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Abstract
The airspace environment is a system that is expected to continue increasing in complexity with the pro-

jected growth of air traffic volumes and the introduction of new types of air vehicles and operations such as

uncrewed aircraft. This increase in complexity brings a need for investigating and developing newmodels

of airspace environments as a means of better understanding and managing their constituent parts. This

paper presents a methodology for creating a geospatial model of complex airspace environments which

can be used to study any geospatially distributed entity that is part of these systems. The methodology

leverages Discrete Global Grid Systems (DGGS), a Geographic Information Systems framework often uti-

lized in the fields of geography and urban planning. The usefulness of the model is demonstrated using

two case studies investigating the risk factors associated with weather andmid-air collisions in an airspace

region of interest. Since such a model needs to be able to work for any type of air vehicle and airspace

region in a fully three-dimensional model capable of performing time-varying analysis in a computation-

ally efficient manner, a rudimentary geospatial airspace risk model was also developed which satisfies

these requirements. Weather radar data from the National Oceanic and Atmospheric Administration and

air traffic data from the OpenSky Network were collected and integrated in the geospatial model and the

geospatial airspace riskmodel was used to calculate the risk of collisions for geospatially distributed points

in the airspace for four scenarios of increasing airspace complexity. The results from these four scenarios

demonstrate that the proposed methodology can be used to study the risk associated with spatially dis-

tributed risk factors for different points in the airspace for any type of air vehicle and airspace region of

interest in a fully three-dimensional model that can perform time-varying analysis in a computationally

efficient manner.
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1. Introduction

The complexity of today’s airspace environment can be attributed to many factors including its

three-dimensional nature; the presence of diverse types of aircraft; the need for precise commu-

nication and navigation; weather systems; airspace classes each with their own set of rules and

regulation; international boundaries; and air traffic safety and capacity management challenges [1,

2, 3]. This complexity is expected to continue to increase in the near future as a result of the integra-

tion of new types of air vehicles and operations [4, 5, 6] such as Urban Air Mobility (UAM) [7] and a

forecasted exponential growth in air traffic volumes [5, 6]. This evolving situation makes it increas-
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ingly difficult to understand and analyze a variety of airspace phenomena [8] and to address this,

the National Academies of Sciences [4, 5, 6] explains that there is a need to develop new methods

for modeling complex airspace environments.

2. Research Objective

The objective of the research that is the subject of this paper is to develop a methodology for creating

a geospatial model of complex airspace environments with the requirement that the model be ex-

tensible for the study of any geospatially distributed airspace entity that is part of that environment.

Six criteria are proposed for the development of the model and its comparison to other models in

the literature:

1. Air vehicle agnostic: Many different aircraft types and categories operate within the airspace

environment, with varying levels of performance and operational limitations [9]. The first

requirement for the airspace model is that it can accommodate any air vehicle in order to

model both a “real-life” airspace environment and be adaptable to new types and categories of

aircraft as they are introduced.

2. Applicable to any airspace region: Applicable to any airspace region: One challenge for

some existing airspace models is that significant work must be done in order to re-apply them

to new airspace regions [10]. The second requirement for the airspace model is that it be

capable of being re-applied to any airspace region of interest without significant work. This

capability will allow themodel to be used across any airspace class, for very low altitude or very

high-altitude studies, as well as for researching regions of varying size (for example airport ter-

minal airspace studies or full North American airspace studies) and the analysis of differences

between airspace regions.

3. Fully three-dimensional: Some airspace models found in the literature are two-dimensional

and account for the altitude component using a layered approach [11, 12]. The third require-

ment for the airspace model is that it use a fully three-dimensional approach and can be used

to study three-dimensional scenarios.

4. Capable of time varying analysis: The airspace environment undergoes rapid and signifi-

cant changes over time in terms of the number of entities operating within it as well as what

types of operations they are performing and where [13, 14]. The fourth requirement for the

airspace model is that it be capable of time varying analysis and be able to study these changes

and the importance of the related timeframes.

5. Computationally efficient: Satisfying the three-dimensional and time varying requirements

for the proposed model can make it challenging to maintain computational efficiency. The

fifth requirement for the airspace model is that it be as simple and computationally efficient as

possible.

6. Scalability (area size, time interval, number of entities): Some models found in the liter-

ature are tailored to analyze specific sizes of airspace regions, time intervals, and number of

entities [15, 16, 17]. This can pose a problem if a study is concerned with understanding the

effect of varying those parameters. The sixth requirement for the airspace model is that it be

scalable to a wide variety of area sizes, time intervals, or number of entities.

3. Literature review

3.1 Airspace modeling

The literature reflects a number of different approaches to airspace modeling. The Agent-Based

Model approach [18], for example, simulates the actions and interactions of autonomous agents to

assess their effects on the system as a whole. The Discrete Event Simulation approach [19, 20] mod-
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els the operation of a system as a sequence of discrete events in time, where each event occurs at

a particular instant and marks a change of state in the system. A third approach uses Monte Carlo

Simulation [21], a computational algorithm that relies on repeated random sampling to obtain nu-

merical results and is often used to generate simulated data that is statistically representative of

a given dataset. A fourth approach is to model the airspace as a Geographic Information System

(GIS). The United States Geological Survey (USGS) agency defines a GIS as an “organized collection

of computer hardware, software, and geographic data designed to efficiently capture, store, update,

manipulate, analyze, and display all forms of geographically referenced information” [22]. For clar-

ity, this paper will refer to airspace models making use of this fourth approach as geospatial models.

Geospatial models represent the airspace and its constituent parts as a geospatial system, where each

element present in the model has a 3D location that can change over time, and is associated with a

GIS reference system [23, 24, 25, 26]. The airspace model presented in the current paper makes use

of the geospatial system approach.

Geospatial models of the airspace environment have been used to study the overall safety, effi-

ciency, and environmental sustainability of the system. For example, they have been used to im-

prove airspace safety by analyzing terrain and obstacle obstructions near airports [26], for studying

the impacts on the risk of integrating Uncrewed Aircraft Systems (UAS) in the airspace [27], and

for improved modeling of weather systems near aircraft to mitigate weather-related incidents [28].

Starita et al. [29] show how to make use of geospatial models in the field of Air Traffic Manage-

ment to predict congestion points in real-time for rerouting flights more efficiently, reducing fuel

consumption, and mitigating potential delays. Wang et al. [30] show how geospatial models can

be used for planning and investigating airspace design concepts un the context of Advanced Air

Mobility (AAM) operations. Geospatial models have also been used for studying the environmental

sustainability of the airspace system by Wunderli et al. [31], specifically for producing a more accu-

rate model of aircraft noise present in the airspace system. Research by Ruiz et al. [32] has further

enhanced airspace safety by applying causal modeling to de-conflict large numbers of 4D trajec-

tories, which ensures safety in high-density environments by predicting and preventing collisions

before they occur. Additionally, Garcia [33] introduced a 3D collision risk model based on recorded

trajectories and 3D spatial grids to partition the airspace into small segments, providing a practical

method for estimating the risk of mid-air collisions in high-traffic airspace.

Recent research focused onmodeling complex airspace environments has made use of a new geospa-

tial framework called Discrete Global Grid Systems (DGGS) [34, 35]. DGGS is recognized as a foun-

dation for the next generation of Geographic Information Systems (GIS) tools [35] because of its

ability to effectively integrate heterogeneous data types in a fully-scalable and time-varying three-

dimensional representation of the Earth. The Discrete Global Grid divides the Earth and the airspace

above it into small cells or grids that are uniformly distributed and represented by unique identifiers

[36]. DGGS have found practical applications in the fields of geography, environmental studies and

urban planning [19, 20]. More recently (2016–2020), DGGS have been investigated for their applica-

bility in aviation research. For example, Kaiser [37] investigated how DGGS could be employed in

the field of air traffic management to enhance the analysis and visualization of flight data. By rep-

resenting airspace and flight paths using a grid-based system, DGGS facilitates the integration and

analysis of real-time and historical flight data, enabling improved airspace management, route plan-

ning, and congestion detection. Han et al. [38] showed how a DGGS framework could be used for

studying complex airspace environments with a use case focused on the identification of emergency

airport sites using large amounts of spatiotemporal data and complex environmental information

for varying potential landing ranges. Sahadevan Neelakandan and Ali [39] have explored the appli-

cability of DGGS in flight planning and navigation. The authors showed that DGGS could provide a

framework for a novel hexagonal grid-based 4D trajectory representation for unmanned aerial ve-

hicle (UAV) traffic management. Using DGGS overcomes the limitations of existing cubic trajectory
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representation methods.

3.2 Geospatial airspace risk modeling

The use of DGGS frameworks for performing geospatial airspace risk analysis studies is a relatively

unexplored field of study.

Ulmer et al. [40] propose amethod to extend DGGS to support three-dimensional data. Although not

exclusively focused on airspace risk analysis, the authors show how the method can be applied to

aviation scenarios requiring three-dimensional spatial analysis, such as air traffic management and

collision risk assessment. Zhai et al. [41] shows how GeoSOT-3D grids, a type of DGGS grid, can

be used to address the increasing challenge of collision detection among UAVs due to their grow-

ing numbers. Traditional methods face computational limitations and inefficiencies, especially in

complex and high-speed environments and the authors showed the using a DGGS framework pro-

vided a balance between computational efficiency and collision detection accuracy. Although their

research is applied to studying geospatial risk for the maritime field, Rawson et al. [42, 43] produced

research that is relevant to airspace risk assessment. Their developed methodologies showed how

DGGS can effectively manage and analyze large volumes of heterogenous geospatial data to identify

risk hotspots and their versatility in handling complex geospatial risk analyses.

There does not yet exist a DGGS spatial risk model that can be used for complex airspace envi-

ronment analysis that also satisfies the 6 requirements listed in Section 2. This paper presents a

novel use of DGGS for modeling geospatial entities contained in complex airspace environments

using a model that is extensible to the study of any geospatially distributed entity that is part of the

environment.

To investigate the usefulness and applicability of the developed geospatial model, two case studies

will be used. The first case study will use the geospatial model of the airspace to study weather risk

and the second case study will use the model to study risks associated with mid-air collisions (MAC).

It will also be shown in Section 4.3 how the results of both case studies can be combined to get a risk

metric that include both weather and MAC risk.

3.3 Case study #1 literature review: Weather risk modeling

The literature onweather risk analysis in the aerospace field highlights a diverse range of approaches

and methodologies aimed at enhancing flight safety through advanced weather data utilization. To

be applicable for the weather risk case study, the weather risk models need to meet the six require-

ments listed in Section 2. A key focus is on probabilistic and ensemble forecasting methods, as

evidenced by research on sUAS Weather Risk Models (sWRM) [44] that quantify weather hazards

using fine-scale forecasts and extensive flight data and ensemble weather forecasting frameworks

[45] that integrate probabilistic analysis for mission planning and risk evaluation. sWRM can ac-

commodate multiple air vehicle types (satisfies the air vehicle agnostic requirement) and Zhang et

al. [45] demonstrate that ensemble weather models can be used across different airspace regions.

The integration of tools like the Risk Situation Awareness Tool (RSAT) with NEXRAD radar im-

ages has shown to improve decision-making about weather-related risks and is able to highlight

fully three-dimensional analysis capabilities [46]. Furthermore, aircraft surveillance data has been

effectively used to reconstruct weather fields, enhancing local weather predictions and showcasing

time-varying analysis by capturing dynamic environmental changes [47]. Advances inweather radar

technology, such as systems predicting windshear, are used for ensuring flight safety during critical

phases like takeoff and landingwhichmust alsomaintain computational efficiency through real-time

hazard detection to remain practical [48]. Short-range probabilistic forecasting models provide data

for air traffic control by predicting convective risks [49]. Statistical analyses of radar signals reflected

from weather hazards offer improved classification of dangerous weather conditions [50]. Both of
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these last two models are scalable to different area sizes, time intervals, and entity numbers [49, 50].

Additionally, combining data from weather radar, weather stations, and GNSS receivers has led to

innovative improvements for algorithms for severe weather events at near airports [51]. Solazzo et

al.’s model can be used for different scales and for three-dimensional and time-varying analysis [51].

Jardines et al. [52] proposed a model integrating thunderstorm and traffic data to predict airspace

occupancy risk during such events, highlighting how combining real-time weather and traffic data

enhances collision risk predictions. The approach presented uses a spatial grid to model the airspace,

where weather conditions and aircraft locations are represented within grid cells. These grids allow

for evaluating the risk at each point based on weather hazards and aircraft occupancy.

3.4 Case study #2 literature review: Mid-air collision risk modeling

Midair collision risk models in aviation have evolved from early deterministic approaches [53, 54,

55], to more complex probabilistic models like the Collision Risk Model (CRM) used by the Inter-

national Civil Aviation Organization (ICAO) [56]. Deterministic models provide specific outcomes

based on defined inputs and scenarios, assuming conditions remain constant or predictable [57] and

do not account for the randomness or variability in real-world scenarios [58]. The Reich model and

its derivatives [53, 54, 55] are examples of deterministic MAC models which have been used as the

basis for defining separation minima [59] and route spacing [60]. To be applicable for the MAC risk

case study that is the subject of this paper, the MAC risk model needs to meet the six requirements

listed in Section 2. Deterministic MAC models do not satisfy the requirement of being applicable

to any region of the airspace because they can only be applied to controlled airspace environments

which have prescribed air routes. Also, due to their highly analytical nature, they are not computa-

tionally efficient. Lastly, these models do not meet the scalability requirement because they can only

be used for a specific set of defined inputs and scenarios, which assumes conditions remain constant

or predictable. The second type of MAC models, the probabilistic models, incorporate randomness

and uncertainty, evaluating a range of possible outcomes and their probabilities [61]. The proba-

bilistic approach acknowledges the inherent unpredictability of factors like aircraft behavior and

environmental conditions, offering a more nuanced understanding of collision risks. Furthermore,

some of these probabilistic models are combined with additional modeling techniques like Monte

Carlo simulations for generating simulated statistical outcomes [62, 63, 64]; agent-based models [29,

30] to simulate individual aircraft behaviors; and Bayesian Networks [31, 34] to capture interdepen-

dencies in aviation operations. With respect to satisfying the six model requirements of the current

research, probabilistic models can lack the ability to be scalable to any air vehicle type and airspace

region since they rely on subjective knowledge, typically in the form of expert opinion, to formulate

best guess estimates for some of the probabilities used to model outcomes [65]. This means that new

assumptions and expert opinion needs to be incorporated into the models before applying them to

study new concepts of air vehicle types and airspace regions. Probabilistic models also typically

require much computational effort to produce practical results. This is important for the proposed

model since the value of the new simulations being generated typically scales with computational

cost [66].

Each of the reviewed weather and MAC risk models were developed for a specific set of conditions,

which enable them to be used effectively under these conditions but, to the best knowledge of the

authors of this paper, there does not yet exist a weather or MAC risk model that is able to simulta-

neously satisfy the six requirements in order to be used as a case study for the geospatial model of

the airspace proposed in this paper. To that end, and as a proof of concept, a new and rudimentary

geospatial airspace risk model will also be developed and presented in this paper in Section 4.3.
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4. Methodology

The proposed geospatial airspace risk model was developed in three main steps, which are shown

in Figure 1: the collecting and processing of geospatial data of interest; the application of a DGGS

framework to integrate the data in a structured geospatial model that includes uniformly distributed

volumes and their centroids; and the creation of a geospatial, time-varyingmap of the risk associated

with the data of interest in the DGGS grid at each time increment.

The two case studies described in Section 3.2 will be used to investigate the usefulness and applicabil-

ity of the model for studying risk factors associated with weather and air traffic data. To that effect,

the proposed model makes use of two types of geospatial data, weather and air traffic data, in order

to demonstrate the practicality of DGGS frameworks at integrating multiple types of geospatial data

in a structured geospatial model. Furthermore, a rudimentary airspace risk model is developed and

described in Section 4.3, which can model airspace risk for both case studies.

Figure 1. Main components of the geospatial airspace model

4.1 Data collection and processing

4.1.1 Weather radar data collection and processing

Historical NEXRAD II weather radar data was collected from the National Oceanic and Atmospheric

Administration (NOAA) via the Amazon Web Services (AWS) cloud computing platform [67]. Fig-

ure 2 illustrates the steps taken to collect and process the raw weather data into storm cell centroids,

which are used for the risk calculations in the third step of the methodology. The boundaries of the

airspace region used for collecting the weather data that were used correspond to a 100 km cubic

airspace region centered on the greater New York metropolitan area, which include 4 major airports.

The boundaries of the region were selected to provide a best tradeoff between being large enough

to capture significant weather patterns and maintaining computational efficiency. The data was col-

lected for a period of 8 hours on January 2, 2022 at 21:00 and was selected based on significant and

extreme weather precipitation being present at this time.
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Figure 2. Weather data processing

4.1.2 Air traffic data collection and processing

Historical ADS-B air traffic data was collected from the OpenSky Network [68] for a specified date

and region of interest. The OpenSky Network exclusively monitors 1090 MHz SSRMode S downlink

channel ADS-B traffic and does not track aircraft equipped with 978 UAT [69]. This limitation results

in coverage gaps, particularly for low-altitude general aviation aircraft operating below 18,000 feet

in the United States, where 978 UAT is commonly used [70]. As a result, while 100% surveillance

of all aircraft is not feasible for the OpenSky Network, the exclusion of 978 UAT-equipped aircraft

leads to incomplete coverage of the lower airspace and general aviation traffic. Other coverage gaps

include exemptions made by the FAA for certain military and other sensitive government operations

under 14 CFR § 91.225, which permits authorized deviations from standard ADS-B requirements for

specific missions.

The data was collected for the United States Thanksgiving holiday weekend from November 23 to

November 25, 2022, and includes some of the highest traffic volumes of that calendar year. Figure 3

illustrates the processing performed on the raw ADS-B data in order to prepare it for its use in the

risk model. The boundaries of the airspace region used for collecting the air traffic data correspond

to a 5 km cubic airspace region centered on New York’s LaGuardia airport (LGA). The boundaries

of the region for the air traffic data were selected in order to include air traffic in the vicinity of the

LGA airport, which features high volumes of air traffic.
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Figure 3. Air traffic data processing

4.2 DGGS geospatial airspace model

Figure 4 depicts the concept used for the geospatial model. The DGGS framework partitions the large

cubic volume created by the airspace boundaries into many smaller cubic volumes, or DGGS cells.
All the DGGS cells, when put together, constitute the DGGS grid. Figure 2a shows these DGGS cells
for the LGA region and Figure 2b shows the centroids of each of the cells. Using this approach, any

datapoint in both datasets can be allocated a DGGS cell and centroid. A more detailed description

of the implementation of the DGGS framework can be found in [71].

Two variables need to be chosen in order to create the geospatial airspace model: the DGGS grid
width (which is the same in all 3 axes of the region since the model is cubic) and the DGGS cell
size, which is the distance separating each centroid. The DGGS grid width is chosen based on two

observations from the datasets. The first observation is that weather moves much slower when

compared to air traffic and thus requires a much larger airspace region (i.e. grid width) to capture

useful weather patterns. The second observation is that air traffic risk is more densely concentrated

near airports.

For these two reasons, the grid width used for the results presented in this paper is 100 km, but

the air traffic risk was only calculated in a 5 km cubic region around the LGA airport. The second

variable, the DGGS cell size, is chosen depending on the required resolution for the case study under

question. The DGGS cell size used in this paper is then 100 m inside the 5km region around the LGA

airport (since a finer resolution is required to study air traffic risk patterns) and 2000 m outside of

that region for the rest of the 100 km wide DGGS grid (since a coarser resolution is required to study

weather risk patterns). The results presented in Section 5.3 for the combined risk of both weather

and air traffic risk make use of the finer DGGS cell size of 100 m in the 5 km cubic region around the

LGA airport.



Journal of Open Aviation Science 9

Figure 4. Simplified representation of the geospatial model concept

4.3 Creating the risk model

The geospatial airspace risk model calculates a risk metric for each centroid of the DGGS grid over

a period of time, which can be used to investigate the risk factors associated with any geospatial

entity in an airspace region and how that risk factor evolves over time.

The shortest distance between each centroid and each airspace entity (storm cells or ADS-B aircraft)

is calculated at each time increment. Typical distances are illustrated using air traffic airspace entities

for two different times in Figure 5a and Figure 5b.

The rate of change of each the distances is calculated at each time increment and used to calculate

a convergence time which corresponds to the hypothetical time each airspace entity (weather storm

cells or ADS-B aircraft) would take to arrive at the centroid location if it were to follow the shortest

path at the calculated rate of change. The full historical trajectory of each airspace entity is not

taken into account when calculating convergence times, producing a risk metric that allows for the

possibility that airspace entities do not necessarily follow projected/anticipated flight paths.

4.3.1 Weather risk metric

A weather risk metric is calculated for each centroid in the DGGS grid at each time interval. The

weather riskmetric at centroid cj at time ti,WRcj ,ti , is equal to the smallest convergence time of all the

weather entities as described in Equation 1. The weather risk metric WRcj ,ti provides a quantitative
measure of how close (in seconds) the nearest storm cell is to each centroid in the DGGS grid at

any moment in time. Appendix 2 contains the pseudocode detailing the logical breakdown of the

weather risk metric calculation used in the Python code.

WRcj ,ti = min(CTsk ,cj ,ti ,CTsk+1,cj ,ti ,CTsk+2,cj ,ti , ...) (1)

The weather risk metric for every centroid and timeWRcj ,ti can be expressed in terms of probabilities

by associating a weather risk metric value with the probability of a worst-case event occurring. The

worst-case event for weather risk, termed as A, is where a storm cell is exactly positioned at a

centroid location for a specific time. The probability of event A happening at centroid cj at time ti is
P(A)cj ,ti and a risk metric value of 0 seconds corresponds to P(A)cj ,ti = 100%. The probability of event
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Figure 5. Illustration of the shortest distances at two times

A not happening (1–P(A)cj ,ti ) is defined by aminimum riskmetric value that is of practical interest for

the weather case study and is selected to be of 1800 seconds (30 minutes) and corresponds to P(A)cj ,ti
= 0%. This value was selected based on a combination of historical data analysis to identify points

where risk metric trends stabilized past a point where changes in risk became negligible and expert

knowledge to incorporate domain-specific considerations. A similar value was used by Matthews

and DeLaura [72] for related weather risk research.

The assignment of probability values to the weather and air traffic risk metrics aligns with estab-

lished practices in risk assessment literature, such as the principles and foundational work outlined

by Cook and Unwin [73] for the nuclear safety industry and as well as more recent studies that

validate deterministic risk assessment methods done by Assis and Nogueira [74] in the field of en-

vironmental safety. The choice to use a deterministic threshold-based approach over probabilistic

methods was done based on them offering improved scalability, reduced computational complexity,

and ease of interpretation when compared to probabilistic methods [75], which are all requirements

for the methodology as outlined in the objectives section (Section 2).

4.3.2 Mid-air collision risk metric

The air traffic risk metricATRcj ,ti , is a measure of the potential risk of a midair collision occurring at a

specific centroid and time. For the purposes of this paper, a midair collision occurs if two conditions

are met. The first condition is that an aircraft pair must have the same convergence time at the

same centroid within a specified threshold (∆CTthreshold ). The threshold ∆CTthreshold can be adjusted

to provide a margin of safety or “box” for each aircraft, where any pair of aircraft with less than

∆CTthreshold between their convergence times is considered a mid-air collision risk.

The second condition is that if there is more than one pair of aircraft that meets the 1st condition,

then the pair of aircraft that has the smallest convergence time is the pair that will arrive at the

centroid first and therefore the critical pair driving the mid-air collision risk metric.

Themid-air collision risk metric at centroid cj at time ti, ATRcj ,ti is calculated according to Equation 2,
where ATRAPm ,cj ,ti , ATRAPm+1 ,cj ,ti , ATRAPm+2 ,cj ,ti , and ATRAPn ,cj ,ti are the mid-air collision risk metrics of

the 1st, 2nd, 3rd, and nth pair of aircraft that meet conditions 1 and 2 for centroid cj at time ti,
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respectively.

ATRcj ,ti = min(ATRAPm ,cj ,ti ,ATRAPm+1 ,cj ,ti ,ATRAPm+2 ,cj ,ti ,ATRAPn ,cj ,ti ) (2)

Equation 3 is used to calculate the risk metric for each pair of aircraft that meet conditions 1 and 2

for centroid cj at time ti, where ∆CTAPm ,cj ,ti is the difference between convergence times for pair of

aircraft APm and CTmin,APm ,cj ,ti is the minimum convergence time of the aircraft pair APm. Appendix
3 provides the pseudocode describing the process of calculating ATRcj ,ti that was used in the Python

code.

ATRAPm ,cj ,ti = ∆CTAPm ,cj ,ti + CTmin,APm ,cj ,ti (3)

Using a similar process to the one used for the weather risk metric, the air traffic risk metric for every

centroid and time ATRcj ,ti can be expressed in terms of probabilities by associating an air traffic risk

metric value with the probability of a worst-case event occurring. The worst-case event for air traffic

risk, termed as B, is where both aircraft in a pair of aircraft APm are exactly positioned at a centroid

location for a specific time. The probability of event B happening at centroid cj at time ti is P(B)cj ,ti
and a risk metric value of 0 seconds corresponds to P(B)cj ,ti = 100%. The probability of event B not

happening (1 – P(B)cj ,ti ) is defined by a minimum risk metric value that is of practical interest for the

air traffic case study and is selected to be of 180 seconds (3 minutes) and corresponds to P(B)cj ,ti = 0%.

Like theweather riskmetricminimumvalue, the air traffic riskminimumvaluewas selected based on

a combination of historical data analysis to identify points where risk metric trends stabilized past a

point where changes in risk became negligible and expert knowledge to incorporate domain-specific

considerations. A similar value was used by Kuchar and Yang [76] for related aircraft collision risk

research.

4.3.3 Combining weather and mid-air collision risk metrics

A comprehensive geospatial risk metric can be produced for each centroid of the DGGS grid at each

moment in time by combining both risk metrics of weather and air traffic risk. The method used to

combine the weather and air traffic risk metrics uses the following process [77]. The probability of

a worst-case event occurring where both events A and B occur for the same centroid cj at time ti is
termed P(C)cj ,ti . Assuming A and B and independent events, P(C)cj ,ti can be expressed as:

P(C)cj ,ti = 1 –

[
(1 – P(A)cj ,ti ) × (1 – P(B)cj ,ti )

]
(4)

The values for the combined risk metric are influenced by the minimum thresholds for the weather

and air traffic risk metrics of 30 minutes and 3minutes, respectively. Aircraft typically travel at much

higher speeds than weather storms, making the selection of a combine risk metric minimum thresh-

old dependent on anticipated results of the analysis. In the case of the example presented in this

paper, this was addressed by analyzing a large number of potential values and selecting thresholds

within a closer range. This option produced a combined risk metric that remained representative

and significant across both domains, mitigating discrepancies arising from differing timescales and

ensuring meaningful integration of air traffic and weather risk.
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5. Results

This section describes the results obtained using the geospatial airspace risk model to calculate the

risk metric at each of the geospatially distributed centroids for different time steps using the pro-

cessed weather and air traffic data. The results are presented using three types of scenarios of in-

creasing airspace complexity. The first type of scenarios, presented in Section 5.1 calculates weather

risk metric values (P(A)cj ,ti ) using only weather data in the model, while the second type of scenar-

ios (presented in Section 5.2) uses only air traffic data in the model to calculate mid-air collision risk

metric values (P(B)cj ,ti ). The third type of scenarios (shown in Section 5.3) combine weather and air

traffic risk into a combined risk metric (P(C)cj ,ti ) using the process described in Section 4.3.

5.1 Weather only scenario

This section presents the results obtained for scenarios using weather data only. Figure 6a and

Figure 6b show 2D and 3D satellite views of the larger 100 km cubic DGGS region, which is used to

identify high-level weather patterns; and Figure 7a and Figure 7b show 2D and 3D satellite views of

the smaller 5km grid width region, which is used to show weather risk results with more granularity

(using the 100 m DGGS cell size and 5 km grid width).

Figure 6 shows 2 hours of weather data where 11 distinct storm cells have been identified. The

figure shows that the storms generally travel in the north-east direction. The 3D view of the figure

shows that the storms cells usually change altitude from higher altitudes (2000 m MSL) above the

AppalachianMountains to lower altitudes (700mMSL) above New York City and then level off above

the Atlantic Ocean. The average speed at which storm cells travel is much slower than the air traffic

movement.

Figure 6. Overview of storm cells in the 100 km cubic DGGS grid

Figure 7 shows the 5km airspace region centered on the LGA airport that is used to calculate weather

risk metric values for each centroid at each time interval. Although the risk metric is calculated for

all centroids in the DGGS grid (125,000 centroids in total), two arbitrary geographical centroids

were selected and will be used as examples to validate and explain the weather risk results obtained.

The two centroids are referred to as ‘centroid 1’ and ‘centroid 2’ and are depicted in Figure 7 and

all subsequent figures using red and green square symbols, respectively. Centroid 1 is positioned

at [594950, 4515268, 1200], at an altitude near storm cells, and centroid 2 is positioned at [596195,

4513437, 300], at an altitude lower than storm cells, in meters of Universal Transverse Mercator
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(UTM) coordinates. Centroid 1was selected as a centroid of interest to showhigher values of weather

risk while centroid 2 was selected to show lower values of weather risk. Figure 7 also shows 2 distinct

storm cells, identified as storm cell 0 and 1, which are travelling in the 1000 - 1400 m altitude range.

Figure 7. 5km region near LGA airport with centroids 1 and 2 and storm data

Figure 8 shows the probability of a worst-case event occurring at centroids 1 and 2 for the weather

only scenario P(A)cj ,ti over a lapse of time of 6 minutes where storm cells 0 and 1 are present in

the 5 km DGGS grid. Blue vertical dashed lines are used in the figure to identify three key times

which will be discussed in more detail using Figures 9, 10, and 11. P(A)cj ,ti for centroid 1 presents

on average higher values when compared to centroid 2, indicating a greater risk of weather storms

being located near this centroid for this scenario. At 18:02:08, P(A)cj ,ti is 79% for centroid 1 and

progressively increases over time up to a peak near 18:06:00. After 18:06:00, the risk probability of

centroid 1 decreases rapidly down to 12% at 18:07:49. On the other hand, P(A)cj ,ti for centroid 2 is

37% at 18:02:08 and then decreases non-linearly down to 0% 18:03:45.

Figures 9, 10, and 11 can be used to understand in more detail and validate the P(A)cj ,ti values shown
in Figure 8 for the same three selected times marked by the dashed blue lines in Figure 8. Figure 9

shows 3D weather risk maps for these 3 selected times, Figure 10 shows 2D weather risk maps for

the same 3 times at the altitude of centroid 1 and Figure 11 shows 2D weather risk maps for the same

3 times at the altitude of centroid 2. Figures 9, 10, and 11 also show centroid 1 and 2 using red and

green squares and P(A)cj ,ti values for all calculated centroids (not just for centroids 1 and 2) using a

color scale ranging from dark red for high risk values (near 100% P(A)cj ,ti ) to light green values for

low risk values (near 0% P(A)cj ,ti ). The current position of each storm cell is depicted using a storm

icon and the historical trajectory of storm cells 0 and 1 are illustrated using blue and orange lines

respectively.

The 3D risk maps of Figure 9 show that the centroids producing risk create a spherical shape near

storm cell locations that are elongated along the direction of travel of each storm, with higher risk

values located nearest to each storm cell. This is expected behaviour since the P(A)cj ,ti for each
centroid is calculated based on the shortest distance between each centroid and storm cell and the

rate of change of the shortest distance.

At 18:02:08, the 2D risk map of Figure 10 at the centroid 1 altitude (1200 m) shows that centroid 1

is located near the trajectory of storm cell 1. At 18:03:58 the shortest distance between storm cell 1

and centroid 1 decreases producing higher P(A)cj ,ti values. Finally, at 18:07:58, Fig. 10c shows that
the risk at centroid 1 switches to being driven by storm cell 0, explaining the trend observed in Fig.

8 for centroid 1 at this time.
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Figure 8. Weather risk metric over time for centroids 1 and 2

At 18:02:08, the 2D risk map of Figure 11 at the centroid 2 altitude (300 m) shows that centroid 2

is located nearest to storm cell 0. At 18:03:58 risk is now 0% since Figure 11b shows that the green

centroid 2 square is outside of the risk sphere. This is explained by the fact that both the shortest

distance and the rate of change of the shortest distance is now diverging past this time between

storm cell 0 and centroid 2.

Figure 9. 3D weather risk maps for 3 selected times
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Figure 10. 2D weather risk maps for 3 selected times for centroid 1 at 1200m altitude

Figure 11. 2D weather risk maps for 3 selected times for centroid 2 at 300m altitude

5.2 Air traffic only scenarios

This section presents the results obtained for scenarios using air traffic data only. The same 5 km grid

width DGGS grid with 100 m DGGS cell size is used to present mid-air collision risk results as was

used for the weather only scenarios of Section 5.1. The air traffic only results feature two distinct

scenarios: 1) a two aircraft scenario (presented in Section 5.2.1) and 2) a three aircraft scenario

(presented in Section 5.2.2). Although P(B)cj ,ti risk values are calculated for all centroids in the DGGS
grid, two new arbitrary centroids, termed ‘centroid 3’ and ‘centroid 4’, were selected to be used as

examples to validate and explain the mid-air collision risk results obtained in this section. Centroid

3, depicted by a blue square in all subsequent figures, is positioned at [595695, 4513737, 500], at an

altitude where there is much air traffic taking off and landing at the LGA airport. Centroid 4, depicted

by an orange square symbol in all subsequent figures, is positioned at [595695, 4513437, 2400], an

altitude that is higher than most air traffic in this region. Centroid 3 was selected as a centroid of

interest to show higher values of air traffic risk while centroid 4 was selected to show lower values

of air traffic risk.

Figure 12a and Figure 12b show the airspace region used for air traffic only results using 2D and

3D perspectives. 32 different aircraft are depicted using oranges dots over a lapse of time of 1 hour

between 18:00:00 and 19:00:00. This figure shows the general trends observed in the air traffic data

for this region and time. Most of the air traffic is found at lower altitudes (0 to 1000 m) where aircraft

are taking off and landing at the LGA airport. There are two additional groups of aircraft, one that is

performing flyovers over the LGA airport in the 1000-2000 m altitude range and one that is cruising

at higher altitudes over the LGA airport (3000 to 5000 m range).
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Figure 12. 5km region near LGA airport with centroids 3 and 4 and air traffic data

Figure 13 shows the probability of a worst-case event occurring for the air traffic only scenario

P(B)cj ,ti for centroids 3 and 4 in blue and orange over a lapse of time of 10 minutes where a sequence

of 10 aircraft are present in the 5 km DGGS grid. Fig. 13 shows using aircraft icons and a secondary

y-axis on the left of the figure the times where each aircraft is present in the airspace and their

corresponding ICAO identifiers. Vertical dashed lines are used to identify three key selected times

for each air traffic scenario, the blue dashed lines being for the two aircraft scenario and the green

dashed lines being the selected time for the three aircraft scenario. The mid-air collision risk metric

values near at these times will be discussed in more detail in Sections 5.2.1 and 5.2.2. In Figure 13,

P(B)cj ,ti for centroid 3 presents on average higher values when compared to centroid 4, indicating a

greater risk of air traffic collisions being located near this centroid for this scenario. This means that

collisions are more likely to occur at altitude ranges near 500 m (near centroid 3) when compared to

higher altitudes near 2400 m (near centroid 4). The values of P(B)cj ,ti for both centroids in Figure 13

follow curved and non-linear trends over time whenever a pair of aircraft are converging toward

either centroid 3 or 4. These results will be explained in more detail using figures 14 to 16 for a two

aircraft scenario and figures 17 to 19 for a three aircraft scenario in the Section 5.2.1 and Section 5.2.2

below.

Figure 13. Mid-air collision risk metric over time for centroids 3 and 4



Journal of Open Aviation Science 17

5.2.1 Two aircraft scenario

The two aircraft present in this scenario are aircraft A2A618 and aircraft AC0417 which are both in

the airspace between times 18:06:05 and 18:06:42. The historical ADS-B trajectories of both aircraft

are shown in Figures 14, 15, and 16 using pink and grey lines, respectively. The 3D maps of Figure 14

show that aircraft A2A618 is flying over the LGA airport at a low altitude ( 1000 m) while aircraft

AC0417 is performing a landing on runway 13. The 3D risk maps of Figure 14 show a larger risk

region that could result in a worst-case event at time 18:06:05 and then as both aircraft progressively

get closer to each other up to time 18:06:42 the risk region reduces in size but the number of high risk

centroids (dark red centroids) increases. This is expected behaviour since the air traffic risk metric

P(B)cj ,ti described in Section 4.3 depends on the rate of change of the shortest distance between each

aircraft with respect to each centroid.

The 2D risk maps shown in Figure 15 for the same 3 times can be used to analyze the P(B)cj ,ti results
for centroid 3 (the high traffic centroid). The three times shown in Figure 15 show that P(B)cj ,ti is
greatest when both aircraft in the pair have the shortest distance to centroid 3 and are also converg-

ing to centroid 3 at the fastest rate. The local minimum shown in Figure 13 can be explained by these

results, where the local minimum corresponds to the point of highest risk produced by the aircraft

pair.

Finally, the 2D risk maps shown in Fig. 16 for the same 3 times can be used to analyze the P(B)cj ,ti
results for centroid 4 (the low traffic centroid). The figure shows the same trend as for the centroid

3 results but with lower risk probabilities overall. One additional observation is that although the

P(B)cj ,ti risk values are lower (less risk) for centroid 4 at higher altitudes when compared to centroid

3 at lower altitudes, Figure 13 shows that the rate of change of P(B)cj ,ti is much greater than centroid

3. This means that even though risk values are lower at higher altitudes in this scenario, they can

change at a higher rate than for lower altitudes, which could be equally as important a risk metric

as P(B)cj ,ti depending on the reason for using the proposed model.

Figure 14. 3D mid-air collision risk maps for 3 selected times
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Figure 15. 2D mid-air collision risk maps for centroid 3 at 500m altitude

Figure 16. 2D mid-air collision risk maps for 3 selected times for centroid 4 at 2400m altitude

5.2.2 Three aircraft scenario

The three aircraft scenario is used to show that the proposed airspace risk model can be extended to

scale to any number of airspace entities. Because the geospatial model of the airspace was developed

to analyze complex airspace interactions, it is most useful for scenarios involving three or more

entities interacting in the airspace and the other scenarios discussed in this paper are presented for

illustrative and verification purposes of the method since the results are more visually interpretable

whereas those for more complex scenarios involving three or more aircraft are not.

The three aircraft present in this scenario are aircraft A2A618, aircraft A02CF1, and aircraft A4F7CB,

depicted in the following figures using pink, dark yellow, and cyan lines respectively. Figure 17

shows the 3D risk maps for the three aircraft scenario for the three selected times of 18:07:24,

18:07:32, and 18:07:40 and figures 18 and 19 show the 2D risk maps at the centroid 3 and centroid 4

altitudes. These results show that for three or more airspace entities, the airspace risk model pro-

duces more complex risk map shapes when compared to two or less entities, and that there are more

than one localized area of risk. Although these scenarios are more complex and harder to interpret,

they demonstrate that the proposed model provides a means of analyzing more complex scenarios

using a data-driven methodology for complex scenarios that are often found in real-life airspace

encounters.
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Figure 17. 3D mid-air collision risk maps for 3 selected times

Figure 18. 2D mid-air collision risk maps for centroid 3 at 500m altitude

Figure 19. 2D mid-air collision risk maps for 3 selected times for centroid 4 at 2400m altitude

5.3 Combined weather and air traffic scenarios

A comprehensive geospatial risk metric that is more representative of real-life airspace conditions

can be produced for each centroid of the DGGS grid at each moment in time by combining both risk

metrics of weather and air traffic risk using the process described in Section 4.3. This combined risk

metric P(C)cj ,ti represents the probability of a worst-case event occurring where at least one of the
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two events A or B occur for the same centroid cj at time ti . Section 5.3 will discuss a scenario for

combined risk results. The combined risk scenario will use the same 5 km DGGS grid width with

100m DGGS grid cell size for the weather and air traffic data from 18:00:00 to 18:10:00. Figure 20

shows the airspace region used for the combined risk scenario using 2D and 3D perspectives with

centroids 1, 2, 3, and 4 and the storm and air traffic data present between 18:00:00 and 18:10:00.

Aircraft trajectories are depicted using orange lines and storm cell trajectories using blue lines.

Figure 20. Centroids 1, 2, 3, and 4 with storm and air traffic data

Figure 21 shows P(C)cj ,ti for centroids 1, 2, 3 and 4 over time using red, green , blue, and orange colors

respectively. The figure shows that if there is no risk of any type P(C)cj ,ti = 0%, if there is only air

traffic risk at centroid cj and time ti then P(C)cj ,ti = P(A)cj ,ti , if there is only weather risk at centroid

cj at time ti then P(C)cj ,ti = P(B)cj ,ti , and if there is both air traffic and weather risk at centroid cj at
time ti then P(C)cj ,ti = 1 –

[
(1 – P(A)cj ,ti ) × (1 – P(B)cj ,ti )

]
. The developed methodology could also be

modified without much effort to accommodate other equations for combining two risk metrics than

the one that was used in this paper in future research.

Figure 21. Combined risk metric over time for centroids 1, 2, 3, and 4
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Figures 22 to 26 show combined risk maps for three key selected times (the same three times identi-

fied by the vertical blue dashed lines in Figure 21). The during the 1st time, at 18:06:00, there is only

weather risk present for all centroids in the airspace with storm cells 0 and 1 driving risk for differ-

ent centroids. Then, at time 18:06:06, there is both weather and air traffic risk. Similar to the three

aircraft scenario, combined risk results produce risk maps that become more complex to explain the

more entities and risk types that are present, although the model can capture the effect of combin-

ing multiple risk metrics into one. The shapes of the combined risk maps shown in Figures 22 to 26

for time 18:06:06 are hybrids of the air traffic and weather only risk map shapes where individual

spherical shapes for each risk type are merged into one more complex shape. This type of risk can

provide valuable insights on research involving multiple types of risk using a data-driven approach.

Finally, at time 18:06:54, aircraft AC0417 has left the airspace and only weather risk remains (no

more combined risk).

Figure 22. 3D combined risk maps for 3 selected times

Figure 23. 2D combined risk maps for centroid 1 at 1200m altitude
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Figure 24. 2D combined risk maps for 3 selected times for centroid 2 at 300m altitude

Figure 25. 2D combined risk maps for 3 selected times for centroid 3 at 500m altitude

Figure 26. 2D combined risk maps for 3 selected times for centroid 4 at 2400m altitude

5.4 Computational efficiency analysis

The fifth criteria for the developed model described in Section 2 is for the geospatial airspace model

to be computationally efficient. Table 1 (see Appendix 4) compares the run times of the Python code

for the three different steps of the developed methodology (Sections 4.1, 4.2, and 4.3) for air traffic

only, weather only, and combined air traffic and weather models. The table also includes different

run times for varying DGGS cell sizes and DGGS grid widths. The main observations with respect to

computational efficiency for the different model configurations tested can be summarized as follows:

1. The run time for the data collection and processing step of the methodology scales with the

number of airspace entities (aircraft or storms in this paper) present in the desired dataset.

Typically, a larger DGGS grid width will yield a higher number of entities (i.e. larger airspace

cubic area includes more aircraft) and require a longer run time.

2. The run time for the DGGS geospatial airspace model generation step scales with the total

number of centroids in the grid. The number of centroids is a function of DGGS cell size and

DGGS grid width.
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3. The run time for the risk calculation step scales with the number of entities and centroids.

This is explained by the fact that the sequence of calculations performed by the Python code

needs to run every time increment n∗ l number of times for the weather risk metric calculation,

m ∗m ∗ l number of times for the air traffic risk metric calculations, and (n +m ∗m) ∗ l number

of times for the combined risk metric calculations, where n is the number of storm entities, l
is the number of centroids, and m is the number of aircraft entities. Each run of the air traffic

risk metric calculation needs to be run m ∗m ∗ l times since it is performed for every possible

unique pair of aircraft present in the airspace at each time increment. See Appendix 3 for more

details on the pseudocode used to calculate the air traffic risk metric.

The developedmethodologywas intentionally designed to be as computationally efficient as possible

by doing two things: 1) themethodology uses the least amount of information possible (only 3D posi-

tion over time) to study spatial entities and 2) computationally efficient algorithms (Python modules

and Spatialite database querying made for efficient spatial transformations). This approach enables

the methodology to be used to analyze very large datasets and study complex airspace scenarios

using a minimum amount of information to enable the use of more elaborate and time-consuming

algorithms and calculations, which have proven promising in other models found in the literature .

6. Conclusion

This paper presents a novel methodology for developing a geospatial model of complex airspace

environments using a DGGS framework that is extensible to be used to study any geospatially dis-

tributed entity that is part of the environment. The model was demonstrated using two case studies

showing the impact on airspace risk caused by weather storm cell entities for the first case study and

then for the risks associated with mid-air collisions in the second case study. The results obtained

showed that the model satisfied the six model requirements set out in the objectives of the paper

(see Section 2) as follows:

1. Air vehicle agnostic: The presented results demonstrated that the developed method is air

vehicle agnostic by being used to calculate the risk of MAC for any existing or future air vehicle

since it uses only the time, latitude, longitude, and altitude parameters from the collected ADS-

B data for any entity in the space.

2. Applicable to any airspace region: The airspace model can be applied to study airspace

entities for any airspace region without significant modifications, providing three-dimensional

and time varying data is available for these entities (i.e. weather and ADS-B data). Setting a

new region boundary and collecting the weather or air traffic data for the region of interest are

the only changes required.

3. Fully three-dimensional: The airspacemodel is fully three-dimensional. It uses three-dimensional

data to perform risk model calculations for every centroid over time in the DGGS grid. Al-

though two different risk models were developed for weather and air traffic scenarios (see Sec-

tions 4.3.1 and 4.3.2), all risk models are based on the shortest distance between each centroid

and each airspace entity (storm cells or ADS-B aircraft) and the rate of change of the shortest
distances.

4. Capable of time varying analysis: The airspace model can be used to study time-varying

scenarios by using time-varying data for each entity type and calculating airspace risk for each

centroid and time using the rate of change of each the shortest distances as the basis for its risk

metric calculation.

5. Computationally efficient: The relative simplicity of the overall model allows it to remain

computationally efficient while still capable of running many scenarios of interest. Section 5.4

discussed the factors affecting computational speed in the model.

6. Scalability (area size, time interval, number of entities): The model is scalable because
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it can be parametrized to study multiple values of area sizes, time intervals, and number of

entities (i.e. storm cells and aircraft) while still meeting the other requirements.

The proposed geospatial model offers advantages that make it a valuable tool for studying com-

plex airspace environments while providing insights for various stakeholders. One of its primary

strengths is its ability to run numerous scenarios efficiently. The computational efficiency and scal-

ability of the model allow for large-scale simulations across diverse conditions, such as varying

airspace configurations, traffic densities, and weather patterns. This enables stakeholders to iden-

tify optimal strategies for airspace management, capacity estimation, and re-routing decisions, ulti-

mately enhancing operational safety and efficiency.

Another key advantage of the proposedmodel is its ability to integrate both real-life and fictional sce-

narios, offering the flexibility to combine, in the same simulation, hypothetical situations alongside

actual operational data, making it possible to evaluate the impact of future technologies, emerging

traffic patterns, or hypothetical events. This feature enables airspace planners, policymakers, and

industry stakeholders to test and evaluate the impact of future technological advancements, emerg-

ing traffic patterns, and novel operational concepts before implementation. For instance, Urban Air

Mobility (UAM) studies can leverage the model to simulate the integration of air taxis in congested

urban environments, while emergency response teams can analyze potential scenarios to optimize

search and rescue operations under varying conditions.
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Appendix 1. List of variables and their descriptions

Appendix 2. Pseudocode used to calculate the weather risk metric

Appendix 3. Pseudocode used to calculate the mid-air collision risk metric
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Appendix 4. Run time comparison table

NOTE: All times produced in the table were obtained using a ASUS ROG Zephyrus G15 laptop with

a AMD Ryzen 9 5900HS CPU, a NVIDIA GeForce RTX 3070 GPU, and 16 GB of RAM.
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