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Abstract
This paper introduces a gradient-based Smart Predict-then-Optimize (SPO) framework to solve the aircraft

arrival scheduling problem (ASP) in the terminal maneuver area. Traditional approaches to ASP typically

separate arrival time prediction from scheduling optimization, potentially leading to incomplete solu-

tions. We address this limitation by developing an end-to-end learning framework that directly integrates

prediction with optimization objectives. Our methodology introduces the concept of traffic instances for

simultaneous prediction of multiple aircraft arrival times, coupled with a Mixed Integer Programming

(MIP) model for scheduling optimization. We evaluated our approach using real-world data from London

Gatwick Airport, analyzing 47,452 arrival flights from June to September 2024, organized into 2,404 traf-

fic instances. The framework incorporates comprehensive weather data through the ATMAP algorithm,

considering factors such as wind, visibility, precipitation, and dangerous phenomena. Experimental re-

sults demonstrate that the MLP+SPO+ framework shows particular effectiveness in adapting to adverse

weather conditions, strategically balancing transit times with operational efficiency. While the minimum

time interval is required, the MLP+SPO+ will reach around 85.0% and 43.4% lower costs compared with

the First-Come-First-Serve (FCFS) cost and optimized true cost, respectively. These findings suggest sig-

nificant potential for improving arrival scheduling efficiency through integrated SPO approaches.

Keywords: aircraft arrival scheduling problem; smart predict-then-optimize framework; machine learning; mixed integer

programming

1. Introduction

Aircraft Arrival Scheduling Problem (ASP) is a crucial challenge in the field of Air Traffic Man-

agement (ATM). As global air traffic continues to grow, optimizing the sequence and schedule in

which/when aircraft land at airports within Terminal Maneuvering Area (TMA) has become fore-

most. Efficient arrival scheduling not only reduces fuel consumption and carbon emissions but also

significantly improves overall air traffic flow, making it a key focus for both researchers and prac-

titioners in the field. The ASP, classified as an NP-hard problem, has spurred the development of

various approaches to tackle its complexity. Traditional methods like First Come First Serve (FCFS)

have laid the groundwork, while advanced techniques such as the Trombone [1, 2] and Point Merge

System (PMS) [3] leverage geometric principles to further enhance efficiency. These innovations

underscore the ongoing importance of solving the ASP to maintain safety, minimize delays, and

optimize airport operations in increasingly congested airspace.
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Addressing ASP has changed significantly in recent years as a result of increasing access to aero-

nautical data and rapid advances in machine learning (ML). Researchers have successfully applied

diverse ML techniques to predict Estimated Time of Arrival (ETA) and arrival transit times with un-

precedented accuracy. These advanced prediction models have not only enhanced our understand-

ing of arrival patterns and potential delays but have also opened up new avenues for optimization.

However, a significant gap remains in the field: while ETA prediction has seen substantial progress,

the integration of these ML-driven predictions into optimization algorithms for ASP has been rel-

atively unexplored, particularly in terms of optimization performance. Traditional two-stage ap-

proaches focus on minimizing prediction errors of certain parameters, typically using metrics such

as Mean Square Error (MSE) (
1

2
||c − ĉ||2

2
) or Mean Absolute Error (MAE) (||c − ĉ||1). After hyper-

parameter tuning and a training-validation procedure, the predicted parameter (c∗) is passed to a

downstream optimization model. While these approaches have yielded valuable insights, they face

significant limitations: 1. the emphasis on prediction error metrics fails to capture the quality of re-

sulting decisions; 2. the disconnect between prediction and optimization stages can lead to feasibility

issues.

This study aims to address these limitations by applying the smart predict-then-optimize (SPO)

framework to the ASP within TMA. This approach is particularly relevant for the ASP because, even

with fixed Standard Terminal Arrival Routes (STARs) and observable weather conditions, aircraft ar-

rival transit times within TMAs can vary significantly due to unexpected factors that may influence

decision errors during the landing process. Our work pioneers the application of the gradient-based

SPO framework in the air transportation domain. Furthermore, we apply this framework to address

a critical challenge in ASP: the incorporation of adverse weather conditions consideration.

The structure of this paper is as follow: Section 2 constructs a literature review for related works, and

Section 3 introduces our methodologies. In Section 4, we briefly introduce our case study at London

Gatwick airport and the setup of our experiment. Section 5 presents the results and discussion while

Section 6 concludes this work.

2. Literature Review

Arrival scheduling is a critical factor in ensuring efficient operations within terminal maneuvering

areas (TMAs). A central challenge involves assigning landing times to aircraft while adhering to sep-

aration criteria between successive arrivals. Prior studies frame this as an aircraft landing scheduling

problem (ASP), where each aircraft must land within a predetermined time window bounded by an

earliest and latest time [4]. These temporal constraints reflect operational realities:

• The earliest landing time represents the soonest achievable arrival under ideal conditions (e.g.,

maximum permissible speed, direct routing), while

• The latest landing time accounts for delay absorption capabilities via speed adjustments, path

stretching, or holding patterns, constrained by fuel limits and airspace procedures.

This time window ensures efficient airspace utilization while accommodating uncertainties such as

weather or traffic conflicts. Solutions aim to minimize deviations from target times and maintain

safe separation, often derived from wake vortex categories or air traffic control (ATC) regulations.

While early ASP formulations focused on single-runway allocation [4], extensions to multi-runway

systems have become increasingly relevant for high-density airports. There are different approaches

to solve this problem in the literature. Some studies focused on exact algorithms and optimization

models [4, 5] while some others utilized heuristic and meta-heuristic algorithms to take advantage

of reducing solving period [6, 7, 8, 9]. One study was focused on forming an heuristic algorithm to

increase scheduling efficiency of arrival aircraft at London Heathrow. The algorithm showed that it
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could have the potential to increase the efficiency of the decisions made by air traffic controllers [6].

In order to reduce the workload of air traffic controllers and congestion in airports, a metaheuristic

algorithm was applied to a good initial solution to take advantage of its short computing time and

the study was carried out in two Italian airports [7]. The use of an Ant Colony algorithm was

investigated to focus on the aircraft scheduling problem. The algorithm was based on wake vortex

modeling and findings are compared to some methods. This study showed that the algorithm based

on wake vortex modeling revealed better results than models such as CPLEX, general ant colony

algorithms, and approximation algorithm[8]. A data splitting algorithmwas used to solve the aircraft

sequencing problem. Themodel, 0-1mixed integer programming, was employedwithmany different

realistic constraints. The algorithm had small run times enabling a real-time deployment of the

concept[9]. For more details concerning the aircraft scheduling problem, we refer two review studies

on this topic [10, 11].

In recent years, the landscape of arrival management research has been transformed by the in-

creasing availability of aviation data, leading to a surge in ML-based approaches for arrival time

prediction. The effort that has been spent on predicting arrivals flight time and its contribution to

different ATM solutions are important to have more predictable, efficient and greener operations in

TMAs [12]. ML has an important role on reaching the goals contributing to providing better air traf-

fic management. In the existing literature, there are different application of its algorithms focusing

on Estimated Time of Arrival (ETA) / arrival flight time [13, 14, 15, 16, 17, 18, 19].

Quantile Regression Forests [13], a tree-based ensemble method, was employed for estimation of

landing times. A total of 4011 cases were separated 67% and 33% for training and testing respectively.

As stated in the research, the model was suitable to predict landing times in real-time applications.

Random Forest (RF) [14], a well-known tree-based method, was utilized to improve prediction on

ETA. In the application, feature generation and selectionwas one of themain focus points. As a result

of this study, they showed that 78% of total instances have better accuracy within the ML algorithm

against Enhanced Traffic Management System in US. Some regression models (Linear, Non-linear

and Ensemble) and Recurrent Neural Network [15] were tested to perform prediction of ETA for

commercial flights by comparing their model results with EUROCONTROL ETA predictions. One

of the main outlines of this study was higher accuracy with smaller standard deviation which made

smaller prediction windows of ETA possible. Spatiotemporal Neural Network Model for ETA [17]

was proposed with three main stages that were trajectory pattern recognition, trajectory prediction

and arrival time prediction. At the conclusion of their research, one of the findings was that the

MAE was typically lower with shorter travel times to the destination. A deep learning approach

based on Long-Short Term Memory [18] was used to predict ETA by utilizing 4D trajectory of the

aircraft and weather data. In addition to the model’s result, this research came to the front with its

application airport, Madrid Barajas-Adolfo Suárez (Spain). The performed model was superior to

RF, Gradient Boosting Machines (GBM) and Adaptive Boosting that were selected as baseline in the

study. Ridge Regression (RR) and GBM [16] were selected to predict runway and gate arrival time of

flights, based on historical, weather, air traffic control and given data during the data science contest

named as GE Flight Quest.

Despite these significant advances in both optimization and prediction domains, several gaps remain

in the current literature. Because most researchers handle these problems separately, there exists a

disconnect between arrival time prediction and scheduling optimization. While both areas have seen

remarkable progress independently, the potential benefits of integrating prediction capabilities into

optimization frameworks remain largely unexplored. Few studies have explored this area, but they

mostly used the predicted values directly for the downstream optimization [20, 21]. The relation-

ship between prediction accuracy and operational efficiency improvements needs more thorough

investigation. Traditional methods also often fail to capture the dynamic nature of the airport envi-
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ronment, where predictions and scheduling decisions need to be made and updated continuously in

response to changing conditions.

Recent developments in computational frameworks offer promising directions for addressing these

limitations. SPO framework [22] provide a structured approach to integrating prediction and opti-

mization, potentially offering a more coherent solution to the arrival scheduling problem. Similarly,

learning-to-optimize techniques [23], which directly learn optimization strategies from data, may

offer more robust solutions than traditional two-stage approaches. However, while these frame-

works show theoretical promise, their practical application in aviation context remains limited. Key

challenges include adapting these frameworks to handle the specific constraints and objectives of

airport operations and validating their performance under real-world conditions and operational

constraints. Given these challenges and opportunities in the existing literature, this research pro-

poses the SPO framework for ASP inside the TMAs. The following section details our proposed

approach and its implementation.

3. Methodologies

Fig. 1 presents the general schematic diagram of our proposed method. Starting from the raw flight

data, we generate an input datasetD through a series of data preprocessing, including data trimming,

cleaning, and re-alignment. D consists of K independent traffic instances with the same number of

flights, where each instance is represented as a pair (x, c). For each instance, the input features x are

structured as a vector containsm×nt features, wherem represents the number of input features for

each flight, nt represents the number of flights in each traffic instance. The corresponding output

costs c are represented as a vector of length nt , where each element represents the cost associated

with each flight in the traffic instance. Therefore, the input dataset can be denoted as {(xk , ck)}k=1,...,K .

Raw flight 
data

Data 
preprocessing

...
...

... ...

...

... ...

...

K indenpendent 
traffic instances

N flights

x

Input 
layer

Hidden 
layer

...

Output 
layer

Prediction model 

... Decision 
lossOptimization solver

End-to-end smart predict then optimize framework

Figure 1. The schematic diagram of end-to-end smart predict-then-optimize framework for aircraft arrival scheduling prob-
lem

Based on the dataset D, we can implement the SPO framework [24]. Considering ASP as an inte-

ger programming problem, we have several key elements: a feasible region S, an optimal objective

value z∗(c) corresponding to objective coefficients c, and an optimal solution w∗(c). Such optimiza-

tion model will be embedded into a differentiable prediction model g(x|θ), such as neural networks,

through the decision loss L(·).

The core function of this framework is the gradient computation and the parameter updates through

the backpropagation. For each training instance, the gradient
∂L
∂θ is computed by applying the chain

rule.
∂L
∂θ =

∂L
∂w∗

∂w∗
∂ĉ

∂ĉ
∂θ . Here,

∂L
∂w∗ measures how the decision loss changes with respect to the opti-

mal solution,
∂w∗
∂ĉ captures the sensitivity of the optimal solution to changes in the objective coeffi-

cients, and
∂ĉ
∂θ represents how the predicted coefficients vary with the model parameters. Through
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this gradient chain, the framework enables end-to-end training where the optimization outcomes

directly influence the prediction model’s parameter updates.

3.1 Aircraft arrival scheduling problem formulation

In this work, we formulate the ASP as a simple Mixed Integer Programming (MIP) model based on

the classical single runway aircraft landing problem proposed by [4]. We assume:

- A = {1, . . . , n}: Set of aircraft, where n is the total number of aircraft

- i, j ∈ A: Aircraft indices

- Ti: The target (expected) landing time for aircraft i

- Ei: The earliest landing time for aircraft i

- Li: The latest landing time for aircraft i

- si,j : The required separation time between i & j, where i lands before j

- ci: Delay costs for aircraft i landing after the expected time Ti

- M: A large constant

-
ˆTi: The predicted transit time for aircraft i

The decision variables in our models are:

• yi: Actual landing time of aircraft i

• ωi: Binary variable indicating if aircraft i lands after its expected time

ωi =

{
1 if yi > Ti
0 otherwise

• δi,j : Binary variable for aircraft arrival scheduling

δi,j =

{
1 if aircraft i lands before aircraft j
0 otherwise

The objective of this model is to minimize the sum of costs for all delayed aircraft, where:

min

∑︁
i∈A

ciωi

The model formulation is listed as follows:

s.t.

Ei ≤ yi ≤ Li ∀i ∈ A (1)

yi − Ti ≤ M ·ωi ∀i ∈ A (2)

yi − Ti ≥ −M · (1 −ωi) ∀i ∈ A (3)

δi,j + δj,i = 1 ∀i, j ∈ A, i ≠ j (4)

yj − yi ≥ si,j −M · δj,i ∀i, j ∈ A, i ≠ j (5)

yi ∈ R ∀i ∈ A (6)

ωi ∈ {0, 1} ∀i ∈ A (7)

δi,j ∈ {0, 1} ∀i, j ∈ A, i ≠ j (8)
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Our ASP seeks to minimize delay-related costs. At its core, the mathematical formulation employs

a simple objective function that sums the costs across all delayed aircraft. Three decision variables

drive the model: continuous variables yi for landing times, binary indicators ωi for delays, and or-

dering variables δi,j that establish the sequence of operations between aircraft pairs. These variables

work in concert to capture all necessary scheduling decisions.

Constraint (1) ensures that each aircraft i must be scheduled within its feasible time window [Ei, Li].
Constraint (2) and (3) define whether an aircraft is delayed using the big-M method. If the actual

arrival time yi exceeds the expected time Ti, the aircraft is considered delayed (ωi = 1). The con-

straints work in pairs to force ωi to take the appropriate binary value. Constraint (4) refers to the

ordering constraint, in which any pair of aircraft (i, j), either i must precede j or j must precede i.
Constraint (5) works in conjunction with the ordering constraint (4) to ensure proper separation

between any pair of aircraft:

1. When aircraft i lands before j (δi,j = 1, δj,i = 0):

• The constraint becomes: yj − yi ≥ si,j , this enforces the minimum separation time si,j between
landings.

2. When aircraft j lands before i (δi,j = 0, δj,i = 1):

• The constraint becomes: yj − yi ≥ si,j −M , the large M term makes this constraint non-binding.

• Meanwhile, the complementary constraint yi − yj ≥ sj,i −M · δi,j becomes active.

• This enforces the minimum separation time sj,i between landings.

Thus, the pair of constraints ensures proper separation regardless of landing order, with si,j applied
when i precedes j and sj,i applied when j precedes i. The rests are domain constraints for the decision

variables.

The conventional delayed cost definition is ci = c∗i · ( ˆTi − Ti), where c∗i denotes the unit time delayed

cost for each aircraft type [25], (
ˆTi − Ti) refers to the delayed time. For our optimization framework,

we can simplify this cost representation due to two key observations. First, the expected arrival

time Ti is known before the prediction task begins. Second, the unit delay cost c∗i , which varies by

aircraft type and is typically derived from extensive operational cost studies, is also predetermined.

Given these fixed parameters, the delay cost ci maintains a direct proportional relationship with the

predicted arrival time
ˆTi. This proportional relationship enables us to streamline our cost represen-

tation by using
ˆTi directly as our cost metric (ci ≈ ˆTi). While this simplification might appear to lose

some granularity, it preserves the essential mathematical properties needed for optimization while

reducing computational complexity.

3.2 Costs prediction via traffic instances

Traditional approaches to ETA prediction focus on individual flight independently. For each flight

i, m input features–comprising pre-terminal flight data, meteorological conditions, and historical

patterns–to forecast the estimated flight duration
ˆTi for each flight. When integrating ML with the

optimization framework, we need to reconceptualize the prediction task to align with the objective.

In SPO framework, the ML model iteratively attempts to minimize the decision loss—a task that

requires optimization for multiple aircraft than individual. To address this issue, we propose traffic
instances, which refers to a certain air traffic scenario that contains the same amount of flights that

needs to be resolved. Instead of mappingm features to a single flight duration, we predict flight times

for an entire traffic instance simultaneously. Each traffic instance contains nt flights, transforming

our input dimension to nt ×m features and generating outputs that directly correspond to the costs

(nt features) for decision loss computation.

https://orcid.org/0000-0002-7340-0828
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Algorithm 1 Non-Overlapping Traffic Instance Generation

Require:
1: Flight sequence F = {f1, ..., fm} ordered by entry time
2: Instance size N
3: Maximum time interval ∆Tmax

Ensure:
4: Set of non-overlapping instances I where:
5: 1. Each instance contains exactly N flights
6: 2. All flights in an instance occur within ∆Tmax
7: 3. No two instances share any flights
8: function GENERATEINSTANCES(F ,N ,∆Tmax )
9: I ← ∅ ⊲ Initialize empty instance set

10: i← 0 ⊲ Start at first flight
11: while i + N ≤ |F | do
12: G ← {fi , ..., fi+N−1} ⊲ Next candidate group
13: ∆T ← fi+N−1.time − fi .time
14: if ∆T ≤ ∆Tmax then
15: I ← I ∪ {G} ⊲ Commit valid instance
16: i← i + N ⊲ Key: Jump ahead by N flights
17: else
18: i← i + 1 ⊲ Reject group, check next flight
19: end if
20: end while

return I
21: end function

Algorithm 1 constructs strictly non-overlapping traffic instances from temporally ordered flights

using a hybrid windowing strategy. For each candidate group ofN consecutive flights, the algorithm

commits it as a valid instance only if its temporal span satisfies ∆T ≤ ∆Tmax , then advances the

window by N flights to prevent overlap. If rejected (i.e., ∆T > ∆Tmax ), the window slides forward by

1 flight to explore alternative groupings while preserving temporal density. This ensures: 1)mutual
exclusivity between instances (no shared flights), 2) temporal coherence (all flights within∆max ),

and 3) leakage prevention through day-stratified splitting, where all instances from a calendar day

reside exclusively in either the training or test set.

Based on the traffic instances, we can perform prediction task via ML. The prediction model in this

framework has to be differentiable, we here proposed two simple model as our baseline, including

Linear Regression (LR: f (x) = Wx + b) and Multi-Layer Perceptron (MLP):

f (x) = f2(ReLU(f1(x)))
where:

f1(x) = W1x + b1 (first layer)
f2(x) = W2x + b2 (second layer)

ReLU(x) = max(0, x) (activation function)

As mentioned in Section 3.1, the output is the predicted transit times
ˆTi for each traffic instances.

For the input x, we refer to the common features in previous ETA prediction studies [12, 26, 27],

including initial position (latitude, longitude, altitude) and operation (heading, speed, descent rate)

state for individual aircrafts enter the terminal area.
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3.3 Decision loss

The decision loss in our framework is based on the SPO loss introduced by [22]. This loss measures

how well our predicted costs lead to optimal decisions compared to decisions made with true costs.

The rigorous unambiguous SPO loss is defined as:

LSPO(ĉ, c) = max

ω∈W ∗(ĉ)
(cTω) − z∗(c) (9)

where:

• W ∗(ĉ) is the set of optimal solutions using predicted costs ĉ

• z∗(c) is the optimal objective value using true costs c

• The max operator accounts for multiple optimal solutions that could arise from ĉ

However, numerical studies in [24] demonstrate that this rigorous form yields similar results to a

simplified version known as “regret”:

LSPO(ĉ, c) = cTω∗(ĉ) − z∗(c) (10)

where:

• ω∗(ĉ) is an optimal solution obtained using predicted costs ĉ

This measures the gap between the true cost of decisions made by predicted costs cTω∗(ĉ), and
the best possible cost achievable with true costs z∗(c). While we use this regret formulation for

evaluation purposes, it isn’t directly suitable for training due to its computational intractability. In

the following section, we introduce the tractable version of SPO functions that enable gradient-based

training while maintaining the spirit of optimizing decision loss.

3.3.1 Smart predict-then-optimize plus (SPO+)

Since the SPO is intractable, Elmachtoub and Grigas [22] derived a surrogate convex upper bound

for SPO called SPO+:

LSPO+(ĉ, c) = max

ω∈S
(cTω − 2ĉTω) + 2ĉTω∗(c) − z∗(c) (11)

The computation of SPO+ involves solving a modified optimization problem with costs (2ĉ − c) in
the forward pass, where the loss is computed with appropriate sign adjustments for maximization

problems [24]. The backward pass then enables end-to-end training by computing gradients based

on the difference between true and predicted optimal solutions, scaled by 2 and adjusted for the

optimization sense (minimization or maximization).

4. Case study at London Gatwick Airport

In this paper, we construct our study in London Gatwick Airport. London Gatwick Airport (ICAO:

EGKK) serves as a major international aviation hub in the United Kingdom. Operating with a single

runway system—unique among airports of its size and traffic volume—Gatwick stands as London’s

second-busiest airport and the second-largest single-runway airport globally, located approximately

29.5 miles south of Central London. In 2024 until October, it already handled 203,439 traffic including

both arrivals and departures
1
.

1
https://ansperformance.eu/dashboard/stakeholder/airport/db/EGKK.html
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4.1 Data description

47,452 of arrival flights (ADS-B data) at EGKK from June 2024 to September 2024 obtained from

OpenSky Network [28] are used in this study. For the local weather information, we refer to the

Meteorological Terminal Aviation Routine Weather Report (METAR) of EGKK in 2024
2
. METAR is

a weather report which contains the information for an area enclosed within a 16 km radius around

the airport. Raw METAR data offers a series of weather information, such as wind, temperature,

visibility, moisture, etc. Based on the raw METAR data, we apply the air traffic management airport

performance (ATMAP) weather algorithm [29, 30] to extract the certain scores for each weather

component, including wind, visibility, precipitation, freeze condition, and dangerous phenomenon.
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(b) Weather score distribution of EGKK in 2024 (until October)

Figure 2. Flight trajectories and local weather visualization of EGKK

Fig. 2a illustrates 10,000 sample flights in the scope of our study, capturing the terminal maneuvering

area where arriving aircraft perform final approach sequences. The flight trajectories used in this

study align with Gatwick Airport’s approach procedures. Fig. 2b presents the weather score distri-

bution of EGKK in 2024. As the figure illustrates, wind components are the most significant weather

events in EGKK, consistently showing the highest scores throughout the observed period. The wind

scores frequently reach values 2.5 on the weather score scale. Precipitation issues also contribute to

the overall weather conditions but to a lesser extent. Freeze conditions are more frequent in winter

period but less important during summer season. Visibility appears to be relatively minimal, show-

ing lower scores and frequency compared to other weather components. Dangerous phenomena are

occasionally recorded but remain relatively rare events in the dataset.

4.2 Experiment setup

Table 1 summarizes the key parameters and configurations of our experimental setup. The study

encompasses 2,404 traffic instances from 47,452 arrivals, with each instance involving 15 aircraft

within a 45-minute time interval. The area of interest is confined to a 50 Nautical mile radius around

EGKK, providing comprehensive coverage of the TMA.

As mentioned in Section 3.2, we implement two ML approaches for our analysis: LR and MLP. For

the ASP, the model parameters need to be pre-set and static during the training process, we select

typical scenarios from the instances to define the parameters, characterized by maximum weather

parameters including wind (Windmax ), precipitation (Precipitationmax ), visibility (Visibilitymax ), and

dangerous phenomena (DangerousPhenomenonmax ), along with minimum time interval (Timemin).

Since the scope of our data is from June to September 2024, we do not consider freeze condition in

this work. The typical scenario will affect the parameter setting of the optimization model, where

2
https://www.ogimet.com/metars.phtml.en

https://www.ogimet.com/metars.phtml.en
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Table 1. The key setup for the experiment

Period June - September 2024
Number of aircraft 47,452

Number of traffic instances 2,404
Number of aircraft per instances 15

Maximum time interval per instance 45 minutes
Area of interest 50 Nautical miles around EGKK

Machine learning models {Linear regression; Multi-layer perceptron}
Typical scenarios {Windmax , Precipitationmax , Visibilitymax , DangerousPhenomenonmax , Timemin}

Input features {Latitude, longitude, velocity, heading angle, vertical rate} at entry state
Output feature Transit time
Loss function SPO+, Mean Square Error (Two-stage approach)

Ti will be the expected relative transit time to the first entry aircraft within that instance, Ei =

Ti − 60 and Li = Ti + 1800 refers to an open-source ASP benchmark [9, 11]
3
. While this benchmark

simplifies aircraft-specific performance, (e.g., it does not dynamically model BADA parameters), it

provides a tractable framework for scheduling algorithms. The required separation time si,j is derived
from wake turbulence categories (WTC). Aircraft type codes are mapped to WTC classifications

(Light, Medium, Heavy, Jumbo) using the Aircraft Database provided by OpenSky Network [28]. The
required separation time is then determined based on the WTC of the preceding and succeeding

aircraft
4
.

The input feature space comprises five key aircraft parameters at the entry state: latitude, longitude,

velocity, heading angle, and vertical rate. These parameters capture the essential initial conditions

of each aircraft’s trajectory. The models are trained to predict the transit time as the output feature.

For model optimization, we employ two distinct loss functions: SPO+, and Mean Square Error (MSE)

in a two-stage approach. The ratio between training sets and test sets are 8 : 2. The batch size is 32

and number of epochs is 20.

5. Results and Discussion

In this section, we will present the results and corresponding discussions. First, Fig. 3 illustrates the

learning curves for both loss functions on the training sets using normalized loss values. The SPO+

and two-stage approaches exhibit distinctly different convergence behaviors during training. The

SPO+ loss curves show rapid initial decrease and stabilize at very low normalized loss values (below

0.1) across all scenarios by around iteration 250. This consistent convergence pattern appears similar

for both Linear Regression and MLP implementations.

The two-stage approach, however, demonstrates markedly different behavior. While the Linear Re-

gression variants show quick initial convergence, MLP implementations maintain relatively high

normalized loss values (fluctuating between 0.2 and 0.6) throughout training. The learning curves

show considerable oscillation, particularly for the maximum danger scenario, suggesting potential

stability issues in the optimization process.

This performance discrepancy suggests that for subsequent analyses, focus should be directed to-

ward three specific configurations: LR + Two-Stage, MLP + SPO+, and LR + SPO+. The MLP +

3
http://data.recherche.enac.fr/ikli-alp/

4
https://knowledgebase.vatsim-germany.org/books/separation/page/wake-turbulence-separation
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http://data.recherche.enac.fr/ikli-alp/
https://knowledgebase.vatsim-germany.org/books/separation/page/wake-turbulence-separation
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Figure 3. The learning curves for two-stage approach and SPO+ on training sets

Two-Stage configuration can be reasonably excluded from further investigation due to its demon-

strated inferior convergence properties.

Following the first analysis on learning curves, Fig. 4 presents the normalized regret distribution dur-

ing training process for test sets. Our experimental results demonstrate the effectiveness of end-to-

end decision-focused learning approaches, particularly when combined with more expressive model

architectures. The MLP + SPO+ implementation consistently achieves superior performance across

most typical scenarios, exhibiting lower normalized regret compared to both LR + SPO+ and LR +

Two-Stage approaches.

To rigorously assess the performance differences between approaches, we employed the Mann-

Whitney U test, a non-parametric statistical test that evaluates whether two independent samples

come from the same distribution. This test is particularly appropriate for our analysis as it makes

no assumptions about the normality of the data and is well-suited for comparing the regret distri-

butions. A lower U -statistic indicates greater separation between the distributions.

Statistical analysis reveals particularly significant differences in the maximum wind scenario, where

MLP + SPO+ significantly outperforms the two-stage approach (U = 130.0, p = 0.024). This ad-

vantage is also suggested, though not statistically significant at the α = 0.05 level, in the maximum

dangerous phenomenon scenario (U = 147.0, p = 0.066). These findings support the hypothesis that

the ability to capture non-linear relationships proves beneficial in complex scenarios.
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Figure 4. Normalized regret distributions across test sets for different scenarios.

Interestingly, while SPO+ generally shows favorable performance, the statistical tests reveal no sig-
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nificant differences between LR + SPO+ and LR + Two-Stage across most scenarios (all p > 0.05), with

particularly similar performance in maximum precipitation (U = 208.0, p = 0.763) and maximum

visibility (U = 250.5, p = 0.458) scenarios. We further conducted additional Mann-Whitney U tests

on the union of all data subsets (combining all weather scenarios). These aggregated results confirm

no statistically significant differences between any of the methods, SPO+ (MLP) vs Two-Stage (LR):

U = 5248.0, p = 0.549. This comprehensive analysis across all weather conditions further nuances

our understanding of the relative performance of these approaches, suggesting that the advantages

of SPO+ might be more subtle than initially apparent in certain contexts.

The variation in performance across different architectures and optimization frameworks provides

valuable insights for practical implementations. The notable success ofMLP + SPO+ not only demon-

strates the advantage of end-to-end SPO learning but also highlights the importance of model ex-

pressiveness in capturing complex weather-related patterns. These findings suggest that while SPO+

generally provides stronger performance, the choice of underlying model architecture significantly

influences the overall effectiveness of the optimization framework.
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Figure 5. The mean cost comparison between FCFS, optimized true cost, and optimized predicted cost on test sets

The next analysis compares the optimized costs of SPO+ and two-stage approaches based on the

trained ML models. We input the features of test sets to predict the costs and use these predic-

tions to optimize each instance via the ASP in the test sets (Fig. 5). With a cost of 2,412.4 when

optimizing using true landing times—representing the minimum achievable average cost under the

specific scheduling constraints we defined—both MLP+SPO+ and LR+Two-Stage methods signifi-

cantly outperform the FCFS baseline of 9,071.1. Interestingly, the MLP+SPO+ shows particularly

strong performance in scenarios optimized for minimum time interval, achieving a mean cost of

1,364.3 compared to Two-Stage’s 2,673.4. This outperformance relative to the "optimal true cost"

does not indicate a violation of optimization principles, but rather highlights a key insight: opti-

mization using true landing times isn’t necessarily optimal for the complete operational context.

The SPO+ approach can discover solutions that account for broader operational dynamics and un-

certainty patterns that aren’t captured when directly optimizing with true landing times. The most

significant insight emerges from examining performance across different weather conditions: while

the Two-Stage approach maintains relatively uniform costs across all scenarios, the SPO+ method

demonstrates sophisticated adaptation to weather conditions, strategically accepting higher transit

times under challenging conditions while finding better overall solutions.

https://orcid.org/0000-0002-7340-0828
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Thisweather-responsive behavior ofMLP+SPO+ represents a crucial advancement in arrival schedul-

ing optimization. The systematically higher costs observed under extreme weather scenarios (rang-

ing from 2,615.9 to 3,961.9) indicate that the model effectively incorporates weather-related risks into

its decision-making process, making more conservative prediction when conditions are adverse. In

contrast, the Two-Stage approach’s more uniform cost distribution suggests a limitation in capturing

the complex interplay between weather conditions and optimal routing decisions. These findings

indicate that while SPO+ might occasionally suggest higher transit times compared to the optimal

true cost, these decisions reflect a trade-off between speed and safety, demonstrating the method’s

capability to make more nuanced, context-aware aircraft arrival scheduling decisions.

In addition to algorithmic analysis, we perform a delay assignment analysis to evaluate the fairness

consideration in this model. We use the transit time difference for each aircraft and the number of

shifting for maximum precipitation scenario. This scenario is selected because it has the largest total

cost for MLP+SPO+. comparing between MLP+SPO+ and optimization using true cost.

Table 2. Transit time difference and number of position shifting for maximum precipitation scenario.

Transit time difference No.position shifting per instance
Mean [s] Standard deviation [s] Max [s] Mean

Optimization with true cost 43.62 236.69 703.54 17
MLP+SPO+ 18.60 181.67 572.10 13

Table 2 reveals that MLP+SPO+ demonstrates improved fairness compared to optimization with

true cost, as evidenced by lower mean transit time differences (18.60s vs. 43.62s), reduced standard

deviation (181.67s vs. 236.69s), and fewer position shifts per instance (13 vs. 17) in the maximum

precipitation scenario. Consider we have 15 aircraft per instance, MLP+SPO+ can achieve average

less than 1 position shifting for each aircraft. However, since neither MLP+SPO+ nor the baseline

explicitly incorporates fairness parameters, both methods exhibit high variability in transit time dif-

ferences, reflected in the large standard deviations. This suggests that while MLP+SPO+ achieves

better fairness outcomes implicitly through its learning framework, the absence of fairness-aware

optimization leads to inconsistent treatment of individual aircraft. The results highlight the poten-

tial for further improvements by integrating fairness constraints directly into the model to reduce

disparity and stabilize outcomes.

6. Conclusion

This paper presents an application of the SPO framework to the Aircraft Arrival Scheduling Problem

within Terminal Maneuvering Area. We developed an end-to-end learning approach that integrates

arrival flight time prediction with scheduling optimization, specifically focusing on London Gatwick

Airport operations. Our methodology introduces the concept of traffic instances for simultaneous

prediction of multiple aircraft arrival times, coupled with a Mixed Integer Programming model for

optimal aircraft arrival scheduling decisions.

The experimental results demonstrate several key findings. First, the MLP+SPO+ implementation

consistently outperforms traditional two-stage approaches across most scenarios, particularly with

complex weather conditions. The framework shows sophisticated adaptation to varying weather

conditions, strategically accepting higher transit times under adverse conditions while maintaining

operational efficiency. When the minimum time interval is required, the MLP+SPO+ will suggest

around 43.4% lower costs compared with the true cost. Second, our analysis reveals that while sim-

pler LR models with two-stage optimization can sometimes match SPO+ performance in specific

scenarios (particularly low visibility conditions), the end-to-end approach generally provides more



14 Go Nam Lui et al.

robust and adaptable solutions.

A critical consideration for practical implementation is balancing operational efficiency with ATC

manageability and fairness to airlines. FCFS scheduling is conventionally favored for its simplic-

ity and perceived fairness. Our proposed framework demonstrates that optimized sequences can

achieve significant cost reductions without inherently compromising these priorities. Compared

with benchmark optimization, MLP+SPO+ demonstrates enhanced fairness.

However, our study identifies important limitations and areas for refinement. Methodologically, our

focus on isolating the SPO+ loss function’s impact led us tomaintain consistency by using unnormal-

ized inputs and Gradient Descent (GD) optimization across the compared methods (e.g., LR+SPO+

vs. LR+2S). While this consistency aids in evaluating the relative benefit of the SPO+ loss, it presents

trade-offs. Using unnormalized inputs might not yield the absolute peak performance, particularly

for MLP architectures known to benefit from normalization, although our results still confirmed the

SPO+ advantage. Similarly, while GD (or other gradient-basedmethods) is inherent to optimizing the

SPO+ loss, applying it to the LR+2S baseline (instead of standard OLS) ensures optimizer consistency

for comparison but deviates from typical standalone LR practices. Furthermore, as our experiments

suggested, optimal training, particularly concerning input normalization, appears sensitive to hy-

perparameter calibration, especially for LR models under GD where we encountered convergence

challenges with normalization in our initial trials. Beyond these methodological considerations,

a significant constraint remains the current SPO framework’s reliance on fixed optimization model

structures (beyond objective costs), limiting adaptability to scenarios with varying constraints. Com-

putational efficiency for larger instances and the lack of explicit fairness mechanisms, potentially

leading to higher variation in delay assignment, are also key concerns.

Looking ahead, several promising research directions emerge. Extending the SPO framework itself,

perhaps incorporating dynamic MIP parameter updates [31] and regret computations, is a key av-

enue. This could involve exploring diverse neural network architectures for traffic instance cost

prediction. Crucially, a systematic investigation into the interplay between input normalization

techniques, hyperparameter tuning, andmodel performance (both SPO+ and baselines) is warranted.

This includes exploring individually optimized configurations, potentially usingOLS for LR+2S base-

lines when comparing absolute achievable performance rather than isolating loss function effects.

Improving computational efficiency, possibly through optimization problem relaxations, remains vi-

tal. The framework’s principles could also be extended to related scheduling or routing problems [32,

33], and transfer learning could enhance applicability across different airports. Lastly, systematically

addressing fairness is essential. Future work should explicitly incorporate airline equitymetrics (e.g.,

delay distribution thresholds) as constraints or weighted objectives in the optimization model, better

aligning the framework with real-world ATC priorities while preserving its efficiency advantages.

These findings and identified future directions contribute to the growing body of research on ML

applications in air traffic management, particularly in the critical area of arrival scheduling opti-

mization. The demonstration of end-to-end SPO learning approaches suggests potential for further

development and practical implementation in real-world airport operations.
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