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Abstract
The insecurity of ADS-B and GPS is a well-known problem in air traffic control. In this work, we introduce

a statistical location verification method for crowdsourced aircraft data. We implement this method on the

backend of the OpenSky Network and evaluate it on 8 months of data collected from Radarcape sensors.

We thus demonstrate the effectiveness of our method in finding anomalous flight data in faster than real

time. While we do not find clear evidence of widespread malicious spoofing attacks captured by OpenSky

sensors, many sensor and transponder issues are unearthed. Finally, we simulate ADS-B andGNSS attacks,

which were detected successfully with few false positives.
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1. Introduction

Automatic Dependent Surveillance-Broadcast (ADS-B) is a technology that allows aircraft to broad-

cast their location, speed, altitude, and other information to air traffic control (ATC) stations and

to other aircraft without requiring human action. ADS-B is intended to improve safety, efficiency,

and situational awareness in aviation by providing the involved parties with a real-time overview

of the surrounding airspace. These advantages have led to the widespread adoption of ADS-B as a

regulatory standard for safeguarding air travel across the globe. [1]

However, despite its advantages, researchers have been voicing concerns about the security aspects

of ADS-B for over fifteen years now [2], as ADS-Bmessages are neither encrypted nor authenticated.

The lack of encryption has positive implications, such as maximized compatibility and interoperabil-

ity. It also enables facilitates crowdsourced ADS-B information-sharing networks supported by hob-

byists, making flight data available to the public. The lack of authentication, however, has serious
consequences. An adversary with the capability to send radio signals in the 1090MHz frequency

range can craft and transmit valid ADS-B messages. As a consequence, adversaries within the radio

signal range of an ATC station can inject ghost aircraft or modify flight tracks of legitimate aircraft

in ATC systems [3] and aircraft [4] using a cheap software-defined radio (SDR).

Another security issue that has received much attention is the reliance of aircraft on insecure global

navigation satellite systems (GNSS). Most prominently, the global positioning system (GPS) does not
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implement any mechanisms to guarantee authenticity in its civilian-use version, giving adversaries

the ability to spoof satellite signals and advertise arbitrary GPS data. If sufficiently strong spoofed

signals are directed toward an aircraft, its navigation systems may be deceived, causing the aircraft

to deviate from its intended course and transmit incorrect location data over ADS-B. [gnssoofing]

Various measures of verifying ADS-B location claims have been proposed in the literature. If only a

single sensor is available, plausibility checking can detect nonsensical location, heading and velocity

claims in flight paths, and physical-layer features like the signal’s direction of arrival can be used to

detect impossible location claims. With multiple receivers, cross-checks can be made based on the

received signal strength, time-of-arrival data, or physical-layer properties of the signal. With four

or more sensors available, the transmitter location can be reconstructed using multilateration [5].

Previous work evaluated location verification using ADS-B sensor network data [6, 7, 8, 9] but typ-

ically assumed the data to be clean, and focused on detecting simulated, manually injected, attacks.

In this paper, we use real data from the OpenSky Network [10], a crowdsourced ADS-B sensor

network, to detect inconsistencies in aircraft’s location claims using statistical analysis of Time-

Difference-of-Arrival (TDoA)measurements at scale. Using crowdsourced data for securely verifying

flight tracks presents interesting challenges. A key differentiation to most previous research is that

we do not fully trust the sensor data, as an attacker could easily register own sensors to the network,

and inject manipulated records. Additionally, even non-malicious sensors can report misleading or

erroneous data. Evaluating which sensors provide precise and accurate enough data for TDoA-based

location verification is in itself an interesting challenge, also since the sensor selection process has

to be fully automated due to the dynamic topology of a crowdsourced network.

We use our system to analyze 8 months of air traffic data and investigate the encountered inconsis-

tencies in the data. On average, over 2 billion sensor records were analyzed for each day, with our

data set totaling 83 Terabytes of data.

1.1 Contributions

• We develop a threat model suitable for a crowdsourced sensor network.

• We developmethods to statistically verify TDoAmeasurements of ADS-B positionmessages under

the assumed threat model.

• We perform exploratory analysis of a large real-world data set and analyze the detected issues

with sensor and aircraft equipment.

• We show that our system can reliably detect certain attack types and non-malicious inconsisten-

cies.

2. Background

2.1 The OpenSky Network

The OpenSky Network is a crowdsourced sensor network, collecting air traffic data in the form of

ADS-B messages from aircraft transponders. It allows users to register their own sensors to the

network and displays real-time air traffic data based on information provided by registered sensors.

OpenSky provided the computational capacity and historical data needed for this research.

The data stored on the server contains the raw Mode S message along with information about the

sensor, including a unique identifier and a claimed location and hardware type. Each record include

a sensor-reported timestamp of when the signal has been received, as well as a server timestamp of

the receipt of the message at the central OpenSky server over the internet.
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2.2 Automatic Dependent Surveillance–Broadcast

ADS-B allows aircraft to automatically transmit information such as position, altitude, speed, and

other relevant data on the 1090Mhz channel to ground-based ATC systems and other aircraft. This

allows ATC systems to monitor the position and trajectory of aircraft in real-time, improving the

efficiency and safety of air traffic management. Fig. 1 provides the basic message structure. Notably,

the protocol does not provide timing information.

Figure 1. A Mode S message carrying ADS-B data is 112 bits long. It encodes the downlink format (DF), transponder capa-
bilities (CA), ICAO 24-bit aircraft identifier (ICAO), the extended squitter message (ME), and parity information (PI). The ME
field contains the 5-bit ADS-B type code and a 51-bit data field.

ADS-B Security

Despite the advantages of ADS-B for modern air traffic management, overconfidence in the sys-

tem may have dangerous consequences, as practical attacks on ADS-B receivers have been publicly

demonstrated since 2012 [3]. These kinds of attacks are easy to perform as ADS-B messages lack

security features that ensure confidentiality and authenticity of the broadcast messages.

2.3 Global Navigation Satellite Systems

Global navigation satellite systems provide satellite-based high-accuracy positioning with global

coverage. The most prominent GNSS is GPS provided by the USA but other constellations exist,

such as Galileo by the European Union, or GLONASS operated by Russia.

GNSS Security

As aircraft use GNSS to obtain their current position, any interference with GNSS presents another

attack vector on ATC. Civilian GNSS-based localization systems do not usually provide any authen-

tication. This allows an attacker to send fake GNSS signals to a target aircraft, which will use the

spoofed signal to derive location information, provided that the attacker’s signal at the target air-

craft is stronger than the legitimate signals. While this attack is known since the early 2000s, and

demonstrated e.g. on ships [11], GNSS spoofing attacks on commercial aircraft have been publicly

confirmed in the field for the first time in 2023. [12, 13] GPS jamming, in contrast, has been a common

occurrence not only in conflict zones for many years now [14].

3. Problem Constraints

3.1 System Model

• We assume that aircraft predominately use GNSS for navigation and can be effectively interfered

with by GNSS spoofing as demonstrated in recent indents. [12]

• We restrict our analysis to ADS-B position messages.

• We assume flight tracks are generated from ADS-B messages similar to OpenSky’s model [15].

Crowdsourced Sensor Networks

The core system is a crowdsourced network of ADS-B sensors. During the operation of the network,

sensors can be added and removed at any time. The location of each participating sensor is assumed

to be fixed and known, either provided by the user or by using independent positioning methods

[16]. For each received ADS-B message, a sensor will forward the raw message bytes, an indicator
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of the time of reception, and a unique sensor identification number to a central server. For each

message, the collection server additionally stores the timestamp when the message was received.

We assume that the sensors’ clocks remain accurate over time, meaning they exhibit no clock drift.

This is an optimistic assumption [17] but the sensors used in our analysis generally showed negligible

clock drift over relevant time scales. We do not require the clocks to be synchronized, though,

allowing for constant offsets between sensors.

3.2 Threat Model

Figure 2. Threat Model. An adversary can (1) send spoofed GNSS signals to an aircraft, (2) send spoofed ADS-B messages
to the sensor network, or (3) directly manipulate data coming from individual sensors

Our proposed approach is designed to detect incorrect ADS-B location data. This false information

can be caused by an attacker broadcasting fake ADS-B messages, a GNSS spoofing attacker leading

an aircraft off track, or it might simply be caused by broken or inaccurate equipment on the aircraft

or the ADS-B receiver side. In our threat model, the attacker has (1) the ability to transmit spoofed

GNSS signals to aircraft using directional antennas, (2) broadcast arbitrary ADS-B messages to one

or more OpenSky sensors, and (3) to add malicious sensors to the OpenSky Network or compromise

legitimate sensors (see Figure 2). The ability to perform an insider-attack is inherent to crowdsourced

networks, and prevents us from ever fully trusting any single sensor, as a malicious sensor might

try to gain the trust of an attack detection system before reporting misleading data, and legitimate

sensors may get compromised over time. To retain the ability to detect false location advertisements,

we set some limitations on the amount of fake and erroneous data received by the sensor network.

First, we limit an attacker to a single transmitter, disallowing multi-device attacks. This rules out

very sophisticated attackers, which could, knowing the exact locations of the target sensors, send the

same message using low-power signals in the vicinity of multiple sensors at pre-calculated timings

to mimic the true TDoA data generated by a legitimate flight track. Attacks like these can be detected

by performing verification tests of physical-layer characteristics at multiple receivers [18].

We further limit the number of false ADS-B flight tracks an attacker can inject into the network

and how many sensors they can control using unified constraints. For this, we first define the term

sensor-pair witnessing as follows: We say a sensor pair (si, sj) witnessed a flight track f , if the sensors
si and sj have received some overlapping subset of locationmessages for flight track f . We assume for

each legitimate sensor that more than half of all sensor-pair observations that include this sensor are

legitimate, meaning the paired sensor as well as the received ADS-B data is legitimate. Additionally,

for every flight track, legitimate or not, we require that less than half of the sensor-pair observations

of this flight track include a malicious sensor.

These constraints limit the number of false flight tracks that can be broadcast by an adversary to

less than half of all flight tracks in any geographical region.
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3.3 Quality of the Input Data

One of the main challenges, when using TDoA measurements from crowdsourced sensors for the

detection of ADS-B spoofing attacks, is the quality and reliability of the sensor data. Crowdsourced

sensors are typically low cost and have varying levels of clock accuracy and precision, which makes

automated data selection and filtering a challenge. In practice, we need to check each sensor and

validate that it performs within our accuracy requirements.

There may be gaps in coverage where signals are not received by at least two sensors in the network.

The use of a wireless medium for ADS-B transmissions also introduces multi-path effects between

the sender and receivers. This can lead to inconsistent message reception timestamps on the receiver

side, or even to messages being received multiple times at a single receiver.

4. Methods

The large scale of our analysis — many Terabytes of data — requires computationally efficient algo-

rithms. To stay within memory limitations, and due to the way the data is structured on OpenSky’s

HDFS file system, we analyzed the data in one-hour batches.

The input data comes in the form of records, with information about the receiving sensor and the

raw message bytes. To facilitate analysis of flight tracks, we group the records by the ICAO 24-bit

aircraft identifier field of the ADS-B messages.

4.1 Preliminary Data Filtering

Our proposed methodology should work with all types of sensors, as we perform a sensor validation

step which checks the consistency of all sensors’ timestamps. However, in order to save computa-

tional resources, we narrow down our data set to only include records from sensors of type Radar-
cape, as these report more precise timestamps compared to self-made setups based on dump1090..

Because Central Europe currently has the highest sensor density (see Figure 4), we further narrowed

down our data to this general region.

Finally, we remove all ADS-B messages that do not encode location information, such as aircraft

identification or status messages, and remove location messages received by only one sensor, as

these cannot be analyzed using TDoA methods.

4.2 Estimating Characteristic Variance Scores

Our goal is to test whether the TDoA measurements of a given sensor pair follows the distribution

which we would expect if we assume the aircraft’s position reports and the two sensors’ timing data

are accurate. If the measurements do not match our expectation, we conclude that the advertised

flight track or the data from at least one of the sensors was wrong. We use this information to

disqualify bad sensors and to detect illegitimate flight tracks.

To determine the expected TDoA data from a flight track f and sensors si and sj , we calculate the
expected difference in signal arrival time between the two sensors ti – tj for every ADS-B location

message received by both sensors. We compute the difference as follows:

ti – tj =
dist(locsource , loci) – dist(locsource , locj)

c
(1)

Here, dist(.) refers to the Euclidean distance between two locations. To allow us to efficiently and

accurately calculate these distances, we convert all geographical coordinates from the familiarWorld
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Geodetic System, which uses latitude, longitude, and altitude to identify Earth-based locations, to the

Earth-centered, Earth-fixed (ECEF) coordinate system. In the ECEF system, locations are described

using 3-dimensional vectors originating at the Earth’s center of mass.

For the measured timestamps, we expect the following sources to introduce certain deviations from

the expected values, even for legitimate flight tracks and sensors:

• The aircraft’s ADS-B location claims may be inaccurate (GPS malfunction or not existent).

• Multi-path effects may impact the signal’s arrival time at the sensors.

• The sensors may measure the signal’s time of arrival inaccurately.

• The true sensor locations may be slightly offset from their claimed locations.

The exact nature of the introduced errors is difficult to predict. We chose to model the overall

error introduced by the listed sources as a random variable following a normal distribution. We

assume that for a given flight track f and a sensor pair (si, sj), the error of each ADS-B message’s

TDoA measurement is drawn from the same distribution, as the hardware-specific properties of the

involved components, like the aircraft GNSS receiver and the sensor clocks, are expected to stay

consistent over the time frame under analysis. We therefore denote our random variable as follows:

Xf ,i,j ∼ N (µf ,i,j ,σ
2

f ,i,j) (2)

We call σ2

f ,i,j the characteristic variance of flight track f and sensor pair (si, sj). Generally, this
variance will be small for flight tracks in which the quality of the aircraft’s location reports, and the

sensor’s timing and location information is accurate, and large otherwise. In the following section,

we derive how these characteristic variances can be estimated.

We model all sensor clocks to exhibit no clock drift over the analyzed time frame, but do not require

them to be synchronized with each other. This motivates the introduction of the following relation

between a timestamp t̂i, as measured by sensor si in its internal time reference, and the corresponding

timestamp ti in our global time reference:

t̂i = ti + ∆i (3)

Due to the lack of clock drift in our system model, ∆i remains constant. When we apply this offset

to TDoA measurements, t̂i and t̂j represent the timestamps of the signal’s arrival time, as measured

by the sensors si and sj respectively, in their internal time references.

t̂i – t̂j = (ti + ∆i) – (tj + ∆j) (4)

⇒ t̂i – t̂j = (ti – tj) + (∆i – ∆j) (5)

Because wemodel the TDoAmeasurements according to Equation 1 but with the addition of random

variable Xf ,i,j , which captures errors in time measurements by sensors si and sj for messages related

to flight track f , we get:

⇒ t̂i – t̂j =
(
dist(locsource , loci) – dist(locsource , locj)

c
+ Xf ,i,j

)
+ (∆i – ∆j) (6)
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All locations loc∗ refer to the claimed, but not yet validated, locations of the signal source and the

sensors. We rearrange the equation as follows:

⇒ t̂i – t̂j –
dist(locsource , loci) – dist(locsource , locj)

c
= Xf ,i,j + (∆i – ∆j) (7)

Now, the left-hand side consists of only known, measurable or derivable quantities: The measured

timestamps t̂i and t̂j as well as all of the claimed locations are directly available from the data. The

parameters of the normal distribution, as well as the constant offsets∆i and∆j , are unknown. Given

the distribution for Xf ,i,j specified in Equation 2, we can consolidate the right-hand side of Equation 7

and express the left-hand side as a random variable:

Xf ,i,j + (∆i – ∆j) ∼ N (µf ,i,j + ∆i – ∆j ,σ
2

f ,i,j) (8)

t̂i – t̂j –
dist(locsource , loci) – dist(locsource , locj)

c
∼ N (µf ,i,j + ∆i – ∆j ,σ

2

f ,i,j) (9)

Applying Equation 9 to our data set, we use the sample variance of the obtained values as an esti-

mator for the characteristic variance σ2

f ,i,j .

For legitimate flight tracks f and well-behaved sensors si and sj , we would expect their characteristic
variance σ2

f ,i,j to be small. If the observed variance is above a certain threshold, we conclude that

either one of the sensors or the received ADS-B messages provide wrong information.

The distance between two sensors limits the maximum TDoA that can be observed by those sensors:

|ti – tj | ≤
dist(loci, locj)

c
(10)

Because we allow the data set to contain measurement errors, for example, due to inaccurate sensor

locations or timestamps, up to a given threshold, we only consider sensor pairs with sufficient dis-

tance between each other. This prevents the errors from dominating the measured time difference,

while ensuring that each sensor pair can produce variance values above the thresholds used to flag

problematic sensors and tracks.

4.3 Sensor Selection

The fact that we have no control over the sensors in the network and no detailed information about

their hardware configuration or status, forces us to infer some of their properties to decide whether

a sensor can be used for final flight track analysis. To do so, we first calculate all characteristic

variance values for each flight track and pair of sensors as described in the previous section. In a

next step, we define the set Vk to include all characteristic variance scores where sensor sk is one of
the involved receivers:

Vk := {σ2

f ,i,j ∈ V |i = k ∨ j = k} (11)

V denotes the set of all characteristic variances. Finally, we identify all sensors which exhibit low

characteristic variance values and include those in the flight track analysis. In particular, a sensor sk
will be included if and only if:
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med(Vk) ≤ Tsensor (12)

Here med(.) denotes the median, and Tsensor is some appropriately chosen threshold value.

The use of the median for the selection of sensors is motivated by our threat model. If we assume

that sensor sk is well-behaved and less than half of the values in Vk are influenced by a spoofed

flight track, or a malicious or misbehaving other sensor, the median value will stem from TDoA data

as measured by sk and another legitimate sensor, witnessing a legitimate flight track and therefore

exhibiting a characteristic variance below the threshold. This will lead to the sensor sk being utilized
for our subsequent flight track analysis. If, on the other hand, the sensor sk has poor clock precision,
or other issues resulting in inaccurate sensor data, most of the values in Vk are expected to exceed

the defined threshold, thereby excluding the sensor from final analysis. Note that malicious sensors

can still be included, if they manipulate arrival timing information for only some flight tracks. This

case is considered in the track verification step.

4.4 Track Verification

Once the sensors have been filtered, our final track verification will decide for each flight track

whether the reported location data is consistent with the derived TDoA values, utilizing the same

characteristic variance values that have already been used for sensor selection. For each flight track

g, we check if the median characteristic variance of the flight track as observed by eligible sensor

pairs is lower than some predefined threshold Ttrack :

med({σ2

g,i,j ∈ V |si, sj are considered good}) ≤ Ttrack (13)

If this check fails, we flag the flight track as problematic. Importantly, if a flight track passes this

check, we cannot conclude that the reported flight pathwas accurate. Consider Figure 3 for examples

of spoofing attacks which are undetectable in cases where not enough reliable sensors are available.

Figure 3. In this simplified 2-dimensional model, the shown flight tracks would all result in constant TDoA data, resembling
a stationary attacker, as long as the aircraft coming from the left does not continue beyond the first sensor.

The use of the median here is again motivated by our threat model. Because we require that more

than half of the sensor pairs witnessing the flight contain no illegitimate sensor, the median protects

us from both high and low malicious variance data. Furthermore, the median serves as a robust

measure against outlier data.

Generally, detection accuracy will improve with higher sensor density and more precise sensors.
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Figure 4. The geographical distribution of the Radarcape sensors used for the analysis.

5. Experimental Setup

5.1 Historical Analysis

Our historical analysis is based on real-world data collected by OpenSky in the 8-month period

between July 2022 and February 2023. The analyzed 8-month data set contains 83 Terabytes of data.

5.2 Spoofing Attacks

For ethical and legal reasons, we did not perform our attack scenarios in the real world but opted to

simulate the effects of different types of attack on our data.

For our simulated attacks, we consider a sensor to be in range of a transmission if its Euclidean

distance to the sender is less than 250 km, disregarding line-of-sight considerations. We set the

probability of an ADS-B message being registered by a sensor within range to 70%. To model inac-

curacies in accordance with our system model, we add a normally distributed random variable to

each simulated time-of-arrival value, with a zero-mean and a standard deviation of 100 ns.

5.2.1 ADS-B Spoofing

The simulated ADS-B spoofing attacks were conducted by taking the raw data for the month of

February 2023, choosing 1% of all flight tracks at random, and modifying the time-of-arrival data of

the associated records to be consistent with a stationary attacker.

To model the attacker, we fixed their location along a point of the claimed flight track, and simulate

time-of-arrival data at nearby sensors using the parameters above. This approach models airborne

attacks, for example using a drone stationed at an altitude with line-of-sight to multiple receivers.

5.2.2 GNSS Spoofing

To simulate GNSS spoofing, we model an attacker who leads an aircraft off its intended course by

spoofing its GNSS receiver, similar to real-world incidents in the Middle East [12, 13]. Our simula-

tions are based on data from February 2023. We took one hour batches, chose 1% of flight tracks, and

modified them to simulate a straight flight track for the first 20% of the flight, then turning left by

20 degrees due to GNSS spoofing, and flying straight ahead on this new trajectory for the remaining

time. The ADS-B location data is modified to hide any turn being made, keeping straight ahead on

the original trajectory. To achieve reasonable separation from the original flight track, we have only

considered flight tracks with more than 1000 received location messages.
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5.3 Sensor Selection

As TDoA-based location verification requires highly precise clocks, we therefore chose the Radar-

cape sensor type with a timestamp precision in the range of 50 ns as our basis. Figure 4 shows the

locations of the sensors with sufficient density in Central Europe.

While we focused on Radarcapes due to computational constraints, it is possible to include other

sensor types (notably, Raspberry Pi/dump190-based setups) and use the implemented sensor filtering

method to identify all sensors working with sufficiently high precision. [19, 20]

6. Historical OpenSky Data Analysis

Wehave identified several phenomena thatwe attribute to different root causeswith high confidence.

As a baseline, consider Figure 5 (left), in which the expected TDoA values of two sensors closely

match the measured values after adjusting for a constant offset. This is what we would expect for a

flight track and a pair of sensors which all report accurate and precise information.

6.1 Sensor Issues

Figure 5. Example of good data (left). Sensor with bad clock precision (right).

We can detect sensor issues by comparing data from multiple sensor pairs for a given segment of a

flight track. If only the TDoA graphs that involve a particular sensor show anomalous data, while

the rest of the TDoA graphs look normal, we can infer that the sensor is problematic, if we have

enough supporting data.

The most commonly observed root cause of sensor data errors was bad timestamp precision, which

shows up in TDoA graphs as a wide band in the measured values. Often, this issue exhibits a

checkerboard-like pattern, hinting at bad clock resolution, as seen in Figure 5 (right).

Another regularly observed issue seems to stem from sensors which reported their own location

incorrectly. If TDoA graphs which include a particular sensor consistently show erroneous data

within a narrow band, while other sensor-pairs report data consistentwith the advertised flight track,

we conclude that this sensor is misreporting its location, and filter it out for subsequent analysis

steps. An example of such a finding is shown in Figure 6 (left). With sufficient data volume, it would

be possible to approximate the sensor’s true position using multilateration techniques, and continue

to use it for further analysis using the corrected location. [16]
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Figure 6. Sensor reporting wrong location (left). Temporary localization failure (right).

Figure 7. Malfunctioning aircraft equipment (left). Unidentified data error (right).

6.2 Real-World ADS-B Data Issues

In contrast to sensor problems, issues caused by erroneous ADS-B data create off-nominal graphs

across most or all sensor pairs, which receive the incorrect data. In our analysis, we were able to

identify multiple classes of issues, some of which were previously discussed in [21].

One aircraft exhibited a pattern of sending location data that was mostly inaccurate, often by a

large margin (see Figure 7, left)). This behavior could indicate a GNSS jamming attack, where the

aircraft receives false location data and only occasionally gets its true location, if it can lock on to

the satellites despite the jamming. However, further analysis revealed that this aircraft showed this

behavior consistently over long time spans and across wide geographical areas. This suggests that

the aircraft has defective equipment rather than the aircraft being under attack.

In another class of problematic ADS-B downlink information, aircraft send wrong location data, but

only for limited periods of time, and the advertised location barely changes from one message to the

next. One such example is depicted in Figure 6 (right). We were unable to conclusively determine

a root cause for this type of failure. Some possible causes include temporary loss of GNSS signal or

a software glitch within the aircraft’s systems, though we cannot rule out that the aircraft’s GNSS

receiver has been spoofed during the observed time interval.

Another issue we have observed is particularly interesting. Here, the expected values on the TDoA

graphs look like multiple aircraft on different trajectories are overlaid, while the measured values

are consistent with a single flight track, and match one of the seemingly overlaid flight tracks (see
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Figure 7, right). Further investigation showed evidence that there were indeed two aircraft flying

over central Europe using the same ICAO identifier. We suspect that the location messages from

the other aircraft could have caused issues with the CPR location decoding algorithm [22]. One

explanation is that the correct track is decoded if both, the even and odd CPR frames, stem from the

tracked aircraft, and the two "ghost"-tracks are produced if either an even or an odd CPR frame from

the other aircraft was received by another sensor, leading to the next complementary frame from

the tracked aircraft decoding to a wrong location.

7. Detection of Simulated Spoofing Attacks

7.1 ADS-B Spoofing

Figure 8. Simulated stationary ADS-B injection attack (left). Attack detection improves with more received messages, and
greater distance covered (right).

In our ADS-B spoofing data sets, a total of 216 1-hour data batches over nine days in February 2023

were analyzed. The 1-hour data sets tracked a total of 198,802 flights, of which 1964 were randomly

chosen and modified to simulate a stationary attacker, keeping the same claimed flight path as the

original flight. An example of generated TDoA data is given in Figure 8 (left).

For the following evaluation, we only consider flight tracks, both original and modified, only if at

least two legitimate sensors received a common subset of the flight track’s messages. This leaves us

with 1763 remaining spoofed tracks to be analyzed.

Overall, 81.28% of attacks were detected, with the detection rate increasing to 97.10% for flight tracks

with over a thousand messages. Figure 8 (right) shows how the detection accuracy increases with

the number of received messages, and total distance covered by a flight track.

Of the unmodified flight tracks, 154 flight tracks (0.08%) were falsely tagged as problematic. We

consider these false positives, though in reality, some of these flight tracks exhibit clear deficiencies

as outlined in the previous section.

7.2 GNSS Spoofing

GNSS spoofing attacks are more difficult to detect due to the more subtle change in TDoA measure-

ments when compared to a stationary attacker who broadcasts wrong ADS-B data. Figure 9 (left)

shows a sample TDoA graph of a GNSS spoofing attack.

The detection accuracy for our simulated GNSS spoofing attacks are significantly worse than for a

stationary attacker injecting ADS-B signals into the network. 110 hours of data were analyzed for

this scenario, with a total of 116,377 flight tracks, 1116 of which were modified to simulate GNSS
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Figure 9. TDoA data of a simulated plane diverted off its advertised flight track at an angle of 20 degrees (left). Sophisticated
GNSS spoofing attacks can be hard to differentiate from other types of data issues (right).

spoofing. 1072 of these could be analyzed, meaning some parts of these tracks were received by mul-

tiple receivers. Only 47.95% of the attacks were detected, with 14 unmodified flight tracks appearing

over the detection threshold, a false positive rate of around 0.01%. As depicted in Figure 9 (right),

detection accuracy increases with the number of messages and distance covered, but the increase is

smaller compared to the simulated ADS-B spoofing attacks.

The lower detection rate of the simulated GNSS spoofing attacks when compared with stationary

ADS-B spoofing attacks was expected, as the deviations between the expected and measured TDoA

values are significantly smaller. Additionally, the deviation between expected and measured TDoA

patterns of a plane flying at an angle to the advertised flight track closely resemble the patterns of a

misplaced sensor, which can make it difficult to consistently differentiate between these two cases,

especially when only few sensors receive relevant data.

8. Discussion

8.1 Computational Limitations

Over 2 billion recordswere collected each daywithin our geographical bounds, totalling 83 Terabytes

of data over the 8-month period we analyzed.

Our final implementation needs roughly 5 minutes to analyze air traffic data generated in one hour.

This shows that real-time implementation is possible, even if the region under analysis is signifi-

cantly expanded and computationally more expensive methods used.

8.2 False Positives

Minimizing false positives presents a challenge, especially when using hardware with uncontrolled

and unknown properties. With over 1000 flight tracks analyzed every hour, a 1% false positive rate

would amass over 58’000 false alarms over the 8 months of our historical analysis.

We found numerous patterns in abnormal sensor behavior and have tuned our software to eliminate

some of the false positives generated by faulty sensors. However, these decisions always have to

be made carefully, as adversarial actions might sometimes create patterns similar to faulty sensors.

Distinguishing these reliably in an automated fashion remains an open problem.

An example is inaccurate information about a sensor’s location. This causes TDoA patterns very
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similar to an aircraft which has been diverted off track by a GNSS spoofing attack (compare Figures

6 (left) and 9 (right)). If sufficient data is available, we can decide with some confidence whether this

pattern emerges out of a spoofing attack or is just a result of wrong sensor data.

8.3 Possible Improvements

In order to include enough sensors to achieve meaningful large-scale geographical coverage, we

had to set our detection thresholds for bad sensors and tracks so high that certain attack scenarios

could not be detected. If, instead of filtering sensors based on a global threshold, we assess the

TDoA measurement precision of each sensor pair, we could include this information in the final

track verification step. This would allow a pair of high-quality sensors to detect more subtle attacks

that would fall below our current global detection threshold. Similarly, a pair of low-quality sensors

could be used to detect obvious attacks in regions not covered by higher-quality sensors. This change

would increase the geographical coverage of our detection system and improve detection accuracy

in regions with high-quality sensors, but would incur a significant increase in computational cost.

An additional way to improve the usefulness of our data would be to detect and correct incorrectly

reported sensor information. Given enough TDoA measurements, multilateration techniques could

be used to estimate the actual location of an affected sensor, allowing it to contribute useful infor-

mation to our detection system. [16]

8.4 Applications

While our results show that sophisticated attackers can evade the detection mechanisms we have

used for our analysis, they also demonstrate that most unsophisticated attacks can be detected with-

out the need to set up and maintain dedicated hardware on an international scale. If our TDoA-

based method is complemented with other approaches, such as using Kalman filters to sanity-check

flight paths [23], or using a machine-learning based approach to location verification as described

by Jansen et al. [6], detection accuracy could be further improved.

As new secure protocols are not planed to be implemented any time soon, and cheap, software-

based devices are lowering the financial and skill hurdles to perform potentially severe attacks on

ATC systems, the capability of crowdsourcing air traffic security could prove to be a valuable asset

in the near future.

9. Conclusion

In this paper, we introduced a statistical location verification method for crowdsourced aircraft data.

We implemented our method on the backend of a real-world sensor network, OpenSky, and showed

that it is feasible to run in faster than real time. We evaluated it on 8 months of data collected from

Radarcape sensors and demonstrated the effectiveness of our method in finding anomalous flight

data, although we did (fortunately) not find clear evidence of widespread malicious spoofing attacks

captured by OpenSky sensors. Simulated ADS-B and GNSS attacks were detected successfully with

few false positives.
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