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Abstract
Predictive maintenance is essential in aviation due to rising cost pressures, leveraging sensor data and

maintenance logs for improving planning efficiency. Analyzing historical data ensures timely interven-

tions, reducing unplanned downtime and enhancing aircraft reliability. Digital twin applications expand

these capabilities, allowing precise monitoring and proactive analyses of aircraft components, tracking

stress, fatigue, and health conditions. Accurate load monitoring during ground operations requires in-

tegrating actual aircraft trajectories with environmental factors like pavement conditions and weather,

which can pose challenges due to data sparsity, noise, or misalignment. Our study outlines a methodol-

ogy using sparse Automatic Dependent Surveillance-Broadcast (ADS-B) and geospatial airport data, em-

ploying map-matching and filtering techniques for comprehensive trajectory representation and analysis.

Additionally, we introduce roughness-specific pavement stochastic modeling to allow load assessment on

aircraft structures during ground roll including surface irregularities and damage patterns. This model

precedes a probabilistic fatigue model, aiming to initially diagnose potential structural issues to enable

subsequent prediction, and mitigate efforts, thereby enhancing aircraft durability and thus operational

safety.

Keywords: TrajectoryModeling; Map-matching; SurfaceModeling; Aircraft GroundManeuvers; Aircraft Component Safety

Abbreviations: ADS-B: Automatic Dependent Surveillance - Broadcast, AOA: Airport Operational Areas, OSM: Open-

StreetMap, PSD: Power Spectral Density, RWY: Runway, TWY: Taxiway.

1. Introduction

The surge in air traffic volume and the intricate operations at airports present challenges for ensur-

ing the safety and efficiency of aircraft ground movements. The traffic density on runways (RWY),

taxiways (TWY), and aprons complicates taxi routing, especially in airports with complex layouts

and procedures. These complexities lead to extended taxiing distances, frequent braking, accelera-

tion, and turning maneuvers. As a result, aircraft tires and landing gears are exposed to significant

dynamic loads, affecting their health status and thereby impacting components’ safety. However,

conventional maintenance routines often rely on fixed schedules, with data constraints limiting

predictive measures and the adoption of demand-driven assessments. In this context, digital twin

technology emerges as a promising tool for monitoring component health in a digital environment,

assessing stress and fatigue spectra during ongoing operation, enhancing component life cycle man-

agement, optimizing certification processes from the manufacturer’s perspective, and enabling pre-
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dictive maintenance [1, 2, 3, 4]. For this purpose, comprehensive simulation approaches gathering

and processing data are required to accuratelymodel landing gear behavior and condition in a virtual

environment, e.g., regarding structural loads during operations, corrosion effects, and maintenance

history. For developing a load monitor for aircraft landing gears during ground operations as part

of a safety-driven digital twin framework, tire and landing gear properties and behavior, aerodrome

pavement roughness, RWY condition, and aircraft maneuvers derived from trajectory data must be

considered. Notably, the use of open-access trajectory data derived from OpenSky Network [5] is a

key strength of the methodology presented in this study, as it allows stakeholders without access

to proprietary aircraft-logged data, such as Flight Data Monitoring (FDM) information, to replicate

and implement our approach effectively.

The essential modeling requirements for this purpose (cf. Figure 1) encompass a bottom-up ap-

proach, covering:

• Modeling of ground trajectories from Automatic Dependent Surveillance-Broadcast (ADS-B)

data by deriving trajectories from aircraft position and determining movement parameters, for

example speeds, acceleration, steering angles,

• Stochastic modeling of RWY/TWY roughness accounting for surface variations induced by

design-related irregularities (e.g., concrete joints, or inset lights) or typical damage patterns (e.g.,

cracks, pop-outs),

• Tire-pavement interaction modeling utilizing a calibrated tire model, and

• Aircraft tricycle rigid body motion model with six degrees of freedom, integrating tire and

oleo strut models to calculate forces and moments at the landing gear incorporating the aforemen-

tioned modeling aspects.
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Figure 1. Flowchart of the relevant models within the load monitor.

This modeling approach incorporates key motion parameters like ground speed and steering angle

for post-operative trajectory replication, requiring consistent and realistic trajectory data with ad-

equate parameter coverage, accuracy, and resolution. However, aircraft position data often suffer

from sparse, noisy, or temporally and spatially misaligned data points due to sensor-based measure-

ments and coverage issues, which can be particularly significant for certain airports, especially for

ground trajectories recorded in the OpenSky Network [5] (cf. Figure 2). These coverage limitations

result in only a few airports where OpenSky Network [5] provides high-quality ground trajectory

data (e.g., ZurichAirport). To address these challenges, our focus is on developing a robustmethodol-
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ogy for processing and analyzing aircraft ground trajectories, employing map-matching techniques

with open-source data to enrich sparse input trajectories and partially overcome the limitations of

OpenSky Network [5] ground data.
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Figure 2. Comparison of exemplary samples from ADS-B OpenSky Network [5] dataset at Frankfurt Airport (EDDF) for in-
bound (landings on RWY 25L) and outbound (takeoffs from RWY 18) with different data quality: ground trajectories with
higher temporal resolution (blue) and ground trajectories with lower one (red).

Additionally, we also developed a model that allows for the stochastic generation of pavement sur-

face macrotexture in order to add roughness criteria to the analyzed trajectories based on [6]. The

pavement roughness or unevenness significantly influences the tire-pavement interaction that sub-

stantially affects the dynamic loads and vibrations acting on the landing gear during ground op-

erations incorporating takeoff and landing run as well as taxiing [7]. The influence of pavement

roughness on aircraft structure in terms of fatigue and dynamic stresses, performance, its occupants

(esp. passenger/pilot comfort) and thus operational safety (e.g., [8, 9, 10, 11]) has been subject to

the scientific discourse for several years and remains an ongoing topic (e.g.,[12, 13]). Irregularities

in the pavement’s surface arise from normal tolerances of engineering standards required for con-

struction, such as concrete joints, or aerodrome design-related requirements including inset lights

or markings. Additionally, wear and tear caused by chemical influences, especially use of de-icing

agents, meteorological factors like temperature fluctuations, and mechanical forces for example sur-

face loading by aircraft undercarriages and other aerodrome vehicles can lead to surface material

fatigue, resulting in typical damage patterns such as cracks and thus unevenness [7, 14]. Thus, we

employ methods for generating artificial fractal surfaces by applying power spectral density (PSD)

according to [15]. These surfaces incorporate both design-related variations and specific damage

patterns, resulting in highly detailed pavement surface with a finely resolved vertical axis. By inte-

grating these modeling techniques, we develop a comprehensive 3D trajectory description, essential

for input into our aircraft motion model. This approach enables effective load monitoring as part of

a safety-focused digital twin application enabling high fidelity monitoring on component level in a

digital environment, enabling the diagnosis of stress and fatigue spectra during ongoing operations,

and prediction of future component conditions enhancing insights into component safety.

1.1 State-of-the-Art
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1.1.1 Trajectory Modeling and Analysis

Various data sources exist for analyzing aircraft ground trajectories. Onboard systems within the

framework of Flight Data Monitoring (FDM) collect extensive data, complying with IR-OPS stan-

dards of European Union Aviation Safety Agency (EASA) [16], noted for their breadth in parameters

and precision. However, access to such data is generally limited (e.g., [17]) and represents a common

restriction across studies in the aviation domain, including this one. Similarly, Advanced-Surface

Movement Guidance and Control System (A-SMGCS) offer prospects for modeling trajectories [18];

however, these are proprietary to airport operators and rarely public. Airport Surface Detection Equip-
ment, Model X (ASDE-X) Data, available through the NASA Sherlock Data Warehouse, amalgamates

ground traffic data from radar, multilateration (MLAT), and ADS-B for selected U.S. airports [19],

providing high-quality datasets, however not covering European airports. Thus, ADS-B, accessible

via OpenSky Network [5] and Flightradar24 (www.flightradar24.com), is widely used (e.g., [20, 21]),

yet ground data quality may be compromised by the placement and number of receivers and the

status of aircraft transponders.

Numerous scientific publications focus on analyzing sparse trajectory data to extract relevant op-

erational insights and metrics. Hoole et al. explore methods to characterize maneuver variability,

assessing landing gear load and operational safety [21]. Basora et al. address anomalies in trajec-

tory data using statistical analyses like regression and neural network-based reconstructionmethods

[22], while Olive et al. apply machine learning algorithms for outlier detection in Mode S data [23].

Furthermore, anomaly detection and trajectory prediction clustering are examined in [24, 25, 26]

Sparse or inaccurate trajectory processing include inverse sampling (interpolation) and error re-

duction (smoothing) techniques. These methods cover outlier testing [27], spline-based smoothing

[28], and model-based reconstruction using filters like the Kalman filter [29, 24, 30]. Advances in

filtering include hybrid statistical models that combine continuous motion estimators and discrete

model switching, exemplified by the Interacting Multiple Model Filter (IMM) and Multi-Hypothesis

Tracker (MHT) [31, 32]. The influence and effectiveness of various filtering techniques on flight tra-

jectories are analyzed in [33]. Finally, map-matching algorithms, previously applied in road traffic,

are increasingly used for analyzing aircraft ground movements, aligning position data with digital

map information [18, 34, 35, 36]. A detailed review of these algorithms is presented in [37, 38].

1.1.2 Roughness Description and Modeling

Pavement roughness significantly impacts aircraft performance, component lifespan, and the safety

of ground operations. It necessitates adherence to regulatory standards for determining ground

loads during aircraft certification [7] and for the design and maintenance of Airport Operational Ar-
eas (AOA) pavements across Europe [39]. Airport operators conduct regular inspections andmainte-

nance action on AOA pavements, providing detailed pavement condition information [40]. Various

methods and devices, from visual inspections to advanced technologies, e.g., LiDAR and photogram-

metry via unmanned aerial vehicles (UAV), assess both functional (e.g., material properties) and

structural (surface properties, e.g., roughness) conditions of airport pavements [41, 42, 43, 44, 45].

Empirical records of RWY and TWY surface profiles from various international airports primarily

inform data on pavement surface profiles. Deterministic dynamic analyses, utilizing actual RWY

profiles such as the pre-resurfacing San Francisco RWY 28R [8] as a worst-case scenario, contribute

to aircraft certification efforts by assisting in the assessment of landing gear loads during ground

operations [7]. The Federal Aviation Administration (FAA) repository [41] offers the pavement soft-

ware ProFAA for calculating roughness indices, for instance Boeing Bump Index (BBI), International

Roughness Index (IRI) and Pavement Condition Index (PCI) [46, 47, 48], and contains real profiles

from RWY and TWY used in FAA studies [49, 50].

In addition, scientific studies explore the effects of roughness on aircraft dynamic responses and

www.flightradar24.com
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model surface profiles. Methods enhance roughness indices Boeing Bump Index and International

Roughness Index [51], introduce landing gear cumulative stroke as an alternative [9], and analyze

RWY dynamic responses to aircraft taxiing loads [13]. Investigations assess pavement roughness

and taxi speed effects on vertical accelerations in aircraft cockpits and at the center of gravity [12].

Power spectral density (PSD) characterizes surface roughness and its effects on friction and adhesion

[52, 15, 53, 54]. Computer simulations are used to investigate adhesive interactions on rough surfaces

[55], and fractal-based roughness characterization methods are introduced [56]. PSD analysis pre-

dicts functional properties of adhesion and friction [57], while strategies for reconstructing accurate

PSDs and their implications on surface topography tuning are discussed [58]. Moreover, methods

for estimating airport pavement spectral density [59], characterizing RWY roughness via PSD and

spectrum parameters, correlating them with aircraft vibrations [60], and analyzing taxiing-induced

vibrations in large aircraft [61] underscore the importance of applying PSD methods in studying

random vibrations with consideration for undercarriage dynamics’ nonlinearities.

1.2 Scope and Objectives

The objective of this paper as first step towards developing a load monitor (cf. Figure 1) in digital

twin applications is to present a methodology for both processing and analyzing aircraft ground

trajectories on the movement area from sparse position data as input and stochastic modeling pave-

ment roughness along this trajectory (cf. Figure 4). To address the challenge of data sparsity and

enhance ground trajectory analysis, Section 2 introduces our methodology consisting of trajectory

enrichment and smoothing with open source data using map-matching methods (cf. Section 2.1).

At a sampling rate of 1Hz [62], the interval between consecutive ADS-B data points can exceed

15m, driven by taxiing speeds ranging from 8m s
–1

to 15m s
–1
. This challenge is further exacer-

bated by potential measurement errors and data loss, particularly evident in curved segments (see

Figure 2 and Figure 3). These gaps result in an underestimation of the taxiing distances, which in

turn leads to inaccuracies in the calculation of speeds. Given the high forces exerted on the land-

ing gear and aircraft structure during turns, precise distance measurement is essential for ensuring

accurate modeling.
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Figure 3. The histogram shows the distribution of spatial resolution for ADS-B data points, representing the distance be-
tween consecutive measurements in our dataset. The variability in distances between data points arises from fluctuations
in aircraft ground speeds and data irregularities.

Our data-driven approach aims for reconstructing sparse position data points and additionally as-

signing further infrastructure information to the trajectory and incorporates further analysis of the

enriched trajectory, for instance segmentation into turn and straight segments for determining air-

craft maneuvering parameters [63]. In Section 2.2, we detail our pavement roughness modeling

approach, acknowledging the inherent heterogeneity of pavement surfaces in airport maneuvering

areas. As we require a fast and universally applicable modeling approach, and access to precise cur-
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rent profile data, e.g., from 3D surface scans, is severely limited (cf. Section 1.1.2), our method opts

for stochastically generated scenario data to encompass diverse surface conditions. While existing

literature offers detailed pavement modeling techniques using PSD, our approach prioritizes prac-

ticality, focusing on enriching ground trajectories with comprehensive roughness information for

reliable ground load diagnostics within the digital twin application framework. Our approach does

not only aim at determining limit loads but rather emphasizes depicting a full spectrum of ground

maneuvering loads during daily operations. This rationale justifies our use of randomized surface

generation and integration of design-related irregularities and typical damage patterns. Section 3

applies the previously developed methodology to an exemplary dataset. The results obtained are

discussed in Section 4, along with their further application contributing to the development of a

load monitor within a digital twin application.

The present paper extends the trajectory generation approach detailed in [63] by applying the

methodology to a different OpenSky Network [5] dataset. Furthermore, heading calculations ac-

cording to Equation (11) were modified and the underlying graph model has been refined for im-

proving the map-matching approach (cf. Section 2.1). The primary distinction, however, is that the

generated trajectories are now enriched with surface roughness information, which is critical for

load estimation, thereby enabling the derivation of complete 4D trajectories (cf. Section 2.2).

2. Methodology

Our methodology, summarized in Figure 4, comprises two main steps. In Step 1, we enhance ground

trajectories derived from sparse ADS-B data usingmap-matching techniques, complemented by sub-

sequent filtering and smoothing processes to develop a detailed trajectory profile (cf. Section 2.1).

Step 1 further involves analyzing these refined trajectories by determining aircraft maneuver pa-

rameters, (e.g., ground distance and speed), and employing a segmentation algorithm to classify the

trajectory into turns and straight paths (cf. Section 2.2). This segmentation aids in further refining

the trajectories and enables detailed analyses of parameters crucial for future trajectory predictions.

The third step introduces a stochastic model for the surface onwhich these trajectories are projected,

improving the precision of our predictive models (cf. Section 2.2).

2.1 Ground Trajectory Enrichment, Smoothing and Analysis

For enriching sparse trajectory data, we define the dataset of all tracked aircraft positions as T =

{(xi, yi, ti)}Ni=1, whereN represents the total number of position data points across all flights within the

dataset, with xi, yi as Easting and Northing in Universal Transverse Mercator (UTM) format, and ti as
the timestamp for each position. UTM is employed as it provides a consistent, planar coordinate sys-

temwithminimal distortion at local scales. Its metric framework enables precise and straightforward

calculations of distances and speeds, making it particularly suitable for aerodrome surface analysis.

Furthermore, OpenStreetMap (OSM) [64] is used to provide detailed geospatial data between consec-

utive aircraft positions, including a node-edge model of airport RWYs, TWYs, and parking positions

derived from centerline markings. OSM also offers type, designators, dimensions, and surface mate-

rial of these features. Another source for acquiring aeronautical information is the Aeronautical In-
formation ExchangeModel (AIXM), jointly provided by the European Organisation for the Safety of Air
Navigation (EUROCONTROL) and the FAA (https://aixm.aero/). AIXM is an open-source XML file

format (current version: AIXM 5.1/5.1.1) and facilitates the transition from traditional paper-based

Aeronautical Information Services (AIS), for example theAerodrome Information Publication (AIP), to
digital data provision. AIXM offers detailed digital aeronautical information, including aerodromes,

airspace structures, routes, and flight restrictions. The provided aerodrome data offers high precision

regarding surfacemarkings and lighting and reflects the current state of airports as accurately as pos-

sible. The global availability of data for international airports is limited. A list of available datasets for

https://aixm.aero/
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Figure 4. Flowchart showing generalized processing steps within our methodology for trajectory and pavement modeling.

each country can be accessed at https://ext.eurocontrol.int/aixm_confluence/display/AIX/Inventory.

For this study, the dataset was used as an additional source, providing georeferenced information on

RWYs, TWYs, apron areas, and buildings including details such as designators, markings, lighting

elements, and pavement materials.

However, transforming the georeferenced information provided by OSM into a graph model for ac-

curate aircraft ground movement enrichment is challenging due to lack of inherent relational data

detailing connectivity and transitions between features. To address this, ourmethod linearly interpo-

lates between segment endpoints to identify valid graph edges based on proximity relationships of an

equidistant point grid. Each line segment fromOSM, Sj , is represented by startQj,start = (xj,start, yj,start)
and end points Qj,end = (xj,end, yj,end) in UTM coordinates. The length Lj of each segment, measured

as the Euclidean distance, is defined by Equation (1):

Lj =


Qj,startQj,end




(1)

The spatial resolution criterion, referred to as the proximity threshold ϵ, defines the number of

interpolations p for each segment j:

pj =
⌈
Lj
ϵ

⌉
(2)

Thereby, ⌈·⌉ represents the ceiling function, which ensures that pj is an integer and guarantees amin-

imum spatial resolution for edge identification. The resulting interpolation points are determined

as follows, maintaining a consistent spatial resolution:

Qj,k = Qj,start +
k

pj + 1

· (Qj,end – Qj,sstart) (3)

∀k = {1, 2, . . . , n}

Figure 5 illustrates the extended OSM data using airport EDDF as an example.

https://ext.eurocontrol.int/aixm_confluence/display/AIX/Inventory
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Then, let us define a set V =

⋃
j Qj,k by combining vertices from each segment. A distance threshold

dth then facilitates the introduction of a function E : V × V → {0, 1} to determine if an edge E
connecting any two vertices within V is valid:

Em,n =

{
1, for dm,n ≤ dth
0, in other cases

for all m, n ∈ V ,m ≠ n (4)

Here, Em,n = 1 indicates a valid edge between vertices m and n. To ensure the graph model accu-

rately represents feasible TWY intersections, dth is set slightly above ϵ, compensating for any data

inaccuracies. Then, a graph G(V , E) with undirected edges, where self-loops are excluded to avoid

redundant connections, serves to predict the path between two consecutive ADS-B data points i
and i + 1. Compared to [63], the graph model was enhanced by removing unnecessary edges, and

by adapting both the distance threshold dth and search radius rs for identifying valid connections

within the map-matching approach. This adjustment enables more precise results, particularly in

airport areas characterized by a high density or overlapping of different types of markings within

the AOA (cf. Figure 11). The path prediction is realized by executing the following two steps:

1. Map the positions of each flight f , defined as Tf = {(xf ,i, yf ,i, tf ,i)}
Nf
i=1, to the nearest neighbor graph

vertex V .
2. Determine the most feasible route connecting these vertices in the graph model.

Let’s introduce a mapping function Φ, which assigns each aircraft position Tf ,i = (xf ,i, yf ,i) of flight
f to the most plausible nearby vertex k ∈ V . The function is defined as follows:

Φ(Tf ,i) = argmin

k∈V

(√︃
(xf ,i – xk)2 + (yf ,i – yk)2 + γi,kM

)
(5)

where M is a significantly large number used to penalize incorrect assignments, introduced by the

"Big M" method. A plausibility check γ evaluates the orientation alignment of the aircraft’s heading



Journal of Open Aviation Science 9

i with the angular orientations of the OSM edges k in the undirected graph G. The check calculates

the heading difference∆θi,k and compares it to an angular threshold αth, ensuring alignment within

a predefined tolerance, considering both standard (|∆θi,k |) and perpendicular (|∆θi,k+
π
2
|) alignments:

γi,k =

{
1 if min(|∆θi,k |, |∆θi,k +

π
2
|) ≤ αth

0 otherwise

(6)

Then we formulate an optimization problem that seeks to minimize the path’s cost to determine the

shortest path between two mapped vertices Φ(Tf ,i) and Φ(Tf ,i+1):

min

Pf ,i,i+1⊆G(V ,E)
C(Pf ,i,i+1) =

∑︁
(m,n)∈Pf ,i,i+1

wm,n (7)

where wm,n = (1 – Em,n) ·M + dm,n

subject to:

Pf ,i,i+1 starts at Φ(Tf ,i) and ends at Φ(Tf ,i+1),
∀m, n ∈ V ,m ≠ n

In this model, C(Pf ,i,i+1) denotes the total cost of the path Pf ,i,i+1, including vertex distances dm,n.

Using a large penalty factor M for non-viable edges, shortest path algorithms like Dijkstra [65] or

A* [66] efficiently find the most cost-effective route. The outcome identifies the optimal sequence

of vertices connecting the two mapped points. Then, the original trajectory Tf is augmented by

incorporating Tf ,i, intermediate vertices from Pf ,i,i+1 excluding the start and end vertices, and Tf ,i+1
to enrich the ADS-B trajectory with additional positions from the OSM data. For this enriched

trajectory of flight f , at data point i and interpolated positionα, we introduce the following notation:

Tf ,i,α = (xf ,i,α, yf ,i,α) (8)

Finally, to refine the flight trajectory Tf ,i,α, the Savitzky-Golay filter [67] is employed. This filter

smooths data by fitting local polynomials within a moving window, effectively reducing noise while

preserving key features regarding peaks and troughs. Applied separately to the x and y coordinates

of the enriched trajectory, the operation is described mathematically:

x′f ,i,α =

w–1
2∑︁

j=– w–1
2

cj · xf ,i,α+j (9)

y′f ,i,α =

w–1
2∑︁

j=– w–1
2

cj · yf ,i,α+j (10)

Here, cj are the filter coefficients based on the polynomial order, and w is the selected window size.

This smoothing process incorporates data from adjacent points to calculate each smoothed coor-

dinate, improving trajectory accuracy by mitigating noise, measurement uncertainties, and map-

matching-induced inaccuracies. Figure 6 illustrates the effects of the applied filter using a represen-

tative ground trajectory. Particularly in curve segments, the noise is significantly reduced, resulting
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in a more realistic, smoother trajectory. The output is an augmented taxiing trajectory suitable for

analytical analyses, preserving essential features of the original ground path. This enhancement

allows for precise computation of taxiing distances, average speeds between aircraft positions, and

aircraft headings at each discrete location, with the first two parameters being calculated similarly

to Equation (1) and its time derivative. These detailed metrics set the stage for refining our under-

standing of aircraft heading θf ,i,α during taxiing by utilizing the Haversine formula:

θf ,i,α = atan2

(
cos(x′f ,i,α+1

) · sin(y′f ,i,α+1
– y′f ,i,α),

cos(x′f ,i,α) · sin(x
′
f ,i,α+1

– x′f ,i,α) · cos(x
′
f ,i,α+1

) · cos(y′f ,i,α+1
– y′f ,i,α)

) (11)

The Haversine method provides a more robust and precise calculation compared to that described in

[63]. This is particularly evident in the aircraft headings along the RWY centerline, which precisely

align with the true RWY bearing as stated in the Aerodrome Information Publication (AIP).

Trajectory segmentation into straight and curved paths uses the change in heading of subsequent

discrete positions, which is defined as:

∆θf ,i,α = θf ,i,α+1 – θf ,i,α. (12)

By normalizing the heading change to lie between –180
◦
and 180

◦
, we categorize segments as follows:

• Segments where |∆θf ,α| ≤ ∆θTH are classified as straight.

• Segments where ∆θf ,α > ∆θTH are classified as right curves.

• Segments where ∆θf ,α < –∆θTH are classified as left curves.
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Thereby, the threshold ∆θTH compensates for inaccuracies after map-matching smoothing. Note,

that ∆θTH is sensitive to the proximity threshold ϵ defined in Equation (2). In our previous work

[63], we demonstrated that the map-matchingmethod significantly improves the mapping of ground

roll trajectories compared to raw ADS-B data—particularly in depicting taxiing in curved areas and

cases of one ormore consecutivemissingmeasurements due to disturbances. Following, the enriched

trajectory will be expanded using a stochastic pavement roughness model.

2.2 Pavement Roughness Modeling

The starting point for creating stochastic roughness profiles (cf. Figure 4) is the creation of a grid

defined by length X , width Y , for example according to the aircraft’s wheel track, and the degree

of resolution of the pavement to be modeled (cf. Figure 7). The resolution significantly determines

the number of resulting nodes. For instance, 1 × 10
6
nodes result from a pavement surface area of

A = 1m
2
with a grid resolution of 1 × 10

–3
m.

Figure 7. Grid with nodes for the base surface (grey), damage pattern (red), including the damage pattern’s start point
(green), and indices for the start (s) and end (e) grid points in theX -direction andY -direction. The nodes for the base surface
are denoted as sx and sy (start) and ex and ey (end), while the start and end nodes for the damage pattern are denoted as
dsx and dsy (start) and dex and dey (end).

The grid’s resolution affects both the level of degree of irregularities resp. damage patterns to be

implemented, as well as computational time. The defined grid serves as input for generating the

base surface. Both design-related irregularities and typical damage patterns are then inserted, dis-

tinguishing between pavement material and damage rating. The base surface is generated using arti-

ficial fractal-structured surfaces through PSD. The PSD provides the squared absolute of the Fourier

spectrum of the surface profile, encompassing essential details regarding both vertical and lateral

profile characteristics. According to [55], randomly rough surfaces can be generated with a typical

elevation spectrum C(q) given by

C (q) =
〈 ���̃h (q)���2〉 =

C (0)Θ (qs – q){
1 + (q/qr )2

}
(1+H )

(13)

with h̃(q) as Fourier transform of elevation h(r), λr = 2π/qr resp. λs = 2π/qs are the roll-off wave-

length (index r) resp. short-wavelength cutoff (index s) and H the Hurst exponent for defining
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roughness in the range of 0 ≤ H ≤ 1, where larger H values produce smoother surfaces. Detailed

information on Equation (13) can be found in [56, 57, 58].

To enhance the practical applicability of PSD within our pavement modeling approach, we utilized

a surface generator providing artificially random rough surfaces available from theMATLAB repos-

itory. Function artificial_surf [68] based on prior works by Kanafi et al. [15, 54, 53] was applied to

the defined grid and adapted enabling the implementation of longitudinal and cambered transverse

slopes of RWY/TWY. Figure 8 shows an exemplary base surface with dimensions of 0.1m × 0.1m.

It is important to note that the elevation values (z-axis and color bar) are given in 10
–3
m = 1mm.

Figure 8. Exemplary base surface of a 0.1m × 0.1m pavement portion with standard deviation σ = 1 × 10
–3

m (e.g., root-
mean-square roughness Rq [68]), H = 0.8, and a cambered transverse slope of 1 %.

In the next step, design-related irregularities are incorporated into the base surface. The current

model version allows for the implementation of longitudinal and transverse slopes, RWY groov-

ing, inset lights like RWY centerline lights, and concrete slabs. Particularly in the touchdown zone

(TDZ) of the RWY, rubber abrasion can influence the surface structure by filling the interstices of the

macrotexture with rubber particles and thus skid resistance. In our pavement model, this can be sim-

plified by creating the base surface in the touchdown zone area with smoother macrotexture given

by values of standard deviation σ and Hurst exponent H . The subsequent insertion of damage pat-

terns requires initially determining the material distinguished into asphalt/flexible or concrete/rigid

pavement, and the surface condition rating of the pavement to be modeled. Both parameters in-

fluence the type and extent of the implemented damage patterns. Regarding this, the assessment

of irregularities/damages, type (e.g., cracks), quantity/frequency (percentage of pavement surface

affected by damage), and severity (e.g., depth of a crack) are decisive according to Pavement Con-

dition Index (PCI) [69]. As a first approach for defining quantity and severity of damage patterns

in our model, we established a rating scale ranging from A - excellent (PCI from 100 - 71), B - fair
(PCI from 70 - 56) to C - poor (PCI from 55 - 0). For these three categories, it was determined based

on the pavement material which damages are inserted into the base surface, especially regarding

the value ranges of quantity, and severity of each damage pattern. The current model version can

depict the damage types specified in Table 1. The ranges of their values were determined based on

the information provided in [70, 71, 72] and are summarized exemplarily for different damage types

divided into asphalt and concrete pavements in Table 2. Figure 9 presents an exemplary collection of

design-related irregularities, illustrated by concrete slabs, and damage patterns of pop-outs, which

are incorporated into the modeling approach.
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Table 1. Summary of implemented design-related and damage-related irregularities differentiated by pavement materials
asphalt and concrete according to [6].

Irregularity Asphalt (flexible) pavement Concrete (rigid) pavement

Damage-related Cracks (general) Cracks (general)

Alligator cracking Map cracking

Rutting Corner cracking

Raveling Pop-outs

Heaving Blowups

Settlement Slab settlement

Design-related/operation-related Inset lights Joints

Grooving Inset lights

Rubber abrasion (esp. in RWY’s touch-
down zone)

Grooving

Rubber abrasion (esp. in RWY’s touch-
down zone)

The randomized implementation of damage patterns involves determining the starting positions

within the underlying grid and defining their extent based on the specified ranges for quantity and

severity (cf. Table 2). The principle of randomized determination of damage patterns (index DP) and
their characteristics and connected value ranges is explained by the following Equation (14):

ZDP ,r = ZDP ,min + (ZDP ,max – ZDP ,min) · X ∀X = [0, 1] (14)

with ZDP ,r randomized damage elevation, ZDP ,min and ZDP ,max are minimum resp. maximum DP ele-

vation in [m] and X a uniformly distributed random number in the interval [0, 1]. For an exemplarily

concrete surface rated as A (PCI from 100 - 71), and damage pattern of crack (index C), ZDP ,min/max
corresponds to ZC,min = 5 × 10

–3
m and ZC,max = 1 × 10

–2
m. The randomized elevation values for

each damage pattern, ZDP ,r , are iteratively applied to a randomly selected region within the base sur-

face’s elevation spectrum C(q), according to Equation (13). This process continues until achieving

the specified damage quantity in terms of grid points (cf. Table 2).

C(q)ij = C(q)ij + ZDP ,rkl (15)

This operation applies for i ∈ {sy, sy+1, . . . , ey} and j ∈ {sx, sx+1, . . . , ex}, and similarly, k ∈ {dsy, dsy+
1, . . . , dey} and l ∈ {dsx, dsx + 1, . . . , dex}, where sx and ex (resp. sy and ey) denote the randomized

start and end grid points on the base surface in the X resp. Y direction. Correspondingly, dsy and

dey (resp. dsx and dex) are the start and end points for the damage pattern grid (cf. Figure 7). The

final outcome yields a complete elevation profile characterized by length X , width Y , and elevation

Z , which can now be integrated into the enriched trajectory (cf. Figure 12).

Due to the inherent grid structure of the model, intricate damage propagation, such as cracks and

localized spalling, is approximated using the simplified functional relationships of sine functions,

in the current model version. If more precise measurement data on the characteristics of specific

damage patterns at an airport are available, it would be possible to refine damage characteristics

and create probability density functions (PDF) for damage quantity and severity and incorporate

them into the model. Furthermore, in addition to the surface roughness along the entire trajectory,
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Table 2. Characteristics overview of exemplary damage patterns based on surface ratings according to [6].

Damage
type

Category A Category B Category C

Asphalt (flexible) pavement

Cracks Quantity: no cracks or cracks
with a distance ≤ 30m

Severity: ≤ 3mm width

Quantity: 15m distance
Severity: 6mm to 30mm width

Quantity: 3m distance
Severity: > 30mm width

Rutting Quantity: no rutting or ≤ 5 % of
wheel path
Severity: depth ≤ 5mm

Quantity: 10 % to 40 % of wheel
path
Severity: 10mm to 30mmdepth

Quantity: ≥ 40 % of wheel path
Severity: ≥ 40mm depth

Raveling not existing Quantity: ≤ 30 % per m2

Severity: ≤ 3mm depth
Quantity: > 40% per m2

Severity: > 3mm depth

Concrete (rigid) pavement

Pop-outs Quantity: ≤ 1 % of total surface
Severity: ≤ 20mm diameter,
≤ 13mm depth

Quantity: 1 % to 5 % of total sur-
face
Severity: ≤ 50mm diameter,
≤ 20mm depth

Quantity: 20 % to 30 % of total
surface
Severity: ≤ 100mm diameter,
≥ 20mm depth

Slab
settlement

Quantity: ≤ 5 % of all slabs
Severity: ≤ 5mm vertical dis-
placement

Quantity: 8 % to 15 % of all slabs
Severity: 13mm to 25mm verti-
cal displacement

Quantity: 8 % to 15 % of all slabs
Severity: > 25mm vertical dis-
placement

Map
cracking

not existing Quantity: 10 % to 20 % of total
surface
Severity: width ≤ 10mm

Quantity: 30 % to 45 % of total
surface
Severity: width ≤ 50mm

locally restricted surface profiles can be modeled for the analysis of single-event bumps to simulate

the occurrence of worst-case load scenarios (limit and ultimate loads according to [7]). In summary,

our approach is highly effective for rapidly generating a wide variety of distinct roughness profiles,

covering the complete range of possible irregularities, from credible cases to worst-case scenarios.
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Figure 9. Exemplary design-related irregularity and damage pattern for concrete pavement surface: concrete slabs (1A) and
detail view of single slab with filling (1B) as well as pop-out overview (2A) and detail view of single pop-out (2B) according
to [6]

3. Application and Results

3.1 Input Data Preparation

For this study, we applied an ADS-B dataset obtained from the OpenSky Network [5]. The dataset

only consists of Airbus A220-300 aircraft flight movements at Frankfurt Airport (EDDF) used as

reference aircraft type within the load monitor (cf. Figure 1). The dataset spans from May 2019 to

June 2022, and contains 649 recorded flight movements. To extract only ground movements, the

dataset was initially filtered based on altitude resp. air-ground switch, airport area, and a minimum

number of data points per trajectory. As a result, the final dataset contains 291 ground movements,

comprising 145 departures and 146 arrivals of aircraft using different RWYs, TWYs, and parking

positions (cf. Figure 10). Airport infrastructure data for EDDF was obtained using the Overpass API
and its front-end, Overpass Turbo (https://overpass-turbo.eu/). However, due to missing details, the

dataset was supplemented with information from the AIP EDDF [73] and AIXM dataset provided by

the German Air Navigation Service Provider (ANSP), DFS Deutsche Flugsicherung GmbH [74]. The

AIXM dataset primarily served for validation and as a source for background mapping in graphical

representations.

3.2 Trajectory Modeling

For the application of our map-matching procedure (cf. Section 2.1), the parameters for constructing

the graph model must first be defined. We set a proximity threshold of ϵ = 3.0m according to

Equation (2), a distance threshold of dth = 10.0m according to Equation (4), and a search radius of

rs = 8.0m. Adjusting these parameters resulted in more precise outcomes compared to [63] and,

consequently, an overall improvement in our map-matching approach. The following Figure 11

shows an extract of the resulting graph model G consisting of nodes and edges.

Building on this, we applied our map-matching approach to all 291 ground movements. Figure 12

presents the corresponding results for one representative sample of ground movement from the

https://overpass-turbo.eu/
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Figure 10. Aircraft ground movements from prefiltered OpenSky Network dataset distinguished into inbound (red) and
outbound (blue) traffic summing up to 291 movements at EDDF airport.

dataset, involving a landing on RWY 07R at EDDF airport. The original ADS-B trajectory (red)

consists of 151 data points, while the enriched trajectory (blue gradient) now comprises a total of

963 data points, thus demonstrating a significantly improved level of detail and enabling higher

mapping accuracy. This improvement is particularly evident in turning segments, such as between

RWY 07R and TWYM19, and in the transition fromTWYL to TWYN10. However, it should be noted

that the algorithm yields inadequate results for 5.5 % of the trajectories in the dataset (16 out of 291

samples) and introduces at least minor inaccuracies in 3.8 % (11 out of 291 samples) of the analyzed

cases. These issues primarily stem from the quality of the ADS-B input data, particularly in instances

where large gaps exist between consecutive data points, where erratic patterns occur—especially in

ramp areas, notably during pushback—or where position data points deviate from the permissible

AOA (cf. Figure 14).

Additionally, we calculated the taxi distances and the average segment speeds along the enriched

trajectories, taking into account the relevant considerations as outlined in [63], while also determin-

ing the aircraft headings according to Equation (11) as a supplementary analysis. In terms of the total

taxi distance, it is observed that the enriched sample trajectory covers approximately 5498m, while

the original ADS-B trajectory only covers approximately 5368m resulting in an underestimation of

about 2.4 %. The resulting groundspeeds and headings are presented in Figure 13.

The groundspeed values of 125m s
–1

in the original OpenSky Network [5] ADS-B dataset for the

sample ground trajectory shown in Figure 13 should be considered unrealistic, likely representing

the last reliable speed measurement. These values were presumably propagated to the remaining

data points on the ground. The average segment speeds in Figure 13 were calculated by determining

the distance and time between adjacent ADS-B points from the OpenSky Network [5] dataset, as

detailed in [63]. Data points filled via map-matching were excluded, as interpolated timestamps

may not accurately reflect the aircraft’s actual movement. Further analysis revealed that within the

ground distance range of approximately 1000m to 3000m, distances between adjacent ADS-B data
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Figure 12. Algorithmically enriched ground trajectory of a sample flight, with ground distance-based color coding. The
original OpenSky Network [5] positions (red) and the resulting enriched trajectory are shown. AOA designators from the
RWY to the final parking position were automatically determined and are summarized in the white textbox. Segmentation
results, derived in accordance with Equation (12), are displayed in the red textboxes.
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points vary (around 5m to 25m), while time intervals remain relatively constant at about 1 s. This

discrepancy leads to fluctuating groundspeed values, suggesting imprecise timestamps.

The calculated headings in Figure 13 are represented within a range of +180° to -180°, where negative

values correspond to angles between 180° and 360°. This representation is preferable over a 0° to 360°

scale as it ensures continuity when crossing the 0°/360° threshold, thereby avoiding abrupt numerical

jumps. The derived heading values using Equation (11) effectively capture the directional changes

within the trajectory segments, aligning well with the transitions between straights and turns. Ad-

ditionally, these headings provide input for estimating steering angles in our aircraft motion model

(cf. Figure 1) by applying the following Equation (16):

δ = atan

( ¤Φ · l
v

)
(16)

Here, δ represents the steering angle in degrees (◦), ¤Φ denotes the rate of change of the heading over

time, corresponding to the yaw rate in degrees per second (
◦
s
–1
). The parameter l is the distance

between the aircraft’s nose landing gear and the main landing gear, given in meters (m), and v
corresponds to the aircraft speed in meters per second (m s

–1
). The application of Equation (16)

highlights the critical importance of accurate velocity data and precise timestamps in determining

valid steering angles.

To evaluate the enriched ground trajectory, its calculated taxi distances are compared with the dis-

tances derived fromOpenSky Network [5] ADS-B position data. Additionally, the estimated segment

speeds of the enriched trajectory—computed based on these ADS-B distances—are contrasted with

the speeds obtained from the enriched trajectory’s total taxi distances. These discrepancies, which

arise due to differences in the assumed taxiing path and the corresponding speed estimation, are

referred to as distance error and speed error in the following analysis. In [63], these distance and

speed errors were analyzed across a dataset of 291 ground movements. However, this analysis in-

cluded the aforementioned faulty and imprecise samples. Since these can distort the results—for

example, when the enriched trajectory produces diversions, as depicted in Figure 14 (left)—a total of

27 samples were excluded from the analysis. The distance error was calculated using the following

Equation (17):

Distance Errori = df ,i,i+1 – d′f ,i,i+1

df ,i,i+1 =
√︃
(xf ,i – xf ,i+1)2 + (yf ,i – yf ,i+1)2

(17)

Additionally, the speed error was computed using the following Equation (18):

Speed Errori = vf ,i,i+1 – v′f ,i,i+1

vf ,i,i+1 =
df ,i,i+1

tf ,i+1 – tf ,i

(18)

Figure 15 illustrates the distribution of distance errors (left) and speed errors (right) throughout the

dataset, excluding faulty enriched trajectories. Negative distance errors indicate that the direct dis-

tance between two ADS-B measurements is shorter than the actual taxi distance derived from the

enriched trajectory. The majority of errors remain relatively small, within 0m to –5m, but some

notable deviations occur, reaching up to –100m. Specifically, extreme distance errors in the range of

–100m to –80m occur with a frequency of approximately 5.50×10–5, whereas errors between –20m
to –10m are observed at a frequency of about 3.90 × 10

–3
. Similarly, negative speed errors indicate

an underestimation of ground speed, which is closely related to an underestimated taxi distance

between successive ADS-B data points. While most speed errors remain within 0m s
–1

to –5m s
–1
,
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Figure 15. Histograms showing the distributions of distance (left) and speed (right) errors as per Equation (17) resp. Equa-
tion (18): The distances between consecutive ADS-B data points are lower than those of the enriched trajectory data points.
Due to the underestimation of distances, the speeds calculated between consecutive ADS-B data points are also lower than
the actual values.

larger discrepancies of up to –10m s
–1
are observed. The frequency of underestimations in the range

of –10m s
–1
to –8m s

–1
is approximately 4.34×10–4, whereas errors between –2m s

–1
to –1m s

–1
oc-

cur with a significantly higher frequency of about 1.01×10
–1
. These findings demonstrate that most

distance and speed errors are small, but significant outliers indicate underestimation, particularly in

curve segments. These deviations highlight that the trajectories from sparse ADS-B data underes-

timate the actual distances and speeds, with the enriched trajectory providing a more accurate and

realistic representation of the true ground trajectory.

3.3 Pavement Roughness Modeling

Building on the analysis of the sample ground trajectory (cf. Figure 12), particularly in terms of

ground distances and AOA designators, along with information from AIP EDDF [73] supplemented

by AIXM [74], the input data for pavement modeling is further refined. EDDF pavements are rated

A (PCI from 100 - 71), indicating compliance with EASA guidelines (esp. condition and maintenance

status of pavements). The base surface has a standard deviation σ = 1 × 10
–3
m and Hurst exponent

H = 0.8. For the mentioned sample trajectory, design-related irregularities and damage patterns can

be generated in four sections with different characteristics summarized in Table 3:

Table 3. Overview of pavement section characteristics applied for roughness modeling.

Section AOA Designator Length
X (m)

Width
Y (m)

Pavement
Material

Longitudinal
Slope (%)

Transverse
Slope (%)

Lighting

1st RWY 07R
(portion)

450.0m 10.0m Asphalt 0.3 1.0 Centerline
(spacing: 15m)

2nd TWY M19 280.0m 10.0m Concrete 0.0 0.0 None

3rd TWY M to TWY
N10

4600.0m 10.0m Asphalt 0.0 0.0 Centerline
(spacing: 15m)

4th Parking position
V163

100.0m 10.0m Concrete 0.0 0.0 None

According to Table 3, the modeled surface width for all four sections aligns with the Airbus A220-300

main landing gear width of 6.7m, including buffers, and is set to Y = 10m for modeling purposes. In-
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formation regarding surface lighting, pavement materials, and slopes is derived from AIP EDDF [73]

and AIXM [74]. The spacing of TWY centerline lights varies, particularly between curved sections

and straight segments, and is further influenced by holding position lights, stop bars, and other light-

ing elements, which are not included in this analysis. TWY M19 and the apron area in the vicinity

of parking position V163 are not equipped with centerline lights. Additional details on position and

spacing can be obtained fromAIXM [74]. However, no data on the longitudinal and transverse slopes

of the TWY are available. Furthermore, grooving and rubber abrasion are not considered due to the

lack of reliable data. Figure 16 presents the results of the surface roughness modeling following the

methodology outlined in Chapter 2.2 and applying the aforementioned pavement characteristics.

Figure 16. Modeled pavement profile along the sample trajectory. The upper figure shows the surface profile along the
centerlines, with detailed views of TWY M19 (concrete pavement) and TWY M to N10 (asphalt pavement). The lower figure
illustrates the detailed 3D roughness along RWY 07R, featuring a cambered surface. The peak on the left represents a RWY
inset centerline light. Note: The Z-axes are exaggerated, making the longitudinal and transverse slopes appear steeper.

In the upper subplot of Figure 16, the centerline profile along the modeled ground trajectory is pre-

sented, corresponding to the four sections defined in Table 3. The left detail view highlights the TWY

M19 area, which has a concrete surface. The vertical lines in the profile represent the concrete joints,

spaced at 5m intervals. The right detail view illustrates the asphalt surface in the section between

TWY M and TWY N10, where the centerline inset lights are visible in the profile, positioned at 15m

intervals. Additionally, the lower subplot presents a section of the modeled 3D pavement profile of

RWY 07R between 60m to 65m, representing the stochastic pavement roughness. In addition to the

longitudinal slope of 0.3 %, the transverse slope of 1.0 % is clearly visible on both sides of the RWY

centerline, featuring a cambered surface where the transverse slope is symmetrical on both sides of

the centerline, a standard design for RWYs as defined by EASA [39]. On the left side of the subplot,

the peak represents a RWY centerline inset light. The generated stochastic pavement roughness

profiles must be compared with actual measured RWY and TWY profiles for validation purposes,

for instance, those provided by pavement analysis software ProFAA [41], particularly in terms of

frequency components relevant to aircraft taxiing dynamics. The influence of different roughness

profiles and irregularities on aircraft landing gear dynamics, specifically in the form of vertical ac-

celerations and structural loads, must be assessed within our aircraft motion model as part of the

load monitor (cf. Figure 1), which is a key focus of future investigations (cf. Chapter 4).
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In summary, the integration of our trajectory model (cf. Chapter 2.1) with the pavement roughness

model (cf. Chapter 2.2) provides a methodology for generating high-fidelity 4D ground trajectories.

These trajectories serve as critical input data for our aircraft motion model within the framework of

the load monitor (cf. Figure 1).

4. Conclusion and Outlook

This paper contributes to advancing the development of a landing gear load monitor within a digital

twin framework, aimed at modeling the forces and moments produced during aircraft ground op-

erations. For this purpose, we developed a methodology enabling highly automated generation of

4D trajectories using exclusively open-source data. Utilizing the methodology outlined in our study,

we demonstrated the feasibility of accurately reconstructing aircraft ground trajectories. This is

achieved through the integration of sparse ADS-B position data and geospatial airport information

sourced from OSM, alongside the consistent application of map-matching techniques utilizing open-

source data. Employing filtering techniques enhances the accuracy of trajectory determination, sur-

passing the limitations of raw ADS-B data. Moreover, our methodology facilitates comprehensive

analysis of enriched trajectories, including parameters such as ground speed, heading, allocation of

AOA designators, and segmentation of trajectories into distinct turning and straight segments.

Additionally, we developed a methodology that allows for stochastically modeling of surface rough-

ness profiles based on PSD method and integrates typical design-related irregularities as well as

damage patterns for asphalt and concrete. The damage patterns vary in terms of quantity and sever-

ity according to a developed rating scale. This modeling approach also relies entirely on open-source

data.

Opportunities exist for enhancing the preprocessing of OSM data, specifically regarding the accurate

integration of AOA designators as per the AIP. Moreover, in OSM data, the positions denoted by

AOA centerlines, particularly in densely marked airport zones, e.g., TWY intersections or apron taxi

lanes, may occasionally overlap, posing challenges in augmenting trajectory data with precise data

points. An improvement could be achieved by incorporating AIXM data [74] as an alternative, which

provide highly accurate information on markings, surface lighting, and designators, reflecting the

actual conditions at the respective airport. This integration could further enhance the accuracy and

overall quality of our map-matching approach. Furthermore, the pavement model can be refined,

particularly regarding the adjustment of the input coefficients used in [68], differentiated for rigid

and flexible pavements, for instance, through surveys.

Future work involves validating our model through several potential methods. One approach could

be to compare smoothed trajectories from sparse ADS-B data against data derived from Flight Data

Monitoring systems using inertial navigation system (INS) to assess deviations betweenmodeled and

actual positions. Another validation approach would involve utilizing an ADS-B dataset that pro-

vides a representation of a surface trajectory with high data quality (e.g., Zurich Airport) or apply-

ing trajectories derived frommore precise Airport Surface Detection Equipment, Model X (ASDE-X)

data. Segments of the resulting trajectory from more precise data records could then be removed,

after which our map-matching approach would be applied, and the delta between the original tra-

jectory and the enriched trajectory would be determined.

Regarding pavement roughness, a possibility is to compare the modeled roughness profiles to pro-

files from real RWY and TWY, for example provided by ProFAA, by calculating various pavement

indexes. Furthermore, calculating vertical accelerations from modeled roughness profiles using an

aircraft motion model and compare these to typical values from other studies (e.g., [49]) and real

measurements from aircraft INS or external measurement systems like inertial profilers is suitable.

However, it’s important to note that barometric and GNSS altitude values as well as ground speed
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values during taxi derived from OpenSky Network ADS-B data [5] currently have limitations due to

their low resolution and accuracy and are not appropriate for validation purposes.

Subsequently, the modeled trajectories will be incorporated into the motion model (cf. Figure 1).

This integration will facilitate the interpolation of trajectory segments between ADS-B data points,

incorporating realistic speed and acceleration profiles. Furthermore, it will allow for the evaluation

of landing gear loads under different operational conditions. Further investigations are required

in this regard. For example, a comparison of the level of detail of the surface roughness with the

tire model needs to be conducted, taking into account the representation of vibrations within the

frequency range of the tire model.
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