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Abstract
The capacity of an airport can be specified with a so-called capacity envelope, which indicates how many

take-offs and landings an aerodrome is capable of handling per unit time. In this study, the capacity

envelope of an airport is determined on the basis of Automatic Dependent Surveillance-Broadcast aircraft

trajectories obtained via the OpenSky Network. Trajectories are classified as departures and arrivals by

using rule-based algorithms. Subsequently, the time of landing or take-off is determined for all these flight

movements. Since some of the trajectories used in this study are not entirely covered near the ground,

an XGBoost model is used to improve the determination of the take-off and landing times. In a final

step, the capacity envelope is determined. To this end, the number of take-offs and landings operated

at an airport within 15-minute intervals are counted first. Then, the 92.5th percentile of departures is

computed for all observed arrival counts. Finally, a concave, non-increasing piecewise-linear function

is fitted to these quantile values. The method introduced in this study is subsequently applied to Lisbon

Airport in order to evaluate if and how the construction of an additional rapid exit taxiway has affected its

capacity. The results suggest that Lisbon Airport benefits from this rapid exit taxiway. Indeed, especially

when the airport handles a high number of landings, the additional rapid exit taxiway appears to allow

for a slightly higher number of departures.
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1. Introduction

The maximum throughput capacity, also known as the saturation capacity, of an airport’s runway

system is defined as the number of arriving and departing aircraft movements it can perform over

the period of one hour, while (i) the system experiences continuous demand, and (ii) air traffic con-

trol adheres to separation requirements [1]. When being operated at maximum throughput capacity,

however, airports are subject to major delays and congestion, as no level of service (LoS) require-

ments, such asmaximum acceptable waiting times for aircraft ormanageable workloads for air traffic

controllers, are considered. For this reason, airports rather rely on a concept called practical capacity
to specify the number of take-offs and landings that can be realistically achieved per unit time [2]. In

practice, a number of different definitions of practical capacity find application. As such, the concept

of declared capacity, where an airport declares its capacity on the basis of empirical knowledge of
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experienced congestion [3], is widely used. Alternatively, the concept of practical hourly capacity de-
scribed by the Federal Aviation Administration (FAA) is predominantly used in the United States of

America [4]. Thereby, practical capacity is specified as the number of take-offs and landings that can

be performed on a runway system under the condition that the average delay per aircraft movement

is not more than four minutes.

Regardless of the definition of practical capacity applied at an airport, its magnitude depends on a

multitude of factors. Most importantly, the number of runways available at an airport, their orien-

tation and layout in relation to each other, dependencies between runways, as well as the runway
configuration, which specifies how the available runways are utilised for take-offs and landings, af-

fect capacity. This is particularly the case at airports where two or more runways are available.

Moreover, for runways used for landings, the existence, location, and design of rapid exit taxiways
(RET), which allow arriving aircraft to leave the runway at higher taxiing speeds, increase runway

capacity as the average runway occupancy time (ROT) of landing aircraft is reduced. Besides that, an
airport’s capacity is affected by the actual composition of demand. In this context, both the aircraft

mix, which describes the types and size of aircraft using the runway system, as well as the move-

ment mix, which describes the percentage of take-offs and landings, are of importance. Furthermore,

separation standards describing the minimum horizontal and vertical distances to be maintained be-

tween two aircraft in flight by air traffic control at all times are relevant for the determination of

practical capacity. Lastly, the condition of the air traffic management system and environmental

factors, such as prevailing weather conditions affect the capacity of an airport system.

To describe the capacity of an airport, two different cases must be distinguished. If a relatively short

period of time is considered, for which demand, aircraft andmovement mix, the applied runway con-

figuration, weather conditions, etc., are known or given, the capacity of an airport can be expressed

with two integers: the maximum number of take-offs and landings that can be performed within

a certain unit of time. To estimate the capacity of an airport for such a short-run case, analytical

and simulation methods, as reviewed by Newell [5] and Odoni et al. [6], can be applied. However, if

airport capacity is considered over a long(er) period of time, it must be understood as a probabilistic

quantity. In such a long-run case, airport capacity is often described in the literature with a concave,

non-increasing envelope function φ, which specifies the dependency of the number of departing

aircraft from the number of arriving aircraft as follows

nDEP = φ(nARR, θ) (1)

where nDEP is the number of departing aircraft movements per unit time, i.e., the departure count,

nARR = {0, 1, . . . , nmax
ARR} is the arrival count, n

max
ARR is the observed maximum arrival count, and θl ∈ θ

refers to factors influencing the capacity envelope, such as weather conditions, runway configura-

tions, etc. On the basis of observational data specifying the number of arrivals on and departures

from an airport in t = 1, ..., T time intervals of a given duration, the envelope function φ can be

determined on an empirical basis
1
. Two different types of envelope functions are presented in the

literature. Gilbo [7] presents the capacity envelope, which is a piecewise-linear function enveloping

the maximum values of all observed combinations of number of departures and arrivals per time

interval. Simaiakis [8] proposed the operational throughput envelope, which specifies the average
number of departures and arrivals that can be handled by an aerodrome operated in a certain run-

way configuration per time interval.

1
Since the envelope indicates all possible combinations of the maximum number of take-offs and landings an airport can

sustain within a given time interval, the observational data used to determine the envelope should cover periods in which

the airport was subject to substantial demand. Moreover, it is important to mention that the capacity envelope can only be

estimated for airports which are operated (at least during some periods) at their capacity.
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To increase the robustness of an envelope function φ against outliers, which can either result from

errors in data collection or from the airport operating outside of its practical capacity, extreme ob-

servations should be rejected. To this end, Gilbo [7] applied a frequency-based filtering method,

whereby occurrences of extreme observations which occur with a frequency below a given thresh-

old value are excluded. Alternatively, Gilbo [7, p. 146] mentioned that rejection methods based on

the "proximity of extreme observations to the nearest observations, [or] ranks of extreme values"

could also be applied. Besides that, Ramanujam and Balakrishnan [9] suggested the combined usage

of quantile regression and linear optimisation to robustly estimate the envelope function φ.

To determine the capacity envelope or the operational throughput envelope in practice, a rather sub-

stantial amount of data describing take-offs and landings executed at a certain airport is required.

In this respect, Gilbo [7] used a made-up data set of a fictitious airport to create a capacity envelope.
Ramanujam and Balakrishnan [9] and Simaiakis [8], however, employed data from the FAA Aviation

System Performance Metrics (ASPM) database [10] and, in the case of Simaiakis [8], additional data

from the Airport Surface Detection Equipment - Model X (ASDE-X)
2
to create envelopes for airports

of the New York Metroplex, which includes John F. Kennedy International Airport, Newark Liberty

International Airport, and New York LaGuardia Airport.

Capacity and operational throughput envelopes as well as their dependence on runway configura-

tions and weather conditions are already well-documented in the literature. To the best knowledge

of the authors, however, there are no contributions describing how the capacity envelope of an air-

port is affected when the runway and taxiway system of an airport is modified. Furthermore, there

is no contribution in the literature in which the capacity envelope of an airport is empirically de-

termined exclusively on the basis of Automatic Dependent Surveillance-Broadcast (ADS-B) data. In

light of these gaps, this study focuses on the questions of (i) how the capacity envelope of an airport

can be determined on the basis of open-source ADS-B data obtained from the Opensky Network

(OSN) [11], and (ii) how the capacity envelope of an airport is affected when one or more RET are

added to the taxiway system of an airport. Consequently, this study contributes to knowledge by

introducing a method to generate capacity envelopes on the basis of OSN data, by evaluating and

discussing the impact of RET on capacity envelopes, and by presenting an example showing how

the method described in this study can be employed in practice.

The remainder of this study is structured as follows: In Section 2, a method to determine the capacity

envelope of an airport on the basis of OSN-sourced ADS-B data is presented. Subsequently, Section 3

contains a practical example in which the method presented in this study is applied to a real-world

example concerning the airport of Lisbon, Portugal. Finally, the results and limitations of this study

are discussed in Section 4, while conclusions and outlooks are provided in Section 5.

2. Methods

In the following, it is described how a capacity envelope function for an airport can be determined

on the basis of OSN-sourced ADS-B data. The remainder of this section is divided into two parts:

Section 2.1 describes the methods used to create the data set employed in this study, while Section 2.2

outlines the procedure applied to determine a capacity envelope function φ for an airport on the

basis of OSN trajectory data.

2
The Airport Surface Detection Equipment - Model X (ASDE-X) is a system operated by the FAA which, at the time of

writing, is in use at 35 major US airports. The system is used to track aircraft ground movements. The data required for

this is obtained by fusing a number of sensors such as surveillance radars, multilateration sensors, Automatic Dependent

Surveillance-Broadcast (ADS-B), Mode S, or flight plan data.
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2.1 Data collection and pre-processing

To generate a data set on the basis of which a capacity envelope function φ can then be estimated

for an airport, four distinctive steps were carried out. First, an airport suitable for this study had to

be selected. Then, OSN data for this airport had to be obtained and pre-processed. Finally, the data

quality of the take-off and landing times estimated on the basis of the OSN data had to be improved

by employing machine learning methods.

Selection of airport. This study aims to measure how the addition of one or more RET to the

taxiway system of an aerodrome affects its capacity envelope. Therefore, airports at which such an

effect could be measured at all had to be identified first. For this purpose, it was determined which

of the 100 largest airports in Europe
3
built additional RET in the period between the years 2018 and

2021
4
. Using the historical imagery feature provided by the Google Earth Pro software, the taxiway

systems of the 100 largest European airports were systematically analysed for RET construction

activities in the aforementioned time period. This analysis identified RET construction activities at

seven airports, as summarised in Table 1.

Table 1. Shortlist of European airports which added RET to their taxiway system between the year 2018 and 2021

ICAO Code Airport RET identifier Commissioning of RET(s) Runway

EPWA Warsaw Chopin Airport N2 September 2020 11
EVRA Riga International Airport Y July 2022 18
LEIB Ibiza Airport E4, E7 December 2020 06, 24
LIPZ Venice Tessera Airport F, G September 2020 04R
LPPR Porto International Airport F1 November 2021 35
LPPT Lisbon International Airport H1 December 2021 20
LSZH Zurich International Airport B7, L7 December 2018, July 2019 28

In a further step, the quality of OSN-sourcedADS-B data in the vicinity of the airports listed in Table 1

was examined. To this end, two data sets of historical ADS-B trajectories spanning one week were

downloaded for each airport via the OSN using the traffic library [12]: one data set for the period

before RET construction and one data set for the period after RET commissioning. These two data

setswere then inspected by hand for their feasibility for use in this study. In particular, it was checked

whether aircraft taking-off and landing are visible, i.e., whether the coverage near the ground is

given. It was found that the quality of the data varies greatly from aerodrome to aerodrome and

year to year. While ground movements of most aircraft are visible for Zurich Airport, for example,

the data quality in terms of ground coverage for other airports is significantly limited; trajectories of

landing aircraft often end well before the threshold of the runway or only begin well after the end

of the runway for departing aircraft. Furthermore, the choice of an airport suitable for this study

must also take into account the influence of the COVID-19 pandemic on the traffic volume at the

respective airports. To properly investigate the impact of additional RET on the capacity envelope,

demand before and after the commissioning of the RET at an airport should be as unaffected as

possible by COVID-related demand fluctuations on amonthly and annually aggregated level. Indeed,

Zurich and Lisbon Airport are the only aerodromes listed in Table 1 that show both good
5
ADS-B

3
A list of the 100 largest airports in Europe can be obtained from Wikipedia, for example: https://en.wikipedia.org/wiki/

List_of_the_busiest_airports_in_Europe

4
This time period was chosen to reflect the coverage and quality of OSN-sourced ADS-B data. As such, it can be assumed

that both the coverage and the quality of the data are acceptable as of the year 2018.

5
The coverage of a trajectory is considered ’good’ in this study if both the air and the ground part of the trajectories are

included in the data.

https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_Europe
https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_Europe
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data quality and coverage as well as a negligible impact of COVID-19 on demand. After discussions

with the local air navigation service provider Skyguide, however, Zurich Airport had to be excluded

for further consideration in this study. According to information provided by Skyguide, the capacity
of Zurich Airport operated in the runway configuration in which aircraft land on runway 28 is not

limited by the maximum throughput of runway 28, but rather by airspace constraints. Indeed, the

two RET B7 and L7 newly installed on runway 28 are used to ensure ’smooth’ day-to-day operations

only. Because the maximum throughput of runway 28 in Zurich does not depend on the RET but on

the airspace, Lisbon Airport is used in this study as a practical example to measure the influence of

RET on the capacity of a runway system.

Data collection and pre-processing. After Lisbon Airport, where RET H1 on runway 20 became

operational in December 2021, was selected for further consideration, both a one-month pre-RET

and a post-RET data set of ADSB-B trajectories were downloaded via OSN using the traffic library.
To enable a comparison of the pre-RET and post-RET capacity envelopes in a later step, observation

periods in which Lisbon Airport handled an equal amount of flight movements on the runway(s) of

interest had to be determined. These periods were determined by downloading and systematically

comparing OSN data over several months. In the end, October 2019 was selected for the pre-RET

period and December 2022 for the post-RET period.

RWY20

H1

Figure 1. Airport chart of Lisbon Airport. RET H1 is indicated in red.

For both periods, data sets of OSN-sourced trajectories, which are later referred to as the pre-RET

and the post-RET data set, respectively, are created as follows. In a first step, the trajectories of

interest are retrieved from OSN using the traffic library [12]. Lisbon Airport is equipped with only

one runway, namely runway 02/20, and the newly constructed RET H1, see Figure 1 and Table 1,

is used by aircraft landing on runway 20. Therefore, exclusively take-offs and landings on runway

20 are further considered in this study. To identify take-offs from and landings on runway 20, rule-

based algorithms are applied. As such, all trajectories that both exhibit an average climbing rate of
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more than 500 feet per minute below 4,000 feet and spend at least 20 seconds in a box-shaped virtual

zone located after runway 20, see Figure 2, are classified as take-offs. Similarly, all trajectories that

show an average rate of climb less than 100 feet per minute and align with the extended runway

axis for more than 30 seconds are assumed to be landings on runway 20. For illustrative purposes, a

number of landings and departures identified in this process are depicted in Figure 2.

© Carto © OpenStreetMap contributors

Departures RWY20 post-RET 
Departures RWY20 pre-RET 
Virtual Box
Arrivals RWY20 post-RET 
Arrivals RWY20 pre-RET

Figure 2. Sample of 200 identified departures from and 200 landings on runway 20 at Lisbon Airport. The virtual box used
to identify departures on runway 20 is depicted in black.

Estimation of landing time. A visual inspection of the trajectory data revealed that the OSN-

sourced trajectories of aircraft landing on airports often do not terminate on a runway, but rather

some distance dLDG away from its threshold. This is especially the case for trajectories of aircraft

landing on runway 20 at Lisbon Airport contained in the pre-RET data set. As such, Figure 3 depicts

the frequency distribution of the observed distances dLDG at Lisbon Airport for the pre-RET data set

and the post-RET data set with a blue and red barplot, respectively.

Since certain OSN-sourced trajectories do not end on the runway, the actual landing time of the

aircraft, which is of great importance for the determination of the capacity envelope, is not known

precisely enough for these flights. To improve the quality of the capacity envelope determined in

this study, a machine-learning approach is applied to estimate the time aircraft require to fly distance

dLDG . The pre-RET and post-RET data sets are filtered in a first step for trajectories of aircraft landing

on runway 20 in Lisbon that are fully covered up to the threshold. In this regard, trajectories are

considered fully covered if dLDG is less than 0.03 NM. In the course of this process, 544 trajectories

were identified as being fully covered. From these fully covered landings, the time to fly to the

threshold of runway 20 is computed within the last 12 NM of the approach. For this purpose, the

trajectories are re-sampled at a resolution of 1 second and the distance between all resulting aircraft

positions and the threshold of runway 20 is determined. Subsequently, the following six distinct

features of fully covered landing trajectories are employed to predict the time to fly: (i) The distance
of the aircraft from the threshold, (ii) the aircraft type, denoted by the ICAO aircraft type designator,

(iii), the ground speed of the aircraft, (iv) the altitude of the aircraft above mean sea level, (v) the
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Figure 3. Observed distance dLDG from the threshold of runway 20 at Lisbon Airport in NM for the pre-RET and the post-RET
data sets.

aircraft track angle, and (vi) the rate of climb or descent of the aircraft. The data set of fully covered

landings obtained above is split into a training, a validation, and a testing data set. While 60% of

the fully covered landings are assigned on a random basis to the training data set, 20% each of the

trajectories are allocated to the validation and testing sets.

Given the tabular structure of the fully covered landings data set, a gradient boosting regression

approachwas selected for application in this study. Specifically, theXGBoost library [13] is employed

to build and train the model, which has a tree maximum depth of 4 and the squared error as objective

function. To ensure model effectiveness and prevent over-fitting, the validation data set is utilised

to halt the training process when necessary. Figure 4 illustrates the prediction obtained on the test

data set. Moreover, a root mean squared error of 21.15 seconds is achieved on the tests data set.

Once the XGBoost model used to estimate the time to fly has been trained, it is applied to all trajec-

tories of aircraft landing on runway 20 from the post-RET and pre-RET data sets. This way, the time
to fly of every arrival flight on runway 20 and thus also their landing time is predicted.

Estimation of take-off time. Similarly to the challenges faced in estimating landing times, take-

off trajectories, especially in the pre-RET data set, often lack sufficient ground coverage and become

visible only a distance dTO after crossing the threshold of runway 20, as shown in Figure 5. To

enhance the precision of the capacity envelope estimation, a machine learning approach based on

the XGboost model, similar to the one applied for landing time, has been developed to estimate the

time required for aircraft to cover the distance dTO between their initial appearance and the threshold

of runway 20. Figure 6 shows the distribution of the prediction error of this model on the test data

set.

2.2 Determination of envelope function

To determine the capacity envelope φ, the observation period covered by the pre-RET and post-

RET data sets is divided into non-overlapping 15-minute intervals t = 1, . . . , T . For each 15-minute

interval t, the observed number of landings nARR,t and take-offs nDEP ,t carried out at the airport of
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Figure 4. Prediction of remaining time to fly for the test data set at different distances from threshold of runway 20 at Lisbon
Airport. The colour of the markers is indexed on the prediction error. Note: The data points with the considerably steeper
slope of the time to fly prediction refer to a trajectory of a helicopter of type AgustaWestland AW139.
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Figure 5. Observed closest distance from runway threshold in NM for pre-RET and post-RET departures.

interest is counted. This results in T tuples (nARR,t , nDEP ,t ), which specify the number of observed

landings and take-offs performed per interval t. The τ quantile for a given arrival count denoted

Qτ(nDEP |nARR) is then computed using order statistics. Subsequently, the capacity envelope φ is

obtained by fitting a concave, non-increasing piecewise-linear function to the obtained quantiles as

follows
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Figure 6. Error of the predicted elapsed flight time for distance dTO of aircraft taking-off on runway 20 at Lisbon Airport for
the test data set.

minimize J(φ) =

nmax
ARR∑︁

nARR=0

(φ(nARR) – Qτ(nDEP |nARR))2

subject to φ ∈ F ,

(2)

where F is a set of concave, non-increasing piecewise-linear functions defined on the interval [0, nmax
ARR]

with breakpoints at all integers between 0 and nmax
ARR . In particular, F is defined as

F =

{
f (x) =

{
Li(x) if i ≤ x < i + 1 for i = 0, 1, . . . , nmax

ARR – 1

Lnmax
ARR–1

(x) if x = nmax
ARR ,

}
(3)

with

Li(x) = mi · (x – i) + f (i). (4)

To ensure both the non-increasing behaviour and the concavity of the capacity envelope φ, the

slopes mi of Li(x) are constrained as follows:

0 ≥ m0 ≥ m1 ≥ . . . ≥ mmax
ARR–1

. (5)

The optimisation problem stated in Equation 2 is solved using sequential least squares programming.

Moreover, as mentioned in Ramanujam and Balakrishnan [9], τ is determined in an iterative manner

by selecting the highest value of τ at which the resulting capacity envelope φ experiences minimal

change in response to a small variation in τ.
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3. Results

This section presents the results of this study, which relate exclusively to the capacity of Lisbon Air-

port when aircraft arrive and depart on runway 20. Figure 7 contains two density plots summarising

the relative frequency of the observed combinations of number of landings and number of take-offs

(nARR,t , nDEP ,t ) per 15-minute interval t. The density plot on the left refers to the pre-RET data set, the

plot on the right to the post-RET data set. Combinations of (nARR,t , nDEP ,t ) that occur frequently are

highlighted in dark red, less frequent combinations are coloured light red, unobserved combinations

are transparent.
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Figure 7. Observed density for number of arrivals and departures per 15-minute intervals.

Figure 8 contains the capacity envelope φ as well as the Qτ(nDEP |nARR) values of Lisbon Airport for

both the pre-RET and the post-RET data sets. Features referring to the pre-RET data set are drawn

in blue, while post-RET features are coloured in red. The capacity envelopes, which become stable

at τ = 0.925, are illustrated with line plots. Moreover, The 92.5th percentile values Qτ(nDEP |nARR) for
all observed values of nARR = 0, 1, . . . , nmax

ARR are shown as scatter points.

4. Discussion

The density plots in Figure 7, which illustrate the relative frequency of the value combinations of

the observed number of take-offs and number of landings per 15-minute interval (nARR,t , nDEP ,t ),
suggest that the density is better distributed within the envelope in the post-RET case than in the

pre-RET data set. In particular, it is noticeable that the magnitude of the maximum density value

in the post-RET data set is lower than in the pre-RET data set. Besides, the figure further reveals

that, when frequented by a high number of landings (i.e., nARR = 7), Lisbon Airport tends to be

capable of operating more departures in the post-RET than the pre-RET case. While the impact of

the shift of the density distribution on the operation of the airport is difficult to interpret, the increase

in departure output at high landing volumes might be a first indication of an increase in capacity

potentially enabled by the additional RET.

A (slight) increase in the capacity of Lisbon Airport in the post-RET case can also be concluded from

the data shown in Figure 8 for a number of reasons. First, the 92.5th percentile values, i.e., the scatter

points, are post-RET on average higher than pre-RET. Here it is particularly noticeable that for 0 ≤
nARR ≤ 5 the 92.5th percentile values are more dispersed in the post-RET than the pre-RET case. This

increase in variance might suggest that the true capacity of the airport could not be entirely captured
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Figure 8. Observed capacity envelopes and 92.5th percentile values Qτ(nDEP |nARR) of Lisbon Airport for the pre-RET (blue)
and the post-RET (red) data sets.

in the post-RET data set used in this study, as the airport has most probably never been operated

at its capacity during the selected observation period. This circumstance confirms the literature [1,

7, 9], according to which the actual measurement of airport capacity poses a difficult undertaking.

For exactly this reason, Simaiakis [8] measures the capacity of an aerodrome in situations when

congestion and delays are visible, e.g., when queues of departing aircraft are formed at the holding

points of the runways. However, as will be discussed later, such an approach is not implementable in

this study due to limited ground coverage of OSN data. Another indication of increased capacity in

the post-RET case can be inferred from the capacity envelopes shown in Figure 8. As such, the post-

RET capacity envelope encloses the pre-RET envelope over the entire observed spectrum of nARR
values. For nARR ≤ 5 it is noticeable that the two envelopes hardly differ from each other, while for

nARR > 5more pronounced dissimilarities are visible. This behaviourwas to be expected because RET

exclusively influence the ROT of landing aircraft: Onlywhen a sufficient number of arrivals nARR,t are
handled per time 15-minute interval t, the capacity increase provided by a RET becomes apparent.

At nARR ≤ 5, Lisbon Airport can handle approximately five departures per 15 minutes before and

after the installation of the additional RET. Under these conditions, 40 aircraft movements can be

realised per hour, which relates to an average ROT of 90 seconds per aircraft movement. However,

if seven landings are performed per 15-minute interval, for example, the airport’s 92.5th percentile

value Qτ(nDEP |nARR) is equal to two departures under pre-RET conditions and three departures in

the post-RET case. Consequently, at high arrival loads, the installation of the RET appears to allow

the hourly number of movements to be increased from 36 to 40 and the average ROT to be decreased

from 100 to 90 seconds per aircraft movement.

This study is subject to limitations. In addition to the already mentioned fact that capacity envelopes

are difficult to measure empirically, high demands are placed on the input data used to determine

envelopes. This is particularly the case if the time of a take-off or landing is to be inferred on the basis

of trajectory data. In theory, if a trajectory contains both the air and ground portions of a flight, the

take-off or the landing times can be determined rather straightforward. For most European airports,

however, it has been found that (i) the ground part of OSN-sources trajectories is missing, and (ii) the
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airborne part of trajectories is often not well covered near ground. The reason for this lack of data lies

in both the spatial and temporal coverage of OSN. In terms of spatial coverage, it is noticeable that

the ground coverage of OSN is limited at most European airports. Had the coverage been better,

important information on the ROT of aircraft as well as on how the RET are used in day-to-day

operations could have been collected. However, improving ground coverage is a difficult endeavour,

as additional ADS-B receivers would have to be placed in the immediate vicinity of aerodromes that

are still poorly covered today. With regard to temporal coverage, substantial improvements have

been realised by the OSN for most regions in Europe in recent years
6
. This circumstance is also

reflected in a visible reduction of the average distances dLDG and dTO between the pre-RET and the

post-RET data sets, see Figures 3 and 5. Indeed, it was only thanks to the significantly better data

quality in the post-RET data set that an XGBoost-based machine-learning approach could be used in

this study to estimate the take-off and landing times of the poorly covered trajectories. This way,

the significance and validity of this study has been improved considerably.

Besides data coverage-related issues, the results of this study are also affected by the effects of the

COVID-19 pandemic on air traffic demand. In order to enable a fair comparison of airport capacity

before and after the installation of a RET, only airports for which the pre-RET and post-RET data

sets contain approximately the same number of aircraft movements on an aggregated level (e.g. per

month) were considered. As many airports in Europe have not yet fully recovered from the effects

of the pandemic by the year 2023, the number of candidate airports to consider is severely limited.

Finally, it must be mentioned that only one factor θl influencing the capacity envelope, namely the

existence of an additional RET, was considered. If additional factors θl , such as weather conditions

or runway configurations, were taken into account, statements even more relevant for the operation

of an airport could be made. However, this would require the pre-RET and post-RET data sets to

cover more than one single month.

5. Conclusion and Outlook

This study introduced a method to measure the capacity envelope of airports based on OSN-sourced

aircraft trajectory data. For this purpose, trajectories tracked in the vicinity of an airport were

downloaded via OSN for an observation period of one month. The flights taking off and landing at

this airport were identified using rule-based algorithms. Because the coverage of trajectories near the

airport is sometimes limited, the data quality has been improved with a XGBoost model. Finally, the

capacity envelope of the airport was determined by counting the number of departures and arrivals

the aerodrome handled per 15-minute intervals over the entire observation period, calculating the

τ quantile of departures for any observed number of landings per 15-minute interval, and fitting a

concave, non-increasing piecewise-linear function to the τ quantile values.

The method presented in this study was applied to the example of Lisbon Airport in order to demon-

strate how the construction of an additional RET affected the aerodrome’s capacity. The results sug-

gest that, as supported by the literature, additional RET positively influence the capacity envelope of

Lisbon Airport: In particular, if the airport performs (relatively) many landings per 15-minute inter-

val, the number of departures can be increased as the additional RET appears to reduce the average

ROT of the landing aircraft slightly.

By determining the capacity envelope of an airport, this study demonstrated exemplary that OSN-

sourced trajectory data can be effectively employed to analyse and evaluate the day-to-day opera-

tions of airports and airlines. For this reason, several extensions to this research are possible. Most

obviously, the expansion of the observation period of both the pre-RET and post-RET data sets would

6
Based on the authors’ personal experience with OSN data, the coverage for most airports and regions in Europe is

acceptable as of the year 2018.
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enable the investigation of the influence of other factors θl such as the weather on the capacity enve-
lope. Furthermore, the influence of other infrastructure elements on the capacity envelope, such as

adjustments to holding points (e.g., number and/or arrangement) or maintenance of runways could

be analysed. In addition, it must be mentioned at this point that, if the quality and coverage of tra-

jectory data near-ground and on-ground were even better, a completely new field of research would

open up. In this case, one could investigate the taxiing characteristics of aircraft on the ground, the

turn-around performance of airlines, or the scheduling of flights at congested airports.
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