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Abstract

This paper addresses the issue of noisy, uncertain and quantized data in crowdsourced ADS-B and Mode S
data and explores propositions of implementations of preprocessing techniques to address them. After a
description of ADS-B data focused on sources of noise and uncertainty, we present in detail a selection
of filters that have been implemented in the traffic library, and widely used in the constitution of open
datasets used in further research. We also illustrate the results of the filtering with trajectory data collected
by The OpenSky Network and by inexpensive RTL-SDR receivers.
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1. Introduction

The increasing coverage of crowdsourced open aircraft trajectory data has brought Automatic De-
pendent Surveillance-Broadcast (ADS-B) data to the forefront as a primary source of open data for
aviation research. This data is extensively used in various research applications, including the ex-
traction of operational milestones [1, 2], the optimization of operations [3], or various safety [4, 5],

security, or environmental [6, 7, 8] concerns.

Standard avionics systems often use data fusion techniques to combine information from multiple
sensors, such as Global Navigation Satellite System (GNSS, very accurate but subject to signal multi-
path, atmospheric conditions), Inertial Navigation Systems (mostly accelerometers and gyroscopes),
barometric altimeters and Pitot systems, to provide a more accurate and robust estimate of the air-
craft’s state. This fused data is then used to generate the ADS-B messages broadcast to ground
stations and other aircraft.

From a data analyst perspective, all sources of trajectory data, such as radar data, quick access
recorder (QAR) data, and ADS-B, are subject to noise (from measurement or transmission), un-
certainty (which can be estimated) and quantization. ADS-B, in particular, is known for its error
corrections, including cyclic redundancy checks (CRC), and for broadcasting uncertainty information
together with the positional and velocity estimates.

Moreover, aggregating several sources of information for similar signals (such as barometric and ge-
ometric altitude), and collecting it from a network of crowdsourced receivers of various quality (due
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to the quality of the antenna, the location of the receivers and the implementation of the demod-
ulation process) also introduces potential errors in the data. One or more receivers can introduce
corrupted messages to the network, and the timestamping of messages (at the receiver’s location)
can be a source of more errors in the data.

Errors, uncertainty, and noise present a significant challenge for further research in aviation data
processing: the need for filtered and clean data. Without proper filtering, erroneous data can lead to
inaccurate conclusions and unreliable research outcomes, esp. when looking at interactions between
aircraft (e.g., aircraft deconfliction, collision risk modelling) or estimations of further quantities (e.g.,
fuel flow and other pollutants).

To address these challenges, two main categories of filters are typically employed. The first cate-
gory focuses on the detection and exclusion of corrupted or irrelevant data, utilizing mostly outlier
detection methods [9]. The second category aims to mitigate quantization effects and leverage the

measurements in uncertainty, often employing Kalman-based filters [10, 11] to fill in data gaps after
resampling and smoothing the data.

The remaining of the paper is structured as follows. In Section 2, we present the types of information
collected by The OpenSky Network, including ADS-B and other relevant Mode S messages, and
highlight the potential sources of noisy information. In Section 3, we detail various methods to filter
data, particularly positional information, noisy signals, and quantized information. Section 4 refers
to the associated implementations within the traffic library [12].

2. Sources of data and errors

Data demodulated from the 1090 MHz frequency and decoded arrives in various downlink formats,
which are detailed comprehensively in [13]. Among these formats, the most relevant for typical
applications are the following:

« DF 4: Surveillance Altitude Reply;
« DF 5: Surveillance Identity Reply;

« DF 17: Extended Squitter (ADS-B);
« DF 20: Comm-B Altitude Reply;

« DF21: Comm-B Identity Reply.

Of these, only ADS-B (DF 17) includes a cyclic redundancy check (CRC) to verify the integrity of the
binary message. In the other downlink formats, the CRC instead returns the ICAO 24-bit address of
the aircraft’s transponder. Even with CRC checked message, it is always difficult to guarantee that a
received message has not been corrupted. Messages collected by many receivers in a crowdsourced
network have a higher chance of being valid.

2.1 Incorrect time information

Mode S messages do not include any timestamp information. Instead, timestamps are typically ap-
pended by the receiver based on the time of message reception, rather than the time of transmission
from the aircraft. This approach usually presents no major issues when the data comes from a single
receiver. However, challenges arise when using data from a crowdsourced service.

Some receivers are equipped with GPS clocks, which accurately timestamp messages, making them
suitable for multilateration purposes. However, other feeders may incorrectly timestamp their mes-
sages due to clock drift, relying on inaccurate system clocks or cheap RTL-SDR receivers which are
prone to affine drift. Additionally, network latency can introduce further errors in the reception
time. As a result, properly timestamping received messages poses a significant challenge.
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Figure 1. Altitude measurements in this part of the flight suggest that one of the receivers has a clock synchronisation issue.

Figure 1 shows some artefacts which are very likely to be due to timestamp issues.

2.2 Incorrect altitude measurements

Altitude information is included in several downlink formats (specifically DF 4, DF 17, and DF 20),
which can lead to inconsistencies when this data is aggregated—such as when it is merged into a
state vector table, as is commonly done by many providers, including the OpenSky Network. The
OpenSky Network supplies both raw data and (in some cases) partially decoded tables for all down-
link formats. In addition, it offers higher-level abstractions, most notably the StateVectorsData4
table, which consolidates information from various sources. However, the altitude data, from DF 4
and DF 20 in particular, is prone to erratic data points. (see Figure 2)
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Figure 2. Some obviously erroneous altitude data points in this flight should be invalidated.

2.3 Quantization artefacts

Physical quantities measured by aircraft are processed by onboard systems, which fuse and filter
data from various sources. These quantities are then quantized to fit within a limited number of
bits before being transmitted via Mode S messages. For example, depending on the type of message,
altitude can be encoded using 11 bits (in the form of Gillham code, with increments of 100 or 500 feet)
or 13 bits (with increments of 25 feet). This quantization process can introduce threshold effects,
making altitude measurements appear unnecessarily noisy. (see Figure 3)

2.4 Incorrect measurements in BDS 5,0 and BDS 6,0

Another source of error arises from the decoding of DF20 and DF21 messages. Both of these for-
mats include a BDS (Comm-B Data Selector) payload. Some of these BDS codes are also present in
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Figure 3. The altitude signal is subject to measurement noise and quantization issues. This flight is most likely flying a
constant altitude of 38,000 ft (FL 380).

ADS-B messages, with a flag in the header (the typecode) indicating the type of information being
decoded. ADS-B messages are broadcast regardless of who will decode it, so this flag is essential for
interpreting the data. DF 20 and DF 21 messages, however, are sent in response to a request from a
Secondary Surveillance Radar (SSR), which knows how to decode the data it requested, even though
this information is not explicitly stated in the message. Without access to the uplink message, we
can only hypothesize about the content, as outlined in the paper accompanying the pyModeS library
(14]. In particular, distinguishing between BDS 5,0 (Track and Turn Report) and BDS 6,0 (Heading
and Speed Report) is challenging without extensive context from previously received messages for
the same aircraft. Misinterpreted BDS codes can lead to further errors in the trajectory data. (see
Figure 4)
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Figure 4. In the speed profile of this flight, some messages are incorrectly decoded as BDS 6,0, leading to incorrect indicated
airspeed (IAS) values during the climb. The true air speed (TAS) is available in BDS 5,0 messages.

2.5 Inherent noise in some measurements

Some information provided by ADS-B messages is directly measured, while other physical quantities
are computed based on those measurements. For example, the vertical rate (usually expressed in
feet per minute) cannot be directly measured. In BDS 6,0 messages, two types of vertical rate are
provided: the barometric altitude rate and the inertial vertical velocity. Only the second one is also
present in ADS-B messages (specifically, BDS 0,9 messages)

The barometric altitude rate is derived from the air data system, likely by taking the derivative of
the altitude signal, which is measured from static pressure. This approach is prone to noise, and
the differentiation process tends to amplify the noise in the signal. On the other hand, the inertial
vertical velocity is computed by combining barometric information with vertical acceleration (the
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Figure 5. The barometric altitude in rate (blue) is in general more noisy than the inertial vertical velocity (orange). Stronger
noise is often a sign of experiencing turbulence. The clear anomalies near 12:12 UTC was an air pocket experienced by the
aircraft (Source: experience of the author onboard the aircraft)

second derivative of altitude) from the inertial system, resulting in a filtered and smoother version
of the vertical rate. (see Figure 5)

2.6 Errors in position messages

For most aircraft, airborne position is determined using a combination of GNSS signals and inertial
data'. However, when the aircraft is on the ground, GNSS signals are susceptible to interference
or multipath, leading to faulty or lack of measurements. Additionally, certain inertial data used for
corrections in flight cannot be applied when the aircraft is on the ground, which can further degrade
the accuracy of ADS-B positional data. (see Figure 6a)

Since aircraft position estimates rely heavily on GPS, they are inherently vulnerable to GPS Radio
Frequency Interferences (RFI), such as jamming or spoofing [15]. During GPS jamming, the aircraft
loses access to accurate GPS-based positioning and must instead rely on less precise systems, such
as ground-based navigation aids or inertial navigation. In the case of GPS spoofing, where falsified
GPS signals are generated, the aircraft may calculate an incorrect position, which is then broadcast
in the ADS-B messages. (see Figure 6b)

One of the most common causes of incorrect positions in ADS-B state vectors is the method of
encoding positional data. Latitude and longitude are encoded using 17 bits in the Compact Posi-
tion Reporting (CPR) format, which efficiently represents positions with high resolution while using
fewer bits. CPR balances global positional ambiguity with local accuracy. Two types of position mes-
sages—identified by odd and even frame bits—are broadcast alternately. Positions can be decoded
using either a single message along with a previously known position, or by combining both odd
and even messages.

If the positional information becomes outdated, the decoding process can produce an incorrect posi-
tion. (see Figure 6¢) To prevent this, message timestamps are typically checked before CPR decoding,
but issues can still arise in some edge cases. Furthermore, the timestamping challenges mentioned
in Section 2.1 can increase the likelihood of decoding faulty positions, which must be detected and
filtered out.

2.7 Noise added by the post-processing

Some of the resulting data may include irrelevant data points due to the way it has been aggregated.
By offering higher-level abstractions to data analysts, data providers can inadvertently introduce

1The combination highly depends on the aircraft type and its specific avionics systems. Airbus aircraft typically use data
fusion, whereas Boeing aircraft rely on it less for ADS-B OUT.
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(a) Localization imprecision when aircraft (b) Flight THY9BP on Sep. 17,2024, spoofed (c) CPR decoding errors due to unlucky
is on the ground, esp. during pushback to a location near Lviv, Ukraine; trajectory timing of received position messages
(orange) in blue is from FlightRadar24 (MLAT) (above the Arabic gulf)

Figure 6. Errors in position messages due to poor GPS precision, multipath, spoofing and CPR decoding errors.

artefacts, making it more challenging to apply consistent filtering across different data sources.

For instance, the OpenSky Network provides a StateVectorsData4 table which contains values
which are forward propagated. Since the propagation logic is relatively straightforward, the traffic
library can easily offer functions to reverse-engineer and invalidate these propagated values.

Other providers like FlightRadar24 generate state vectors that could to be derived from Kalman
filters. This additional processing layer makes it more difficult to develop robust filtering strategies,
as the implementation details of the first-layer filters are unknown. As a result, these post-processed
trajectories can sometimes fail in edge cases, complicating the task of further filtering and analysis.

3. Description of filters

In this section, we present various categories of filters that perform well on raw ADS-B trajecto-
ries or state vectors sourced from the OpenSky Network database. Specifically, we focus on filters
based on rolling windows, derivative filters, clustering filters, and a particular implementation of a
consistency filter. We close the section with a presentation of Kalman filters.

3.1 Filters based on rolling windows

A sliding window or rolling window filter works by moving a fixed-size window (the kernel) across
the data and performing operations on the values within the window at each step. Two widely used
methods for reducing noise in trajectory data are the moving mean and moving median filters. These
filters calculate either the mean or the median of the data points within the window and use that
value to replace the central point. Both approaches are effective in smoothing noise and reducing
smaller peaks, as demonstrated in Figure 7.

The moving median, in particular, is highly effective when large outliers are present, as it is robust
against extreme values. In contrast, the moving mean can become unsuitable in such situations
because it is sensitive to outliers, leading to poor filtering performance. For both filters, the window
width is the key tuning parameter: wider windows produce stronger smoothing effects.

Another useful approach (implemented by default in the traffic library) applies a median filter
that computes thresholds based on a sliding window, identifying and replacing values that exceed
acceptable thresholds with NaN values. This method is particularly helpful for handling extreme
noise without relying on averaged values.
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Figure 7. Moving mean and moving median with a kernel size of 11 applied to altitude data of a flight showing noise and
two outliers of large magnitude.

Additionally, these filters can be chained together for even better performance, allowing them to
address different types of noise and inconsistencies more effectively. Combining multiple filters
often results in cleaner, more reliable data processing.

3.2 Derivative filter

While single outliers are a common type of erroneous data points, another challenge arises when
multiple consecutive erroneous data points occur. The moving median filter can only effectively
remove such errors if the number of erroneous points is less than half the kernel size of the filter.
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Figure 8. Two examples of multiple consecutive erroneous data points, where one group is filtered by the moving median
while the other is not.

In Figure 8, the first group of outliers, consisting of four data points, is successfully filtered out by a
moving median with a window size of 11, as the median remains within the range of the true data.
However, in the second group, which contains ten consecutive erroneous points, the moving median
aligns with the erroneous values and fails to filter them out.

Although increasing the window width could resolve this issue, it also carries the risk of oversmooth-
ing the data, potentially distorting the correct values. Thus, a careful balance between window size
and filtering effectiveness is essential to avoid compromising the integrity of the true data.

A specialized filter has been developed to address cases involving consecutive erroneous data points.
This filter utilizes timestamp information and parameter values to compute the absolute values of
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the first and second derivatives of a given parameter. In the context of altitude data, these correspond
to absolute vertical velocity and absolute vertical acceleration, respectively.

Users can define threshold values for these derivatives, as well as a kernel size, to control the filtering
process. Any data point where the first or second derivative exceeds the specified thresholds is
marked as an outlier. Additionally, if two identified outliers are within a distance smaller than the
defined window width, all data points between them are also flagged as erroneous and removed.

As shown in Figure 9, this method effectively handles multiple consecutive outliers. Because the
first and second derivatives represent interpretable physical quantities, threshold values can be set
to reflect the limits beyond which valid observations are not possible. This ensures the removal of
all erroneous data points beyond these limits.
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Figure 9. Illustration of the derivative filter concept, which calculates the first and second derivatives of a parameter and

removes data points where these derivatives exceed a defined threshold. It also removes any data points between two
closely spaced outliers.

3.3 Cluster filter

One situation not addressed by the previously discussed filters is when a series of consecutive erro-
neous data points occurs at the beginning or end of the data, as shown in Figure 10. These cases are
not handled by the derivative filter because they start or end with erroneous values, resulting in only
one peak in the derivatives. As a result, the entire sequence of bad data points remains unfiltered.

To address this issue, a third type of filter has been developed using a clustering approach. This
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filter allows the user to define thresholds for both time and parameter values, as well as a minimum
cluster size. The algorithm calculates the time and parameter differences (deltas), and wherever these
exceed the specified thresholds, a cut is made, separating the data into clusters.

Data points that belong to clusters smaller than the defined minimum size are then removed from
the dataset. In the example shown in Figure 10, with a time threshold of one minute and a param-
eter threshold of 1000, two clusters are formed. The first cluster contains the 15 erroneous data
points. Therefore, by setting the minimum cluster size above 15, these erroneous points would be
successfully filtered out.

When properly tuned, this clustering filter can effectively remove consecutive outliers and also han-
dle individual outliers of limited magnitude.
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Figure 10. Example of altitude data containing an initial series of erroneous data points, identified by the cluster filter as a
distinct cluster. With an appropriately set minimum cluster size, the filter will remove these erroneous points.

3.4 Consistency filter

The filters described in previous subsections focus on detecting erroneous data by examining one
variable at a time. However, this approach does not account for inconsistencies between two related
variables, such as a parameter and its derivative. This principle is illustrated in Figure 11, where,
around 12:20, the altitude data suggests a sharp descent followed by a smoother climb. This portion
of the trajectory appears erroneous when compared to the vertical rate and is therefore ruled out.

To check for consistency between two variables (typically a value and its derivative), we calculate
the gap between a value v; at time #; and the extrapolated value from v; at time ¢;. The gap is defined
as the absolute difference:

V‘—V'—l(t'—t') ﬂ +ﬂ}
JTT RN T G dt

If this gap exceeds a threshold multiplied by \tj - ti|, then the values at t; and t; are considered in-
consistent. When this happens, one or both values must be discarded, as keeping both would lead
to inconsistencies. Deciding which value to discard is challenging. A greedy approach can be used,
starting from the first value in time and assuming it is correct. As we move forward in time, we keep
or discard subsequent values based on the computed gap. However, if the initial value is incorrect,
this approach may discard many legitimate values.
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A more optimal solution involves representing the consistency between values as a graph. Each
node corresponds to a value at time #;, and there is a directed edge between nodes i and j if t; < ;
and the values at these times are consistent. Once the consistency graph is constructed, every path
within the graph represents a sequence of consistent values. The final step is to retain the values
that are part of the longest path in the graph, ensuring that the fewest possible values are discarded
while preventing any inconsistency.
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Figure 11. At around timestamp 12:20, an inconsistency is observed between the altitude variation and the vertical rate. As
a result, the consistency filter discarded the inconsistent data points.

3.5 Kalman filters

Kalman filters help to predict the most likely state of a system by using noisy measurements to
improve and update predictions. In the following, we consider a model for the lateral path of an
aircraft, as the vertical path is much simpler on two dimensions. The model implemented in the
traffic library deals with the three dimensions in one pass, although they could be handled in
sequence without loss of generality.

A two-dimensional model for a Kalman filter ADS-B messages provide a sequence of four
measurements of the aircraft’s state at each second (with potentially invalid NaN values): latitude,
longitude, ground speed (in kts) and track angle (in degrees). In order to simplify the model and equa-
tions, we convert these measurements to a four-dimensional state vector X = [x, y, %, j] sequence, in
the International System of Units (SI) using a conformal projection allowing the Euclidean distance
to remain locally valid.

The dynamic of the model remains simple, with no information about the second derivatives. In the
following, we use X to denote the state vector and P its associated covariance matrix. We index the
state vectors in time with k, considering that indices k and k + 1 are separated in time by At (which
we like to set to one second in our experiments).
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The state-transition matrix A is defined as

Xie+1 1 0 At 0 Xk

s |yraa] O 1 0 At |w
X =1 l7lo o 1 o flx] ™ (1)

Vi+1 0 0 O 1 Vk

———————— e~

A X

The process noise w can be expressed based on random variables a, and a, (a for acceleration) as:

At?
2
AF?
w = ayT (2)

a,At

Ay

a,At

We make two assumptions about the random variables: we consider that a, and a, are independent,
and that the expectation values for both a% and ai are equal to 0%. Then we can express Q, the
process noise covariance matrix, as follows:

At? A
—_— 0 — 0
N At 2 AL
. Joo o — o =
Q=E(w-w)=0"| 5 * 2 3)
— 0 A 0
2
3
0 ATt 0 A

Denoting X the state estimate and P the covariance of the state estimation error at time k, the
predicted state and its covariance matrix at the next timestamp are given by:

) <)
I

D) )
S

A-
A-

+
+

AT+ 0 (5)

Then the expression of the innovation v, which is the difference between the measurement values
and their predicted values:

xM - x*
yr -y

V= m _3-;* (6)
-3

The covariance matrix R associated to the measurements can be calibrated based on the known
uncertainties from the ADS-B specifications:
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o2, 0 0 0
0 o2 0 0
R=1o 0 o2 o @)
2
0 0 0 Om
Finally, we extend our observation model matrix H which boils down to an identity matrix:
1 0 0 O
01 0 0
H=10 0 1 0 ®)
0 0 0 1

The remaining equations of the Kalman filter unfold as follows, with S the covariance of the inno-
vation v and K the Kalman gain:

S=H-P-H'+R )
K=pP-HT.§! (10)
X=X"+K-v (11)
P=(1-K-H)-P'-(I-K-H'+K-R-K" (12)

where we use the Joseph’s formula for updating the covariance to avoid any loss of positivity.

Uncertainty information accompanies the positional and velocity data in ADS-B messages. For
example, the Navigation Uncertainty Category for Position (NUCp), as detailed in [13], is often en-
coded in the typecode field. It provides key metrics such as the Horizontal Protection Limit (HPL),
a containment radius for horizontal position error (denoted as Rc/p), and a containment radius for
vertical position error (denoted as Rc/v).

Recent versions of ADS-B messages offer more precise uncertainty data. The Navigation Accuracy
Category for Position NACp) is widely used, defining the Estimated Position Uncertainty (EPU), which
ranges from below 3 meters (NACp =11) to over 10 nautical miles, such as when the aircraft is
jammed (NACp = 0). Typically, aircraft do not transmit positional information when NACp = 0.

This uncertainty information can be utilized to refine the definition of the covariance matrix R.

Outlier values require special attention, as they should not be treated as valid measurements.
The quantity v S~ v represents the squared Mahalanobis distance, which measures the discrepancy
between the predicted and actual measurements in the Kalman filter. This distance accounts for
the fact that different components of the measurement may have varying degrees of variance and
correlation. A large Mahalanobis distance indicates that the measurement is likely an outlier or
that there is a significant inconsistency between the prediction and the actual measurement. In
such cases, the normalized innovation S™! v is useful for identifying the specific component with the
abnormal value, helping to detect the outlier, and suggesting proceeding with the prediction step
without any update on the measurement (see Figure 12)
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Figure 12. A basic Kalman Filter is affected by outlier measurements, which should be identified and filtered out using the
Mahalanobis distance

Extended Kalman Filters (EKF) allow for the modelling of systems that are not limited to linear
dynamics. The EKF operates by linearizing the nonlinear system around the current state estimate,
utilizing the Jacobian of the state transition function. While EKF can effectively handle trajectories
defined by latitude, longitude, speed, and track angles, it does not significantly enhance the filtering
quality compared to a linear model.

Kalman smoothing Inconventional Kalman filtering, state predictions and corrections rely solely
on past measurement data, which can limit the accuracy of estimations, especially in trajectory post-
processing. One effective method to improve the estimation precision is to implement the Rauch-
Tung-Striebel (RTS) smoother, which utilizes both forward and backward passes: the forward pass
generates initial estimates based on available measurements, while the backward pass refines these
estimates by incorporating results from the forward pass.

We can simplify this process by running two distinct Kalman filters: one for the forward pass, which
yields estimations Xj and P, and another for the backward pass, producing X, and P,. We then
combine these estimates using a weighted average based on the geometric mean of the estimated
covariances, leading to an optimal smoothed position estimation X, defined by the combined inverse
covariance matrix ﬁs’ 1= ﬁl’ Ly ﬁ; ! and the optimal mixing formula, which ensures that our final
estimations leverage both past and future data.

4. Implementations in the traffic library

The traffic library in Python is an open-source toolset designed for processing and analysing air
traffic data. Available at https://github.com/xoolive/traffic and introduced in [12], it offers function-
alities for handling large datasets of air traffic trajectories. Built to interface with common data
sources like The OpenSky Network, the library enables users to analyse historical aircraft positions,
trajectories, and flight patterns. Its applications range from visualization and data cleaning to sta-
tistical and machine learning tasks on flight data.

One of the library’s key features is its ability to preprocess datasets effectively, particularly in fil-
tering aircraft trajectories and addressing the various patterns discussed in Section 2 using methods
presented in Section 3. The primary class provided by the library is the Flight class, which encapsu-
lates a DataFrame and offers additional methods tailored for trajectory analysis. Here, we introduce
the Flight.filter() method.

The method works with default arguments for a fast and efficient filtering working in the most
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commonly encountered trajectories. The filter="default"” option applies a rolling-window filter
introduced in Section 3.1. The filter="aggressive" option composes multiple filtering approaches,
including median (Section 3.1), derivative (Section 3.2) and clustering (Section 3.3) filters. More

advanced filters can be passed as instances of BaseFilter classes as long as they implement a method
with the following signature:

apply(data: DataFrame) -> DataFrame

The traffic.algorithms.filters module offers a variety of built-in filters, including the consis-
tency filter (Section 3.4) and various implementations of Kalman filters (Section 3.5, and the version
adapted to taxiing aircraft [16]). Filters can be composed with the | operator (from the __or__ dunder
method), which behaves slightly differently than two chained calls to the .apply() method.

Indeed, after applying the selected filter (or composition of filters), the apply() method addresses
any resulting missing NaN values using a strategy defined by the user. The default strategy utilizes a
backward fill followed by a forward fill to accommodate missing data points. Users can also opt to
leave NaN values unmodified or apply alternative strategies, such as linear interpolation.

5. Conclusion

To wrap up, we presented a comprehensive overview of methodologies for processing and filtering
ADS-B aircraft trajectory data. We began by exploring the different patterns of noisy and erroneous
data before introducing filtering techniques, including rolling-window, derivative, clustering, and
consistency filters. These simple methods are computationally efficient and effectively mitigate the
effects of outlier data points and noisy signals. Kalman filters also provide a solid approach to data
filtering, although a full Python implementation of these filters may lead to slower preprocessing
times. Accelerated compiled implementations are planned for future iterations of the traffic library
to enhance performance.

It is important to note that data collected by some data providers is often delivered as a result of
preliminary preprocessing, which can mask underlying issues. In contrast, the OpenSky Network
stores raw, unfiltered data: our preprocessing techniques are designed to be applied on such raw data.
Future work will focus on developing faster, better fine-tuned and more efficient implementations
of these methodologies, in order to address as many of the corner cases left behind.

Author contributions

Conceptualization (X.0), Methodology (all), Software (all), Validation (X.0), Formal analysis (all),
Investigation (all), Data Curation (X.O, B.F), Writing — Original Draft (X.O, J.K, R.A), Writing -
Review & Editing (all), Visualization (X.0), Project administration (X.0), Funding acquisition (X.O)

Funding statement

The authors are grateful to the EC for supporting the present work, performed within the NEEDED
project, funded by the European Union’s Horizon Europe research and innovation programme under
grant agreement no. 101095754 (NEEDED). This publication solely reflects the authors’ view and
neither the European Union, nor the funding Agency can be held responsible for the information it
contains.


https://orcid.org/0000-0002-2335-5774

Journal of Open Aviation Science 15

Open data statement

All the data is available as sample datasets in the trafficlibrary, and delivered together with releases
after 2.12.

Reproducibility statement

All the figures for this paper are available in the documentation for the traffic library, which is
automatically regenerated with the latest version of the repository for every commit on the master
branch, and at least once a week.

References

[1]

2]

(6]

(10]

Michael Schultz, Judith Rosenow, and Xavier Olive. “Data-Driven Airport Management En-
abled by Operational Milestones Derived from ADS-B Messages”. In: Journal of Air Transport
Management 99 (Mar. 2022). por: 10.1016/j.jairtraman.2021.102164.

Kim Gaume, Richard Alligier, Nicolas Durand, David Gianazza, and Xavier Olive. “Extracting
Lateral Deconfliction Actions from Historical ADS-B Data with Median Regression”. In: Pro-
ceedings of the 11th International Conference for Research in Air Transportation. Singapore, July
2024.

Sana Ikli, Catherine Mancel, Marcel Mongeau, Xavier Olive, and Emmanuel Rachelson. “The
Aircraft Runway Scheduling Problem: A Survey”. In: Computers & Operations Research (Apr.
2021). por: 10.1016/j.cor.2021.105336.

Wenxin Zhang, Alexia Payan, and Dimitri N. Mavris. “Air Traffic Flow Identification and
Recognition in Terminal Airspace through Machine Learning Approaches”. In: Proc. of the
AIAA SCITECH 2024 Forum. Orlando, FL, Jan. 2024. por: 10.2514/6.2024-0536.

Timothé Krauth, Jérome Morio, Xavier Olive, and Benoit Figuet. “Advanced Collision Risk
Estimation in Terminal Manoeuvring Areas Using a Disentangled Variational Autoencoder
for Uncertainty Quantification”. In: Engineering Applications of Artificial Intelligence 133 (Mar.
2024), p. 108137. por: 10.1016/j.engappai.2024.108137.

Marco Pretto, Lorenzo Dorbolo, Pietro Giannattasio, and Alessandro Zanon. “Aircraft Op-
eration Reconstruction and Airport Noise Prediction from High-Resolution Flight Tracking
Data”. In: Transportation Research Part D: Transport and Environment 135 (Oct. 2024), p. 104397.
Dor: 10.1016/j.trd.2024.104397.

Ramon Dalmau and Gilles Gawinowski. “The Effectiveness of Supervised Clustering for Char-
acterising Flight Diversions Due to Weather”. In: Expert Systems with Applications 237 (Mar.
2024), p. 121652. por: 10.1016/j.eswa.2023.121652.

Junzi Sun, Xavier Olive, Esther Roosenbrand, Céline Parzani, and Martin Strohmeier. “Open-
Sky Report 2024: Analysis of Global Flight Contrail Formation and Mitigation Potential”. In:
Proceedings of the 43th IEEE/AIAA Digital Avionics Systems Conference (DASC). San Diego, CA,
Oct. 2024.

Adric Eckstein. “Automated Flight Track Taxonomy for Measuring Benefits from Performance
Based Navigation”. In: Proc. of the 2009 Integrated Communications, Navigation and Surveil-
lance Conference. Crystal City, VA: IEEE, May 2009, pp. 1-12. por: 10.1109/ICNSURV.2009.
5172835.

Harshad Khadilkar and Hamsa Balakrishnan. “A Multi-Modal Unscented Kalman Filter for
Inference of Aircraft Position and Taxi Mode from Surface Surveillance Data”. In: Proc. of the
11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Virginia Beach,
VA, Sept. 2011. por1: 10.2514/6.2011-7051.



https://doi.org/10.1016/j.jairtraman.2021.102164
https://doi.org/10.1016/j.cor.2021.105336
https://doi.org/10.2514/6.2024-0536
https://doi.org/10.1016/j.engappai.2024.108137
https://doi.org/10.1016/j.trd.2024.104397
https://doi.org/10.1016/j.eswa.2023.121652
https://doi.org/10.1109/ICNSURV.2009.5172835
https://doi.org/10.1109/ICNSURV.2009.5172835
https://doi.org/10.2514/6.2011-7051

16

(11]

(12]

(13]

(14]

(15]

(16]

Xavier Olive © et al.

Homeyra Khaledian, Raul Saez, Jordi Vila-Valls, and Xavier Prats. “Interacting Multiple Model
Filtering for Aircraft Guidance Modes Identification from Surveillance Data”. In: Journal of
Guidance, Control, and Dynamics (June 2023), pp. 1-16. por1: 10.2514/1.G007139.

Xavier Olive. “traffic, a Toolbox for Processing and Analysing Air Traffic Data”. In: Journal of
Open Source Software 4.39 (July 2019). por: 10.21105/joss.01518.

Junzi Sun. The 1090 Megahertz Riddle: A Guide to Decoding Mode S and ADS-B Signals. 2021.
ISBN: 978-94-6366-402-8. URL: https://mode-s.org/decode/.

Junzi Sun, Huy Vu, Joost Ellerbroek, and Jacco M. Hoekstra. “pyModeS: Decoding Mode-S
Surveillance Data for Open Air Transportation Research”. In: IEEE Transactions on Intelligent
Transportation Systems 21.7 (July 2020), pp. 2777-2786. por: 10.1109/TITS.2019.2914770. URL:
https://ieeexplore.ieee.org/document/8718517/.

Michael Felux, Benoit Figuet, Manuel Waltert, Patric Fol, Martin Strohmeier, and Xavier Olive.
“Analysis of GNSS disruptions in European Airspace”. In: Proceedings of the 2023 International
Technical Meeting of The Institute of Navigation. 2023, pp. 315-326.

Xavier Olive, Manuel Waltert, Ryota Mori, and Philippe Mouyon. “Filtering Aircraft Surface
Trajectories Using Information on the Taxiway Structure of Airports”. In: Proceedings of the
11th International Conference for Research in Air Transportation. Singapore, July 2024.



https://orcid.org/0000-0002-2335-5774
https://doi.org/10.2514/1.G007139
https://doi.org/10.21105/joss.01518
https://mode-s.org/decode/
https://doi.org/10.1109/TITS.2019.2914770
https://ieeexplore.ieee.org/document/8718517/

	Introduction
	Sources of data and errors
	Incorrect time information
	Incorrect altitude measurements
	Quantization artefacts
	Incorrect measurements in BDS5,0 and BDS6,0
	Inherent noise in some measurements
	Errors in position messages
	Noise added by the post-processing

	Description of filters
	Filters based on rolling windows
	Derivative filter
	Cluster filter
	Consistency filter
	Kalman filters

	Implementations in the traffic library
	Conclusion
	Author contributions
	Funding statement
	Open data statement
	Reproducibility statement

