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Abstract
A conflict in Air Traffic Management is defined by a potential future risk of loss of separation. To solve

a conflict, air traffic controllers take proactive actions to ensure safe separations between aircraft. They

issue specific instructions to pilots for corrective measures, such as lateral manoeuvres, changes in alti-

tude or speed adjustments. To alleviate the workload of controllers, the conflict detection and resolution

process can be automated, resulting in recommendations for efficient manoeuvres. Traditional conflict

resolution algorithms often neglect factors inherent to controllers’ decision-making, leading to seemingly

impractical manoeuvre suggestions from a human standpoint, causing reluctance in acceptation among

controllers. The aim of our research is to obtain a catalogue of prevalent deconfliction practices, incor-

porating controllers’ uncertainty models derived from actual flight data. In the current contribution, we

focus on lateral deconfliction manoeuvres in en-route air traffic, and implement a simple heuristic method

to extract a catalogue of resolved conflict situations from historical ADS-B data. This catalogue will pro-

vide insights into controllers’ decision-making processes. In future works, we intend to use this catalogue

to identify the best practices for traffic deconfliction, taking into account human factors and operational

uncertainties, and to incorporate them into conflict resolution algorithms.
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1. Introduction

Air traffic controllers (ATCOs) have two key responsibilities: ensuring safe operations by main-

taining a safe separation between aircraft, and optimizing trajectories to align with time and cost

constraints. In the upper airspace, flights must remain separated by at least 5 nautical miles later-

ally and 1000 feet vertically. In this context, a conflict is defined as an anticipated loss of separation

between two flights. To detect and solve these conflicts, air traffic controllers estimate the future po-

sitions of all aircraft flying within their assigned airspace sector. Should these estimates bring two or

more trajectories too close together, controllers intervene by delivering instructions to pilots for the

execution of corrective actions, which may involve altering course, altitude, or speed. During the

process of conflict resolution, controllers incorporate safety margins that serve to ensure a consis-

tently comfortable level of separation in the presence of various uncertainties such as changing wind

conditions, variations in pilots’ reaction times, and potential communication misunderstandings.

Many algorithms have been proposed in the scientific literature to automatically solve air traffic
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conflicts. They aim to find conflict-free manoeuvres while minimizing other criteria such as fuel

consumption or extra flying time induced by the manoeuvre. Most rely on mathematical models for

the trajectories, their uncertainties, and the conflict detection. However, the air traffic controllers’

decision-making isn’t solely dictated by algorithmic considerations: it is also influenced by their

training and the innate complexities of human perception. Traditional methods often fail to account

for the cognitive processes and human factors influencing the controllers’ decisions, resulting in

unrealistic solutions. This lack of alignment with controllers’ real-world practices raises a pertinent

acceptability challenge. Solutions that significantly deviate from their established decision-making

patterns are less likely to gain their approval. To earn acceptance from human operators, a conflict

resolution tool must suggest solutions that are consistent with the approach of human controllers

and that accommodate their internal uncertainty model.

As a first step towards this ultimate objective, we would like to extract a catalogue of deconflicted

situations from historical ADS-B data coupledwith flight plan information. This is a challenging task

as ADS-B data consist solely of position sequences, lacking real-time controllers’ radio instructions

to pilots. In order to detect lateral manoeuvres issued by the controllers, we propose a heuristic

method combining the detection of deviating trajectory segments and considerations on the lateral

separation with nearby flights. In this paper, we focus on tactical deviations.

In Section 2, we detail a literature review to establish the background and context of our research.

The methodology used to address the research questions is presented in Section 3. The results are

presented in Section 4. A qualitative validation, through visual inspection, of a subset of our results

is presented in Section 5. In Section 6, we discuss our method and results, and outline potential paths

for improvement. Finally, we conclude our study in Section 7 with a summary of the main findings

and their implications, and some perspectives for further research directions.

2. Literature Review and Previous work

Prior research has explored diverse methodologies for conflict detection, including trajectory pre-

diction using probabilistic models [1, 2], confidence intervals [3], and specialized machine learning

models for time-series data [4]. Additionally, some machine learning methods bypass trajectory

prediction entirely. For instance in [5], conflicts and critical scenarios are simulated by modify-

ing historical ADS-B data from the OpenSky Network, with machine learning employed to predict

conflicts among the extracted trajectories.

Concerning conflict resolution, several methods have been proposed in the literature. For instance,

in [6, 7], mixed-integer programming is applied to find optimum conflict resolutions, without con-

sidering trajectory prediction uncertainties. In [8], the conflict resolution problem is modelled as

a minimum weight maximum clique problem and solved with a mixed-integer linear programming

method, without taking uncertainties into account. Other approaches, such as Evolutionary Algo-

rithms (AE) [9, 10] or Ant Colony optimization [11] do not guarantee the optimality of the solutions,

but can compute good solutions within a limited time budget. They can also easily accommodate

more realistic uncertainty models. In [12], A Constraint Programming approach is compared with

an Evolutionary Algorithm, taking speed and lateral uncertainties into account, using pre-computed

lateral manoeuvre combinations.

More recently, a specific attention has been given to human factors in conflict resolution. If we want

to provide appropriate tools to assist controllers in their work, we first need a solid understanding of

the way they detect and solve conflicts. Various aspects of controllers’ behaviour have been studied.

In [13], for example, the authors conducted experiments to study controllers’ decision process and

its implications in terms of workload calculation. More data-driven approaches take advantage of

the current availability of large real-life flight databases by trying to extract manoeuvres and con-
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trollers’ actions from historical data and characterize them. This is the case for [14] which uses

unsupervised learning, or [15] with an approach based on the use of an auto-encoder architecture

and reconstruction error.

As we now know that controllers are more likely to accept solutions that align with their own

thought process [16, 17], integrating human perception in conflict detection and resolution models

can help increase the acceptability of solutions. Several approaches now try to producemore realistic

deconfliction suggestions by including real-life data produced by controllers usingmachine learning.

For example, [18] uses a reinforcement learning method based on deconflictions performed by real

ATCOs on simulated conflicts, whereas [19] uses imitation learning with the objective to learn from

deconfliction manoeuvres in historical data.

Due to their training and perception, controllers have to build an internal uncertainty model to

detect conflicts in incoming traffic, but also to maintain a safe separation during deconfliction while

working under variable conditions. An attempt at explicitly extracting uncertainties is presented

in [20]. This method is trained on a data set of conflict resolutions and takes the uncertainties

as decision variables to try to reconstruct them. On an artificially generated data set with known

uncertainty values, it manages to find the lateral and speed uncertainties embedded in the data. Later,

this same method showed promising results on a small data set of real-time experiments, but has

not yet been experimented on a large real-life conflict resolution data set, due to the unavailability

of such data set at present.

In the current paper, we propose a heuristic method to extract a large data set of conflict resolutions

from OpenSky ADS-B trajectories and their corresponding flight plans, focusing on the detection

of lateral manoeuvres, as a first step. The proposed heuristic method is similar, in its principle, to

the approach used in [21] to identify critical scenarios of risks. In [21], the authors use a "what-if"

methodology examining what could have happened if the controller had not issued an instruction

deviating the trajectory. In our study, we do not have the instructions issued by the controller in

our data, but we can detect when a trajectory does not align with its flight plan, and observe what

would have happened if it had followed its planned route after the beginning of the deviation. This

allows us to determine if the lateral deviation was caused by a controller’s instruction, or not.

3. Methodology

In this section, we provide an overview of our data sources and methodology to identify and extract

conflict situations arising within a same horizontal plane, and that were solved through lateral track

deviations only.

3.1 Data Collection and Preprocessing

The OpenSky Network [22] gives us access to a massive ADS-B database of real traffic. We start

experimenting with this base by performing a first extraction on the AIRAC cycle 2207 (July 14 to

August 10, 2022) in the Air Control Center of Bordeaux, France (LFBBDX).

We enhance this dataset by incorporating flight plans corresponding to each flight within the ADS-

B database. This information was provided by the Air Navigation Services, along with information

to the associated navaids. This augmentation resulted in a more complete database, encompassing

not only trajectories but also their corresponding flight plan information, associated to a unique

identifier. We used the Traffic data structure provided by the Python library traffic [23] to structure
and manipulate this dataset. The resulting dataset was resampled to one data point per second to

ensure uniformity and enable meaningful comparisons across flights. Additionally, we used filters

to exclude data points with abnormal values related to altitude, track angle, vertical rate, and ground



4 Kim Gaume et al.

speed. Given our specific focus in en-route deconfliction, we retained only those trajectory segments

that exceeded a predefined altitude threshold, set at 20,000 feet.

3.2 Deviations from the Flight Plan

One way to detect a deconfliction manoeuvre is by observing deviations from an aircraft’s original

trajectory. What we call deviations in this study is illustrated in Figure 1 with the example of the

portion of flight plan SOPIL BALAN EVPOK NARAK GAI LOMRA ROCAN PUMAL.

In Figure 1a, we have the original flight plan, and in Figure 1b, we visualize the corresponding trajec-

tory if the flight plan is precisely adhered to. It becomes apparent upon observing real trajectories in

conjunction with their associated flight plans that it is not uncommon for aircraft to take shortcuts

and bypass several navaids.

In Figure 1c, we present an actual trajectory linked to this flight plan, demonstrating instances where

certain navaids are bypassed in favour of a more direct route. While this trajectory may not precisely

follow the flight plan, it remains aligned with at least one of the navaids in the flight plan at any

given time.

In Figure 1d, we encounter a different situation. The orange segment denotes a portion of the tra-

jectory in which the aircraft’s alignment does not correspond to any of the navaids specified in the

flight plan. This orange trajectory section either aligns with a navaid that is not in its flight plan,

or lacks alignment with any navaid whatsoever. For better precision, we only check alignment with

navaids that are within a distance of 200 NM or less.

(a) Flight plan (b) Theoretical trajectory (c) Real trajectory (d) With deviation

Figure 1. Illustration of what is considered as a deviation in our paper

These last occurrences give an indication that something unexpected happened during the flight

and led to a manoeuvre order, potentially related to a deconfliction. Our first step is to identify and

extract them from our dataset. As we focus on lateral deconflictions only, we also need to eliminate

instances that exhibit instability in altitude. We do this by checking that, during the entire timewhen

the trajectory is deviated, its altitude remains stable within a threshold altmargin. Finally, we need to

take into consideration that some changes in directions can lead to deconflictions that are unrelated

to an avoidance manoeuvre, especially when the alignment simply switches from one navaid to the



Journal of Open Aviation Science 5

next. As these turns are perfectly normal, we choose to filter them out using a simple threshold

durationmin, under which we ignore the deviation. This process is summarized in Algorithm 1.

Algorithm 1 Find deviations

Require: Angle precision precangle , minimum duration threshold durationmin.
1: function FIND_DEVIATIONS(traffic,flightPlan)
2: D ← {}

3: for each flight in traffic do
4: for each dev in UNALIGNED_PORTIONS(flight,flightPlan) do
5: if dev.duration > durationmin and ISSTABLE(dev, altmargin) then
6: D ← D ∪ {(dev, closest)}
7: end if
8: end for
9: end for

10: return D
11: end function

3.3 Neighbouring Flights Potentially Involved in a Conflict

Once these deviations are clearly identified, we examine them in relation to the surrounding air

traffic. For each deviated aircraft, we try to identify which other aircraft caused the deviation, if any.

Given an aircraftA for which a lateral deviation starting at time ts has been detected, we define a time

horizon τ and consider the trajectories of A and the surrounding flights in the time interval [ts , ts +
τ]. The default value for τ is 20 minutes. If the trajectory ends or leaves Bordeaux ACC airspace

before these 20 minutes, the horizon corresponds to the timestamp at the last available position.

Additionally, if we detect a significant change in altitude after the conclusion of the deviated portion
1
,

we only consider the stable trajectory segment and adjust the horizon to match the timestamp of

the last position within this segment.

To be considered as potentially problematic to flight A, the trajectory of another aircraft B must

intersect with the horizontal planewhere the deviation ofA occurs, and fly at a close enough distance

within a relevant time frame. The aircraft Bmight not fly at a constant level over the considered time

period. Only the trajectory portions within a given altitude interval around the altitude of aircraft A
are kept. Thismeans that some trajectories in the setN of nearby trajectoriesmay not be continuous.

In the current study, the chosen altitude interval is +/ – 50 feet around the altitude of aircraft A. We

are aware that this value is too restrictive to actually detect all conflicts with climbing/descending

aircraft, that should be handled as a specific case. This is left for further work.

Algorithm 2 Choice of relevant neighbours.

1: function SELECT_NEIGHBOURS(dev, traffic)
2: N ← traffic\{flight}
3: N ← traffic.between_timestamps (dev.start,min (dev.stop, horizonτ))
4: N ← traffic.between_altitudes(dev.altmin –marginalt , dev.altmax +marginalt )
5: return N
6: end function

A conflict is defined as an anticipated loss of separation between predicted trajectories. Conse-

quently, we make the assumption that a flown trajectory that is deviated due to a resolution remains

close to the conflicting trajectory, while respecting the minimum separation of 5 nautical miles. If a

1
The lateral deviation takes place at a same flight level, but the aircraft might climb or descent after the end of the deviation

and before time ts + τ
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deconfliction manoeuvre has occurred, we might identify the other involved aircraft by examining

the lateral separations with the flights in setN . For each deviated flight, we study the neighbouring

aircraft with the smallest lateral separation.

3.4 Extraction of Deconflicted Traffic Situations

Estimating the next positions in the trajectory without taking the deviation into account helps us

evaluate the possibility that a conflict actually occurred and has been solved by the controller. In

other words, a loss of separation happening between the predicted trajectory of a deviated aircraft

A and its closest neighbour Bmay be indicative of the fact that the deviation of A is actually a lateral

manoeuvre initiated to avoid a conflict with B.

We can predict the deviation-free trajectory using simple methods: a straight-line trajectory can

be relevant in that it gives us an idea of what would have happened if the aircraft had continued

on its current course. This technique might be interesting when considering short-term trajectory

predictions, but it loses its relevance when considering large prediction time horizons and when the

planned route beyond the start of the deviation is not straight.

In this paper, we use a prediction following the flight plan. As we know that, before deviating, the

aircraft was aligned with one of the navaids in its flight plan, we consider that the trajectory keeps

its alignment with this navaid, and then follows exactly the other navaids in its flight plan. The pre-

diction is based on a constant altitude, specifically the aircraft’s altitude just before deviating. Speed

is an unchanging average derived from the 20 minutes leading up to the deviation. The prediction

assumes instantaneous turns and does not consider physical constraints during this process.

Figure 2. The blue trajectory is deviated. Predictions are represented with dashed lines, the straight-line prediction in grey
and the one following the flight plan in green.

Figure 2 shows an example of a detection of a solved conflict. The flight in blue is the deviated one.

The solid blue line is the flown trajectory. The dashed grey line is the predicted trajectory when

following the current course. The dashed green line is the predicted trajectory when following the

planned route. The trajectory in orange is the one closest to the deviated flight. In this example,

the closest separation between the straight line prediction and the closest neighbour’s trajectory
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is 5.9 nautical miles (NM). The closest separation when using the planned trajectory is 3.0 NM. As

previously mentioned, trajectories routinely skip one or several navaids in their trajectory, therefore

using the planned trajectory is not infallible, but it solves part of the bias due to a straight-line

prediction.

Let us denote Min_real_sep the closest separation between the flown trajectories of the deviated

flight A and its closest neighbour B, and Min_pred_sep the closest separation between the planned

trajectory of A and the flown trajectory of B. Considering a required minimum separation threshold

Sep, we shall label a traffic situation as a solved conflict if and only if:

Min_pred_sep < Min_real_sep & Min_pred_sep ≤ Sep

With ideal trajectory predictions, one could set the required separation parameter Sep at the standard
separation Sepstd = 5NM . The real example shown in Figure 2 is ideal in the sense that the predicted

separation using the planned route is below the standard separation threshold, whereas the actual

separation between the flown trajectories is above Sepstd.

For many other real situations, however, and given the uncertainties in the predictions made by the

controller and the additional margin that she or he may add to the standard separation, we might

want to choose a required minimum separation greater than 5 nautical miles in our heuristic. This

rises the question of which value to choose for this threshold, which will be investigated in the next

section.

4. Results

4.1 Lateral Deviations

When extracting the flights for which a lateral deviation was observed from the ADS-B dataset

(78,316 flights), we obtain 4.950 different situations. A summary of these results is given in Table 1.

Table 1. First application of the heuristic

Min_real_sep [NM] Min_pred_sep [NM] Duration [s] Time_to_CPA [s] Difference [NM]

Mean 14.83 13.51 417.0 423.4 1.320
Standard deviation 16.04 17.43 233.8 313.2 5.814
Minimum 0.276 0.009 121.0 1.000 -156.3
Q25 7.732 5.129 231.0 174.0 -0.048
Q50 9.495 7.988 367.0 372.0 1.169
Q75 13.92 14.43 552.0 618.0 3.645
Maximum 207.9 208.2 2043 1198 35.05

In this table:

• Min_real_sep is the minimum lateral separation between the aircraft executing the deviation and

their respective closest neighbour.

• Min_pred_sep is the estimation of the smallest lateral separation had the deviation manoeuvre

not been initiated, providing a baseline for comparison. This estimation is based on a trajectory

prediction that considers that, without a deviation, the trajectory would have followed its original

flight plan perfectly.

• Duration is the total length of the deviation.
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• Time_to_CPA is the time between the loss of alignment and the Closest Point of Approach (CPA)

in the real data.

• Difference is the difference between the real minimum separation and the predicted minimum

separation Min_real_sep –Min_pred_sep.

We observe that the minimum predicted separation can reach very high values, with a maximum

of 208.2 NM. It is clear that such high separation values do not correspond to a conflict resolution.

Relying only on the detection of lateral deviation to extract deconflicted situations is not enough.

The distributions of the actual (Min_real_sep) and predicted (Min_pred_sep) separations are shown
in Figure 3, with separation limited to 40 NM on the x-axis of the plot to improve legibility.

0 4 8 12 16 20 24 28 32 36 40
Separation (NM)

0

100

200

300

400

C
ou

nt

Actual
Predicted

Values

Figure 3. Distribution of actual and predicted lateral separation

As can be expected, the vast majority of the flown trajectories are separated by more than 5 NM,

whereas the distribution of the predicted separation is more symmetrical, with a lot of values below

5 NM.

The above results show that we need to filter out instances in which the predicted closest separation

exceeds an acceptable threshold, and that the difference between the actual and predicted separation

might be a quantity of interest.

4.2 Lateral Deviations with Filtering Threshold Sep = 15 NM

As a first guess, let us choose an arbitrary threshold of 15 NM to filter out the lateral deviations that

are probably not caused by a conflict resolution. Besides, we expect that a deconfliction manoeuvre

would increase the minimum separation between the conflicting trajectories. We account for this

factor by adding a criterion for difference > 0.

These filtering criteria (Min_pred_sep < 15 NM and positive difference) correspond to the heuristic

described in Section 3, with a separation threshold Sep = 15 NM.

The 3,038 results of this extraction are summarized in Table 2.

With smaller predicted minimum separations, our results are more likely to be related to decon-

fliction manoeuvres, and we can see that, on average, the deviation seems to significantly increase

separation. However, the threshold of 15 NM is arbitrary and there is no guarantee that it effectively

allows us to filter out situations unrelated to deconflictions.

4.3 Extracting a Filtering Threshold from the Data

The core idea explored in the following is that, from a statistical point of view, lateral deviations

that are not the result of a conflict resolution are just as likely to reduce the separation with the
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Table 2. Results with Min_pred_sep < 15 NM and difference > 0

Min_real_sep [NM] Min_pred_sep [NM] Duration [s] Time_to_CPA [s] Difference [NM]

Mean 9.161 5.917 447.4 460.1 3.244
Standard Deviation 2.553 3.099 225.4 281.5 2.558
Minimum 3.929 0.009 121.0 1.000 0.000
Q25 7.368 3.781 270.2 241.0 1.175
Q50 8.550 5.735 414.5 428.0 2.762
Q75 10.27 7.703 586.7 630.7 4.849
Maximum 32.29 14.97 2043 1198 21.27

closest aircraft as to increase it. On the opposite, lateral deviations that are resulting from a conflict

resolution are expected to increase this separation.

In statistical terms, we may expect the median of the difference between the actual and predicted

separation to be around zero for lateral deviations unrelated to deconflictions, whereas it should be

strictly positive for lateral deviations caused by a conflict resolution.

Figure 4 shows a scatter plot of the difference between the actual and predicted minimum separation

Min_real_sep–Min_pred_sep as a function of the predicted closest separationMin_pred_sep. The blue
dots represent the raw data. The black line is obtained by applying a Median k-Nearest Neighbours

(KNN) Regression technique with 100 neighbours to the raw data. In other words, it represents the

median of the difference as a function of the predicted closest separation. The vertical red-dashed

line represent a threshold value of 8 NM for Min_pred_sep.

Figure 4. Difference between actual and predicted minimum separation as a function of the predicted closest separation.

We observe that, for predicted separation values below 8 NM, the median value of the difference is

strictly positive and seems to follow a linear curve of equation y = 8NM – x. Beyond this threshold
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of 8 NM, the median is more or less constant, with value 0.

From these observations, we can conclude that lateral deviations with positive difference and

Min_pred_sep < 8 NM are more likely to be related to a deconfliction than those beyond this thresh-

old.

4.4 Lateral Deviations with Filtering Threshold Sep = 8 NM

Table 3 details the results of filtering out the lateral deviations with positive difference between the

actual and predicted separation and for which the predicted minimum separation is beyond 8 NM.

This extraction yields a total of 2,352 occurrences, corresponding to 3.00% of the flights in the initial

dataset.

Table 3. Results with Min_pred_sep < 8 NM and difference > 0

Min_real_sep [NM] Min_pred_sep [NM] Duration [s] Time_to_CPA [s] Difference [NM]

Mean 8.357 4.641 477.5 495.1 3.716
Standard Deviation 1.798 2.058 221.3 261.4 2.492
Minimum 3.929 0.009 121.0 1.000 0.000
Q25 7.140 3.133 310.0 296.0 1.703
Q50 7.982 4.958 454.0 472.0 3.414
Q75 9.208 6.276 613.0 653.0 5.338
Maximum 23.98 7.993 2043 1198 21.27

We notice that the minimum value for Min_real_sep is 3.93 NM, which violates the standard sepa-

ration constraint. Upon further inspection, this violation concerns only one occurrence and is asso-

ciated with erroneous values in the dataset. Though we do apply a filter to our data, abnormalities

can remain and add noise to our results, which we will address in future developments. Excluding

this specific instance, the lowest recorded value for Min_real_sep is 5.39 NM.

5. Validation

As a first attempt to validate our heuristic, we visually checked the results obtained from a subset of

our dataset, specifically data from July 14, 2022 and extract a total of 100 results, which represents

3.61% of the 2,763 flights in the catalogue of deconflicted situations.

Figure 5 shows two examples extracted from this subset, that actually seem to correspond to decon-

fliction manoeuvres.

Upon a thorough examination of the results, we have observed that the majority of trajectories align

with our expectations regarding the situations we intended to extract. However, six trajectories

exhibit an unexpected shape, and these correspond to three pairs, each associated with a distinct

situation. In each of these pairs, the trajectory contains two deviations, seemingly in an effort to

avoid a conflict with the same aircraft on both occasions. In these specific situations, we have the

option to either consider that both deviations were genuinely employed to address the same conflict,

or focus solely on the most recent one as being relevant. These exceptional cases will be considered

in future developments of this methodology.

6. Discussion and Paths for Improvement

In Section 4.3, we have shown that a good value for the filtering threshold Sep might be 8 NM.

Note however that by selecting this value, we might filter out a number of actual deconflictions for
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AFR32NF
FL370

AFR4152
FL370

GFM7Z
FL400

TVF67WR
FL400

Figure 5. Examples of two detected deconfliction situations, with the deviated trajectory in blue, the closest neighbouring
trajectory in orange and the predicted trajectory in grey.

which the controller used coarse trajectory predictions with large uncertainty values. If we intend to

use the resulting catalogue of deconfliction actions to learn an uncertainty model for the trajectory

prediction, filtering out these deconflictions might bias the resulting model towards low uncertainty

values. For such an application, it might be interesting to set Sep at a greater value than 8 NM, even

though we might include situations that are not actual deconflictions (false positives).

On the opposite, if the intended application of the catalogue requires more certainty that the ex-

tracted situations are actually solved conflicts, we might want to choose the Sep threshold between

5 and 8 NM, at the expense of a higher rate of false negatives (i.e. actual deconflictions that we

exclude from the catalogue).

The filtering threshold Sep can be adjusted depending on the use we want to make of the catalogue.

Though reducing the threshold may help filter out some of these instances, it would also strip our

dataset from some of its diversity. On the other hand, increasing the threshold will include more

deconflictions, but would also increase the risk to include false positives.

While our methodology has shown promise in identifying deconfliction situations, there are oppor-

tunities for improvement. Our parameters can be adjusted to filter results more precisely, and the

heuristic method could be extended to handle unexpected situations, such as successive deviations

in the same trajectory. Additional variables could be extracted from our data, such as geometrical

properties of the deviations and their position inside control sectors, or the time to the closest point

of approach.

For this study, we conducted a manual validation of a sample consisting of 100 results to assess the

performance of our method, but this validation was primarily qualitative and not formal. To ensure

the reliability of the extracted conflict resolution situations and the robustness of our methodology,

further formal validation is required. A more extensive and systematic validation process involv-

ing operational expertise and a larger dataset is necessary to provide statistical significance to our

findings and to validate the method’s effectiveness on a broader scale. For instance, we could use a

labelled dataset like [24] to verify that the count of deviations we identify aligns with the count of

heading change instructions generated for an equivalent number of flights. This comparison would
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constitute an interesting partial validation.

We might also apply unsupervised machine learning algorithms, such as clustering, to our result

dataset. This approach could serve a dual purpose in our research. First, it could assist us in the

identification of distinct aircraft manoeuvre patterns, potentially revealing different types of conflict

resolution strategies adapted to different situations. Secondly, it has the potential to uncover corner

cases that can help us further refine our methodology.

7. Conclusion and Perspectives

In this study, we have presented a heuristic method to extract conflict resolution situations from

historical ADS-B data. We focused exclusively on lateral deconflictions where aircraft undergo tra-

jectory deviations to resolve conflicts.

Our method, as presented in Section 3, can be summarized as follows. For each aircraft that is not

aligned with any navaid of its planned route for a significant amount of time, we find the closest

neighbouring flight, considering the separation between flown trajectories. We then compute a tra-

jectory prediction for the deviated flight, following the planned route after the beginning of the

deviation. If this trajectory prediction comes closer than a chosen threshold value from the clos-

est neighbour, and if the actual separation between flown trajectories is greater than the predicted

separation, then we consider the deviation as resulting from a deconfliction action.

Using a Median K-Nearest Neighbours (KNN) Regression method on our data, we showed that a

threshold value of 8 nautical miles seems adequate for filtering out lateral deviations unrelated to

deconfliction actions (see Section 4.3). We discussed the relevance of this value in Section 6, depend-

ing on the intended application of the resulting catalogue of deconflicted traffic situations.

With a separation threshold of 8 NM, we were able to extract 2, 352 lateral deconflictions from an

initial dataset of 78, 316 ADS-B trajectories in the upper airspace of Bordeaux ACC (see Section 4). A

preliminary visual exploration (in Section 5) of a small subset of 100 traffic situations of this catalogue

showed that all the lateral deviations in this subset seemed to be related to a deconfliction. Among

these, three pairs of flights seemed to have undergone several deviations to avoid a same conflict.

Once refined and validated, we believe that the methodology presented in this study can serve as a

foundation for future research in the field of air traffic management and provide a valuable resource

for developing and testing advanced conflict resolution algorithms that align with human decision

patterns and improve airspace safety.

In future work, we intend to extract valuable information from our catalogue of deconflicted situ-

ations on the controllers’ operational patterns, habits, and uncertainties, ultimately leading to the

creation of improved assistance tools for air traffic management.
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