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Abstract
The use of Hidden Markov Models (HMMs) in segmenting flight phases is a compelling approach with

significant implications for aviation and aerospace research. It leverages the temporal sequences of flight

data to delineate various phases of an aircraft’s journey, making it a valuable tool for enhancing the

analysis of flight performance and safety. In this work, we implement a multivariate HMM to identify 6

flight phases: taxi, takeoff, climb, cruise, approach and rollout. We reach amedian global accuracy of about

97% over a sample of several thousand flights with a very low number of decoded unlikely transitions.

Regarding several performance metrics, our method is competitive with existing methods in the literature,

such as fuzzy logic. Additionally, it provides, for each point of the flight, a probability of belonging to each

phase. Even in situations where there are missing values in the data, HMMs remain effective, ensuring

that no critical information is lost during the segmentation process.
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1. Introduction

Given some trajectory data, flight phase identification aims at segmenting a flight into different

phases. More precisely, a segmentation is a partition of data points. This task has been popular-

ized with the increasing availability of large Automatic Dependent Surveillance–Broadcast (ADS-B)

datasets, for which flight phases are not labeled [1].

The segmentation of flights has several uses from building aircraft performance models [2] to en-

hancing the development of reliable noise or emissions models around airports [3].

A key aspect of flight trajectories is the undefined number of segments to uncover due to different

flight frequencies and operations. Even within the same phase, aircraft may climb at different rates

or fly at different cruise altitudes. Another specificity is the strong correlation in time and space

between two consecutive points of a trajectory. Additionally, trajectory data may be noisy and/or

have missing values.

These characteristics, along with the variety of air operations, account for the wide diversity of ap-

proaches presented in the literature on the subject. As put in [4], two main approaches are employed

to identify phases from flight data records: logical rule-based decision-making, and probabilistic-

based decision-making.
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Given the challenge of specifying universal thresholds [5, 6], the fuzzy logic approach has estab-

lished itself in the literature as a flexible, simple, and fast method [7, 8, 9, 10]. For each point, it

is worth noting that fuzzy logic does not strictly return the probability of belonging to each class.

Additionally, it does not consider the temporal nature of the trajectory.

Recently, many contributions have framed the problem of flight phase detection as a machine learn-

ing task [11, 12, 13, 14]. To achieve good results, some methods often require a large number of

inputs, many steps are required as well as some training data.

Up to our knowledge, Hidden Markov Models (HMMs) have not often been used to segment flight

phases. In this framework, the trajectory is modeled as a multivariate time series that explores

multiple states (the flight phases). A segmentation is the result of a decoding procedure: once the

parameters of the HMM are estimated, the most probable sequence of states is retrieved. Unlike

threshold-based methods or fuzzy logic, HMMs place the temporal aspect of the trajectory at the

core of segmentation bymodeling the transition probabilities from one flight phase to another. Using

HMMs allows for uncertainty quantification in segmentation, providing the probability of belonging

to each class for each point. Unlike supervisedmethods, HMMs require only a very limited number of

inputs and do not need a training phase. HMMs have been used for at least three decades in signal-

processing applications, especially in the context of automatic speech recognition, but interest in

their theory and application has expanded to other fields (environment, biophysics, ecology etc.)

[15].

Given some trajectory data, we develop a multivariate HMM for the detection of the taxi, climb,

cruise, approach, and rollout phases. Like [14], we use de-identified aggregate flight recorded data

made available by NASA. We focus on data for tail 687. After a few basic data cleaning steps, we

are working with 2,868 flights. Each flight is resampled to 1000 points (linear interpolation). Time

is scaled so that each flight starts at t = 0 and ends at t = 1 (each flight is of different duration).

2. Hidden Markov Models

2.1 Theoretical framework

A univariate HMM consists of two parts:

• An unobserved parameter process (or hidden state process) denoted {Ct : t = 1, 2, ...}. It is a sequence

of discrete random variables valued in {1, ...,m}. This process is assumed to be a discrete-time

Markov chain.

• A state-dependent process denoted {Xt : t = 1, 2, ...} (the observation process). It is a sequence of

discrete random variables typically valued in N or R. The distribution of this process is assumed

to depend only on the current stateCt and not on previous states or observations. It is a conditional

independence assumption, ∀ t ≥ 2,∀ c1, ..., ct ∈ {1, ...,m},

P(Xt = xt | Xt–1 = xt–1, ...,X1 = x1,Ct = ct , ...,C1 = c1) = P(Xt = xt | Ct = ct ). (1)

An m-state HMM has m state-dependent distributions. Every observation is assumed to have been

generated by one of m component distributions. The hidden state process selects which of the dis-

tributions is active at any time. The state-dependent distributions are defined as, for i = 1, 2, ...,m,

∀ t ≥ 1,

pi(xt ) = P(Xt = xt | Ct = i). (2)

That is, pi is the probability mass or density function of Xt if the Markov chain is in state i at time t.
We use p as a general symbol for probability mass or density functions.
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To summarize, an HMM is a special type of a dependent mixture model in which a Markov chain

selects the component distributions. We first estimate the parameters of the HMM (numerical max-

imization of the likelihood). Then, we deduce information about the states occupied by the underly-

ing Markov chain. Such inference is known as decoding. Local decoding of the state at time t refers
to the determination of that state which is most likely at that time. More details may be found in

[15].

2.2 A model for flight phase identification

Suppose an aircraft is observed at integer times t = 1, 2, ..., T . For the moment, we assume that there

are no missing values (this assumption can be relaxed). For each time index, we observe q values: it
could be the position of the aircraft, its speed, the vertical rate and so on.

We consider the rate of climb (RoC), the ground speed (in knots) and the first differences of the

ground speed to identify six flight phases: taxi, takeoff, climb, cruise, approach, rollout. Flight phases

may be seen as states. We specify a constrained 6-state multivariate HMM for which the transition

graph of the corresponding Markov chain is represented in Figure 1. The first state is a good candi-

Figure 1. Transition graph of the constrained 6-state Markov chain.

date to represent the taxi phase. To ensure this, the initial distribution is taken to be (1, 0, 0, 0, 0, 0) (it

is fixed). State 2 refers to the takeoff, state 3 to the climb, state 4 to the cruise, state 5 to the approach,

state 6 to the rollout. We use Gaussian distributions to set up the state-dependent densities of the

RoC. The ground speed is transformed into a binary variable (1 if the ground speed is less than 0.05,

0 otherwise). We use Bernoulli distributions as the state-dependent densities of this variable. Finally,

a discretized version of first differences of the ground speed is used. A value of 1 is assigned if the

first difference at the point is greater than the quantile q0.995, -1 if the first difference is less than the

quantile q0.05, and 0 otherwise. We use multinomial distributions as the state-dependent densities of

this variable. A visual result for a typical flight is provided in Figure 2. Results are very good from

a visual perspective. The value of several performance metrics over a subsample are presented in

Figure 3. Among the 2,868 flights, the subsample corresponds to flights that have at least the 6 flight

phases of interest. The median global accuracy is more than 97%.

Fuzzy logic provides a measure of uncertainty that is not perfect: by its nature, the degree of mem-

bership in each class is not a probability. This is not the case with HMMs, for which it is possible to

obtain a probability of belonging to each class. An illustration is provided for the multivariate model

(Figure 4).
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Figure 2. Identification results for a typical flight on the altitude profile and on the ground speed profile.

Figure 3. Evaluation of the performance. Box plots of the F-1 scores per state. The crosses correspond to the averages.

Figure 4. Segmentation of the 6 main phases of the flight using the multivariate HMM and probabilities of belonging to each
class.
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