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Abstract
In the past few years, the fast increase in air traffic load has brought new challenges for air traffic con-

trollers. The air surveillance task has become harder and as a consequence, the actual monitoring tools

need to be improved. In this work, a method based on deep learning that automatically detects ADS-B

spoofing attacks is proposed. As autonomous drone technologies will, in the near future, be more and

more developed, this study focuses on low-altitude traffic. Our tool is based on a classifier model that

raises anomalies between true aircraft trajectory shapes and supposed aircraft categories (e.g. planes,

helicopters). The proposed approach can detect spoofing attacks with a success rate of 96.2%.
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1. Introduction

In the last few years, the increasing number of autonomous drone tests have shown that drones will,

in the near future, be part of the air traffic landscape. As these technologies are also evolving in a

military context, drones could be used in a malicious way. An attack scenario based on the spoofing

concept was developed: in the context of the 2023 Rugby World Cup in Toulouse, an attacker could

use a drone to target the stadium. While flying the drone emits false tracking messages, with the

intention of making the air surveillance believe it is a SAMU (French emergency) helicopter.

Currently, some projects are developing defense systems to detect drones half a kilometer away

from a sensible point, based on sound with high-sensitivity microphones [1]. However, some mali-

cious attacks could be detected in earlier stages, directly by searching anomalies in aircraft tracking

protocols such as ADS-B and FLARM
1
. Our project is the continuation of two works [2, 3].

2. Dataset

To find a large and open set of data for our experiments, the OpenSky database was used. It has been

providing a history of ADS-B records all over the world, for more than 7 years.

In order to choose a relevant dataset for our scenario, we selected a bounding box including Toulouse

and its surroundings. It starts from Saint-Gaudens to Carmaux, including an important variety of

zones such as urban areas, villages, and forested areas. The box’s precise coordinates are starting

from lat. 0.72561, lon. 43.11581 to lat. 2.16344, lon. 44.07449.

Then our dataset focuses on recent ADS-B data, as the full year 2022 to train our model, and the
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beginning of 2023 to evaluate the model over unseen data. In the end, after filtering aberrant flights,

we have 10,158 flights for training and 819 for evaluation.

Each trajectory is saved in a ".csv" file including classical ADS-B and FLARM features such as Lati-

tude, Longitude, Altitude, Velocity, Track... Finally, trajectories are labeled, by associating the icao24

code (registration code) to an aircraft model and then an aircraft type along: Commercial planes,
only at take-off and landing when they interact with the low altitude traffic, Tourism planes, small

airplanes between 2 and 6 seats owned by an individual and Helicopter, from SAMU the French

emergency services.

3. Method

To detect spoofing attacks, a deep-learning classifier was developed to try and determine aircraft

types based on their trajectory only. A well-trained model would detect spoofing attacks by raising

a mismatch between the aircraft trajectory and the registration code it pretends to have.

Our solution is based on convolutional neural networks (CNN). Various classic deep-learning archi-

tectures were experimented such as Long and Short-Term Memory (LSTM), Transformers [4], and a

few others but they lacked the precision of CNNs.

Because our CNN processes time series of variable length, sliding windows were chosen. A predic-

tion is generated using a history of the previous 128 messages, which corresponds to approximately

2 minutes of flight data. In the end, as a single prediction is required, we only keep the most reli-

able prediction from the entire time series. Indeed a majority vote is less efficient because the most

determining patterns for aircraft type recognition are sparse. Typically, during cruising altitudes,

flight trajectories exhibit regular and straight patterns.

3.1 Take-off context

To improve our model’s detection, we added a take-off contextual vector as a secondary input. As

seen in the last paragraph, the most determining patterns for aircraft type recognition are sparse.

However, take-off trajectories can contain a lot of relevant features to determine the aircraft’s cate-

gories. It allows the AI model to always remember the condition of take-off, even at cruising altitude.

From a technical point of view, the take-off context is represented by the 128 first timesteps of the

whole trajectory.

3.2 Geographical context

Similarly, we conceived the idea to add geographical context to our model’s input. It adds first some

natural information as surrounding fields, forests, and rivers as aircraft behavior can vary accord-

ing to the environment. For example, SAMU helicopters whenever possible, tend to follow rivers at

take-off to avoid low-flying over dense urban areas.

Secondly, it allows replacing absolute with relative coordinates as the map provides absolute local-

ization information. Using relative coordinates has the effect of reducing the numeric space needed

to represent trajectories. With relative coordinates, the space needed to represent trajectories de-

creases from a rectangle with a diagonal of 155km to 50km. This not only streamlines the learning

process but also encourages the model to prioritize the shape of the trajectory over its specific loca-

tion.

To generate the geographical context, a large image, covering the bounding box was generated

with an aggregation of OpenStreetMap tiles. When making predictions, the AI model extracts small

128x128-pixel squares centered on the aircraft’s latitude and longitude as can be seen in Figure 1."



Journal of Open Aviation Science 3

Figure 1. OpenStreetMap Tile extraction from aircraft’s latitude and longitude

3.3 Model architecture

The model architecture (Figure 2) consists of three input layers: the ADS-B messages window, the

take-off context, and the geographical context. The ADS-B messages and, the take-off context are

processed in the same one-dimensional CNN. On the other side, the geographical context is pro-

cessed by a two-dimensional CNN. Finally, the last part of the model is a fully connected network.

It uses both flattened CNN outputs to produce probabilities for the three classes.

(128, 11)
(64, 32) (32, 64)

(16, 128)
Input layer
Convolution
MaxPooling

Flatten
Dense

3

2048

(128, 22)

Stem (Conv {kernel:9, stride:2}) 
Concatenate

ADS-B
Messages

Takeoff
context

(128, 128, 3) (64, 64, 16) (64, 64, 32):(32, 32, 32)

10240

(16, 16, 128):8192
(32, 32, 64):(16, 16, 64)

(128, 11)

Geographic
context

(x, x):(x, x) Input shape : Output shape
Conv + Conv + MaxPooling

5120

(64, 22)

(x, x)Output shape

Figure 2. Model architecture

4. Results

In order to check the efficiency of each of our previously presented model’s components, we started

back with a simple CNN and added each of our components one by one. The following Table 1 shows

the accuracy results of this ablation study.

Table 1. Ablation study

Model Accuracy Improvment

Bare-CNN 91.2%
CNN with take-off context 93.5% +2.3%
CNN with take-off and geographic context 95.1% +1.6%
Add relative coordinates 96.2% +1.1%



4 Pirolley Melvyn et al.

The results show that each of our components slightly improves the model’s accuracy. We can see

that the impact of the take-off context on the final prediction is important with an improvement of

2.3%. The use of relative coordinates shows an improvement of 1.1%. However, relative coordinates

are only relevant in combination with the map context. The absolute aircraft’s position is still very

important to know if the aircraft flies in a suspicious area. In the same way, the take-off context is

not relative, in order to let the model know where the aircraft has taken-off.

5. Conclusion and future work

This article proposes a new deep-learning architecture designed in the field of detecting spoofing

attacks in low-altitude ADS-B data. Our results are quite promising. We provided a tool that detects

up to 96.2% of spoofing attacks around Toulouse. Moreover, the model could easily be re-trained

in other cities by using the corresponding ADS-B and Geographic data. The reliability of our ex-

periment shows that deep-learning methods can be used to detect spoofing attacks in the ADS-B

protocol.

However, given the absence of readily available data on autonomous drones, our current model

lacks the capacity to directly detect drones. In our future work, we plan to conduct experiments

using simulated drone trajectories based on known drone specifications. This will allow us to assess

the model’s reliability in extreme cases, such as scenarios where a drone closely mimics the flight

path of a SAMU helicopter. Then to improve our results we plan to increase our dataset quality by

including take-off data for flights coming from the outside of the bounding box where, for instance,

the take-off context is not available.
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