case: Cologne Bonn Airport

The automated process described in Section 3 is applied to the Cologne Bonn Airport (airport ICAO

code EDDK) for the year of 2019, the last year of operations without the influence of the COVID-19

pandemic. This use case is a demonstration of different analysis that the automated process enables

as well as its capabilities.

4.1 Metrics and Validation Dataset

The automated process is evaluated in this use case with a confidential historical dataset obtained

from the Cologne Bonn Airport. The airport provided the flight logs as well as the records from the

noise measurement system for the year of 2019. This allows to evaluate the coverage of the ADS-B

data retrieved from the Opensky Network as well as to compare the noise estimates obtained with

the automated process against the records from the noise measurement system. In this analysis, the

values recorded at the noise stations are viewed as absolute truth, and the objective of the noise

estimation with the ADS-B data is to be as close to the measured values as possible. Noise can be

estimated by the automated process at the locations of the noise measurement stations, and directly

compared to the recorded values. However, there is no direct association between each individual

flight recorded by the airport, and the flights obtained from ADS-B data. Therefore, aggregated

metrics and the noise level distributions are analysed. For emissions, per flight data is impracticable

to record and not available. The legal framework airports follows usually mandates the report of

emissions according to the LTO cycle, a static method which is independent of the actual aircraft

trajectory, weather conditions or any other variable. We evaluate the emissions estimated with ADS-

B data against this reporting method, recognizing that none of the two methods can be considered as

absolute truth. Nonetheless, we expect the results obtained with flight specific trajectories obtained

from ADS-B data to be closer to the truth than the static values found in the LTO cycle.

Note: from here on, the automated process data and its results are referred to as the ADS-B data, and
the Cologne Bonn Airport data as the validation dataset.

The flight logs provided contain a list of all arrivals and departures which occurred at the airport

in 2019 for aircraft with MTOW above 10 000 kg. There were a total of 134 788 flights, as expected

evenly distributed between arrivals and departures. Flights with aircraft not considered in the air-

craft abstraction defined for the automated process (i.e. for which entries in noise and emissions

databases are not available) were discarded (approximately 1% of all flights). The fleet mix operating

at Cologne Bonn Airport is relatively homogeneous, dominated by narrow body aircraft. The A320

and B737 aircraft families account for approximately 72% of all flights. In terms of runway distribu-

tion, departure operations overwhelmingly use the main runways 13L/31R, which account for more

than 95% of all operations. For arrivals, the share of flights which take place in the main runways is

slightly lower, as the crosswind runway 24 accounts for approximately 19% of all arrivals.

The noise station records were obtained for all 17 fixed noise stations around the airport. In total,

there were 137 450 noise events for arrivals, and 191 096 for departures, corresponding to approxi-

mately two noise events per arrival and three per departure. Figure 2 depicts the placement of the

noise stations around the airport. The flight track heatmap displayed in Figure 2 was obtained with

a sample of 5000 flights from the Opensky Network.

The number of noise events per flight type and per noise station is not homogeneous across noise

stations. In order to focus the analysis and validation on the most significant noise stations (i.e.

the ones with most events), an arbitrary threshold was set to 5% of total arrivals or departures, for

the station to be considered for the respective flight type. After applying this criteria, the stations

M01, M02, M05, M06, M07 and M08 are considered for arrivals, and M06, M08, M11, M14, M17 and

M18 for departures. By definition, the noise stations register a noise event only when a certain
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Figure 2. Layout of noise measurement stations around the airport

maximum level is exceeded. This threshold level was extracted from the noise events by analysing

noise maximum value (LAMAX) distribution at each station. The LAMAX distributions of each

noise station for each hour of the day were analysed, as available airport information suggested that

different thresholds may be in use for different times of day. The analysis revealed that for most

noise stations, two different thresholds are defined. During the day, between 06:00 and 22:00, the

LAMAX minimum value observed is 65 dB. At night, the LAMAX minimum value is 63 dB. Two

noise stations, M01 and M05, have 65 dB as minimum LAMAX throughout day and night.

4.2 Flight Results

The automated process identified 108 715 operations from the Opensky Network associated with

the Cologne Bonn Airport for the year of 2019, also equally split between arrivals and departures.

This corresponds to approximately 81.5% of the number of flights in the validation dataset. The

missing flights are split evenly across operation type, runway, time and aircraft type. The discrep-

ancy between the number of flights in the validation dataset and the ADS-B data lies therefore most

likely in the coverage of the Opensky Network, specifically at low altitudes, as this is required for

the identification of an airport (in our case the Cologne Bonn Airport) as the arrival or departure

airport.

After applying the flight filtering steps described in Section 3, 16 712 flights were removed. There

were 7880 flights which trajectory did not align with any runway, 6856 flights with an aircraft ICAO

code not found in the ANP substitution table and 3468 flights which total ground distance covered

was less than 10 nautical miles. Two of these criteria, runway association and minimum cumula-

tive ground distance, are directly associated with the quality and completeness of the ADS-B data.

An increase in the number of ADS-B receivers in the Opensky Network around the airport will

most likely increase the quality of the data around the airport and reduce the number of operations

not meeting these integrity criteria. The significant number of flights removed due to a missing
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ANP substitution table entry is mostly likely due to inaccuracies or incompletenesses in the aircraft

database maintained by the Opensky Network, and may be fixed by correcting them. Note that in

the validation data, only 1235 flights out of 134 788 could not be associated with a valid ANP sub-

stitution aircraft. The number of arrivals which were identified as either performing a go around or

a runway change on final approach is relatively low in comparison to the other three criteria (304

and 440 flights respectively).

4.3 Noise Results

After pushing the processed data through GRAPE as described in Section 3, the LAMAX and Sound

Equivalent Level (SEL) single event noise metrics are available at each receptor for each flight ob-

tained with ADS-B data and can be compared against the validation dataset. From the relevant noise

stations selected above, the results for the noise stations M02 for arrivals and M11 for departures are

widely different from the results for all other noise stations. These significant discrepancies are most

likely due to a data error regarding the location of the noise stations, and their results are therefore

not further discussed. The comparison between number of noise events for each station between

ADS-B data and validation dataset is provided in Table 2. For the ADS-B data, it is simulated that

each flight produces a noise event at each noise station if the LAMAX value is equal or higher to

the noise station threshold (i.e. the minimum LAMAX value recorded at the noise station). The

different thresholds for different times of day obtained as described above are considered. For noise

stations where the noise event distribution range includes the threshold, this approach could distort

the results as under-predicted LAMAX values below the threshold would be excluded. A correlation

between flight tracks (including timestamps) and measured noise events would facilitate a direct,

one-to-one comparison between the ADS-B data and the validation dataset, eliminating the need for

defining thresholds. In comparison to the flight coverage rate, the coverage rate for noise events is

even smaller for arrival operations, and approximately the same for departure operations. The low-

est coverage rate occurs for arrival operations at station M06, likely due to the low elevation angle

between the standard arrival glide path and this noise station. Notably, despite being closer to the

runway, station M06 recorded only about 77% of the arrival noise events captured by noise station

M08.

Table 2. Noise Event Count

Noise Station Validation Data ADS-B Data Percentage

Arrivals M01 28034 21069 75%
M05 11870 6765 57%
M06 18779 9019 48%
M07 24244 14327 59%
M08 24251 17573 72%

Departures M06 35703 24875 70%
M08 34856 24891 71%
M14 15216 11989 79%
M17 21744 15969 73%
M18 12115 7916 65%

The SEL histogram comparison for arrival flights for two selected noise stations, M05 and M08, is

presented in Figure 3. The noise stations are selected in order to demonstrate two different trends,

which are differentiated by the proximity of the noise station to the airport. The two noise stations

closest to the respective landing threshold, M05 and M06, show practically equivalent noise level

distributions for validation and ADS-B data. At this proximity to the airport, aircraft are generally
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already fully aligned with the runway and on the correct glide path. A certain amount of thrust is

required to maintain this alignment and fly at or close to the landing speed. However, at the noise

stations M01, M07 andM08, which are further away from the respective landing threshold, the ADS-

B data distribution is approximately 2 to 3 dB(A) lower than the validation data. These discrepancies

may be attributed to either the assumptions made in estimating the thrust parameter for arrivals

(90% of MLW and fixed flap deployment schedule), the simplified thrust estimation method itself, or

due to the noise modelling methodology specified in Doc 29. For the latter in particular, the Noise-

Power-Distance (NPD) tables on which it is based determine noise primarily based on thrust setting

and distance between aircraft and receptor. While aerodynamic noise is indirectly considered when

developing the NPD tables, this is based on the final stages of the arrival operation, where noise

levels are relatively high and aircraft are usually already fully configured for landing. Regarding the

LAMAXmetric, the same overall trends are observed for all noise stations and not further discussed.

(a) M05 (b) M08

Figure 3. Arrival flights SEL comparison

Figure 4 presents the SEL histogram comparison for departures also for two selected noise stations,

M08 and M18. The noise level distributions in the ADS-B data exhibit two distinct curves, one at

lower noise values and another at higher noise values, unlike the validation dataset, which follows

a single Gaussian distribution. Since the distributions are presented per noise station, they incorpo-

rate noise values from a diverse range of aircraft types. The likely explanation for the discrepancy

between the ADS-B and validation datasets is the inherently lower standard deviation in estimated

noise, which does not fully account for the complex variables present in real-world conditions. The

homogeneity of the aircraft fleet at Cologne Bonn Airport further reinforces this conclusion, as for

all noise stations the first curve is primarily shaped by the most frequently observed narrow-body

aircraft, while the second curve is driven by the most common wide-body aircraft. The same dif-

ferentiation as for arrival flights, regarding the proximity of the stations to the airport, is observed

for departures. The results for noise station M08 are equivalent to noise station M06, both stations

being relatively close to the airport. For noise station M08, the ADS-B data tends to have a higher

amount of noise events in the higher values area, approximately above the 85 dB(A) threshold. An

explanation for this could be the assumption in the automated process that every departure always

uses the maximum thrust available. Considering the use of reduced takeoff thrust would result in

lower estimated noise values (note that for the automated process, thrust reduction has no impact

in the climb profile, as the ADS-B data is used). For noise stations M14, M17, and M18, the discrep-

ancy is more accentuated. The ADS-B data produces approximately 2 to 3 dB(A) higher values than

the validation dataset. As shown in Figure 5 for noise station M18, the same effect is not observed

for the LAMAX metric. The reasoning behind the discrepancy for the SEL distribution is unlikely

to be thrust reduction, as it can be reasonably expected that its effect on noise level will be higher

at locations closer to the airport. Further away from the airport, at the locations of M14, M17 and

M18, aircraft have in general already performed both thrust cutback and flap retraction, for which

the assumption of using the full thrust available should be less significant than at lower altitudes.

The most likely reasoning for the discrepancy in SEL distributions for noise stations farther away

from the airport lies in the noise modelling, specifically in the quality of the SEL NPD tables found
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in the ANP database for the most frequent aircraft operating at Cologne Bonn Airport. This possi-

bility is further corroborated by the findings by Giladi et al. in [21], and would also explain why the

difference occurs only for the SEL metric and not for LAMAX.

(a) M08 (b) M18

Figure 4. Departure flights SEL comparison

(a) M08 (b) M18

Figure 5. Departure flights LAMAX comparison

Finally, the year noise equivalent continuous sound levels Leq are provided in Table 3. Noise levels

are shown for arrivals and departures for the respective relevant noise stations, as well as for all

flights for the two noise stations which are relevant for both arrivals and departures. The interpre-

tation of the results needs to take into account the discrepancy in number of noise events between

validation dataset and ADS-B data. Both this discrepancy and the discrepancies observed for arrival

and departure noise as described above have an influence in the cumulative noise metric. Despite

them, the automated process is able to estimate year Leq with an accuracy between 0 and 1 dB(A)

for departure operations. This is in part due to the assumption of always using maximum available

thrust for all departures, which counteracts the lower number of noise events for the ADS-B data.

For arrivals the results are less promising. The year Leq discrepancy between validation and ADS-B

data ranges between approximately 2 and 4 dB(A), apart from the noise station M06. Due to the

lower number of noise events for ADS-B data and the short comings of arrival noise modelling as

described above, the cumulative values tend to be lower for the ADS-B data.

Overall, the results obtained are in agreement with the ones obtained by previous studies. Pretto et

al. in [6] report an underestimation of 0 to 5 dB(A) in their trajectory reconstruction approach when

compared to noise measurements. This comparisonwasmade for the average daily equivalent sound

levels across 23 selected days at Zurich Airport. In [3], Strümpfel et. al report an underestimation of

less than 1 dB(A) for 13 departure flights at Berlin Airport. Their trajectory reconstruction approach

shares similarities with the method used in this study, as both retain the trajectory points obtained

from ADS-B data (and radar data in the Strümpfel et. al) and only thrust is estimated (Strümpfel et.

al estimate it via a physics model for conservation of energy).
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Table 3. Year noise equivalent sound level Leq comparison

Noise Station Validation Data ADS-B Data Difference

Arrivals M01 52.8 50.0 -2.8
M05 55.2 52.9 -2.3
M06 46.6 47.4 0.8
M07 50.2 46.4 -3.8
M08 55.0 52.5 -2.5

Departures M06 54.5 53.9 -0.6
M08 54.1 53.2 -0.9
M14 46.3 46.6 0.3
M17 48.9 48.6 -0.3
M18 45.0 45.0 0.0

All M06 55.1 54.8 -0.3
M08 57.6 55.8 -1.8

4.4 Emissions Results

After finalizing the automated process, local air quality emission results are available for each seg-

ment of each flight trajectory. Additionally, the baseline LTO cycle values are also obtained for each

flight, based solely on aircraft type. In par with the LTO cycle and the trajectory processing de-

scribed in Section 3, only trajectory segments below 3000 ft AGL are considered. For the LTO cycle,

arrival values are obtained solely from the approach mode and departure values are the sum of the

takeoff and climb out modes. The analysis below is split by aircraft type and focuses on the 5 most

frequent aircraft in the ADS-B data for the Cologne Bonn Airport.

A comparison of the time spent below 3000 ft AGL between ADS-B data and the LTO cycle is pre-

sented in Figures 6a and 6b for arrivals and departures respectively. The LTO cycle time is a constant

value for each, independent of any other variable. For arrivals, the ADS-B data results align well with

the LTO cycle value. Heavier aircraft have a higher approach speed and spend therefore on aver-

age less time below 3000 ft. The strong alignment with the LTO cycle observed at Cologne Bonn

Airport may differ significantly at other airports where arrival procedures require aircraft to level

off or maneuver at or below 3000 feet. For departures, the observed discrepancies are larger. Across

all aircraft, the 50% confidence interval (representing the middle half of flights around the median)

falls below the LTO cycle value of 2.9 minutes. The higher discrepancy observed may be partially

attributed to operational conditions at Cologne Bonn Airport. However, the departure trajectory

reconstruction approach outlined in Section 3 could also contribute to these discrepancies. Specifi-

cally, the practice of ensuring trajectory homogeneity by adding the departure threshold as the first

point may result in the initial segment being modelled at a higher speed than what occurs in reality,

depending on the location of the first recorded ADS-B trajectory point. Enhancing the automated

process to either include the takeoff roll in the ADS-B data or estimate it more accurately would help

eliminate this source of error.

While differences in time significantly contribute to discrepancies in emissions calculations between

the LTO cycle approach and the use of ADS-B data, the developed automation also accounts for the

impact of conditions at the aircraft (e.g. thrust, altitude, and temperature) on both the estimated

fuel flow and the pollutants EIs for each trajectory segment. Figure 7 illustrates the impact of each

discrepancy factor on the absolute differences in fuel and emission values calculated using ADS-B

data compared to the LTO cycle. The results for HC and nvPM number are omitted, as they are

equivalent to CO and nvPM mass respectively.
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(a) Arrivals (b) Departures

Figure 6. Flight time below 3000 ft. The box represents the interquartile range (50% confidence interval), and the median
is shown as a line inside the box. The outside lines extend to 1.5 times the interquartile range and points outside this range
are not shown.

(a) Arrivals (b) Departures

Figure 7. Total fuel and pollutant emissions difference between ADS-B data and LTO cycle and respective causes. Data labels
show the total percentual difference between ADS-B data and LTO cycle.

For arrivals, differences in time are the primary contributor to discrepancies across all aircraft and

pollutants. Accounting for trajectory segment specific conditions, such as thrust and altitude, slightly
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increases the estimated fuel consumption for all aircraft. The influence of trajectory segment condi-

tions on the estimated EIs in comparison to the LTO cycle for arrivals is observable for CO and HC.

Jet engine aircraft exhibit both higher EIs and steeper EI gradients at lower thrust settings for these

two pollutants, making these results expected. The exact magnitude and direction (positive or neg-

ative) of the deviation from the LTO cycle EIs depends on the fuel flow estimated for each segment,

which is influenced by the specific conditions of the trajectory segments. Accounting for trajectory

segment specific conditions has a significantly greater impact on estimated fuel consumption and

pollutant emissions for departures. For all three narrow-body aircraft, the influence of these condi-

tions on fuel flow, and the resulting discrepancies compared to the LTO cycle values, is substantial,

making it the primary cause of differences in total fuel consumption and pollutant emissions for all

three aircraft. For the two B767 aircraft, where the time difference below 3000 ft between ADS-B data

and the LTO cycle is higher (see Figure 6b), the influence of trajectory segment specific conditions

on fuel flow is less pronounced. The impact of trajectory segment conditions on EIs is also stronger

for departures, especially for the A319, B738 and B763 aircraft. The difference in pollutants emitted

by these three aircraft between ADS-B data and LTO cycle has an observable component due to the

differences in EIs. Although this component is smaller than the impact caused by difference in fuel

flow, it is significant and equal to or higher than the differences caused by differences in time below

3000 ft.

Using ADS-B data to estimate time below 3000 ft, fuel consumption, and pollutant emissions re-

veals significant discrepancies compared to the LTO cycle approach. The absolute differences range

from 2% to 14% for arrivals and from 7% to 36% for departures. Discrepancies in time below 3000

ft are the primary cause of the differences observed for arrivals. However, for departures, the in-

fluence of trajectory segment conditions on fuel flow and EIs also contributes significantly to the

observed discrepancies. A key limitation of this analysis is the inability to assess how the use of de-

tailed ADS-B data affects the accuracy of local air quality emissions estimates. While it is assumed

that this approach yields more precise results than simpler methods based solely on the LTO cycle,

this assumption remains unverified. Integrating emissions dispersion modelling into the automated

process and comparing the results with measured or modelled pollutant concentrations at various

locations would address this limitation. Such an approach would provide deeper insights into the ad-

vantages of using high-resolution trajectory data for assessing the environmental impact of aircraft

operations near airports.

5. Conclusion and Further Work

The major contribution of this work lies in the provision of an open source framework to estimate

noise and local air quality emissions for historical flights with ADS-B data, for any given airport and

time frame. Besides trajectory data obtained from the Opensky Network, airport, METAR reports

and environmental impact databases are automatically accessed in order to automate the estima-

tion. Each ADS-B trajectory is filtered, smoothed, associated with each of the environmental impact

databases and enhanced with additional features before estimating noise and emissions. The open

source environmental impact calculation engine GRAPE is used, developed by the same authors.

Noise is estimated with the Doc 29 noise model at any given number of user specified locations

and emissions estimated for each flight segment by first estimating fuel flow with the ICAO Doc

9889 model and subsequently the BFFM2. We applied this automation to an year of operations at

the Cologne Bonn Airport, for which an additional dataset was made available containing the flight

logs and records from the noise measurement system. The comparison of estimated noise values

with the records from the noise stations provided mixed results, depending on type of operation and

location of the noise station relative to the airport. For noise stations close to the airport, the noise

level distributions estimated with the ADS-B data closely matched the ones obtained from the noise
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measurement system. For the ones further away from the airport, arrival noise was under-predicted

and departure noise over-predicted by 2 to 3 dB(A). The comparison of the fuel and emissions esti-

mated with the ADS-B data against the LTO cycle values showed absolute percentual discrepancies

in the low double digits (10 to 20%) for the majority of aircraft and quantities analysed (time, fuel

and pollutants). While differences in time below 3000 ft AGL are the primary cause of discrepancies

for arrivals, for departures, the influence of trajectory segment-specific conditions on fuel flow is

the main driver of discrepancies when compared to the LTO cycle. Additionally, differences in esti-

mated EIs were observed to also contribute to differences in total pollutants emitted, especially for

departures and for CO and HC in the case of arrivals.

In future work, the trajectory processing within the automated system can be enhanced, as outlined

in Section 3. Key areas for improvement include more accurate estimation of the thrust parameter,

a more comprehensive approach to modelling the takeoff and landing roll phases of each trajectory

and incorporating more detailed data, such as high resolution weather data. Furthermore, the auto-

mated process currently estimates noise and emissions using the most accurate trajectory data avail-

able, obtained from ADS-B. Future work could expand on this by incorporating different trajectory

reconstruction methods, such as performance models outlined in Doc 29 or BADA, or alternative

ground track reconstruction methods, into the automated process and analysing their impact on the

resulting noise and emissions estimates. Finally, applying the use case discussed in Section 4 to other

airports and time periods with available validation datasets could further substantiate the findings

of this study regarding the estimation of environmental impacts using ADS-B data.
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