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Abstract

This paper introduces a data-driven technique for labelling airborne holdings based on their underlying
causes, specifically distinguishing between adverse weather conditions and other causes, such as air-
port capacity. Utilising a dataset comprised of flight trajectories arriving at 45 European airports over
a nine-month period, extracted from automatic dependent surveillance-broadcast data, this paper pro-
vides valuable insights into the causes behind airborne holdings and their relative environmental impact.
The proposed approach involves employing an existing neural network to identify airborne holdings.
Subsequently, these holdings are cross-referenced with actual weather observations obtained from mete-
orological aerodrome reports. Following this, a subset of the holdings is labelled as either weather-related
or attributed to other causes, based on historical air traffic flow management regulations. Finally, the
cause of the majority of unlabelled holdings is determined using semi-supervised learning. The findings
indicate that at least one-quarter of the 30-minute time periods with airborne holdings identified by the
neural network can be attributed to weather-related factors, with reduced visibility, strong winds, and
convective weather, emerging as the primary contributing events. Intriguingly, weather-related causes
account for approximately 40% of the total fuel consumption associated with these procedures.
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1. Introduction

Arriving flights frequently encounter tactical control strategies to ensure safety. These control
strategies involve level-offs, path stretching, and holding patterns, all of which can decrease flight
efficiency [1]. A recent analysis by [2] examined two months of automatic dependent surveillance-

broadcast (ADS-B) data for aircraft landing at five major European airports. The study revealed that
holding patterns had the most significant adverse environmental impact, regardless of their cause.

Based on these findings, this paper paves the way for a more in-depth investigation of airborne hold-
ings at major European airports, facilitating an assessment of the relative environmental impact of
various causes, specifically distinguishing between adverse weather conditions and other factors. By
gaining insights into the primary drivers of these tactical control strategies, this study aims to equip
the aviation community with the knowledge needed to facilitate the implementation of targeted
measures aimed at mitigating both their environmental and economic consequences. This assess-
ment, however, encounters several challenges, namely (1) the need to detect airborne holdings from
flight trajectories and (2) the current lack of data providing information about their causes.

© 2023 by the authors. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International
(CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/)



ramon.dalmau-codina@eurocontrol.int
https://creativecommons.org/licenses/by/4.0/

2 Ramon Dalmau et al.

It is critical to emphasise that the primary goal of this paper does not revolve around the quantitative
results. The primary focus of this paper is on the semi-supervised methodology, which has broad
applicability to other tactical control strategies such as path stretching and level-offs.

After conducting a literature review in Section 2, Section 3 details the methodology employed to
address the two aforementioned challenges. The setup of the experiment that showcases the effec-
tiveness of the methodology is presented in Section 4. Section 5 presents the primary findings of the
experiment, while Section 6 concludes the paper with key remarks and take-home messages.

2. Literature review

Recent research has underscored the substantial connection between aviation and environmental
concerns. For instance, [3] highlighted that commercial aviation was accountable for nearly 818
megatons of CO2 emissions in 2018, suggesting a potential link with the economic prosperity of
nations. This sentiment was further echoed by [4], who used ADS-B data and the open aircraft

performance (OpenAP) framework to examine the environmental impact of aviation across Europe.

The terminal manoeuvring area (TMA) is where many of the environmental impact of aviation oc-
curs. As an example, [5] investigated the environmental impact of air traffic congestion during peak
hours at London Heathrow Airport, highlighting the contribution of holdings. More recently, [2]
expanded upon this insight, examining environmental inefficiencies in arrival procedures and em-
phasised the detrimental environmental impact of holdings compared to other procedures. Simulta-

neously, [1] introduced a comprehensive set of valuable flight efficiency indicators for arrivals.

Weather remains a substantial factor affecting flight efficiency in the TMA, with adverse weather
conditions often resulting in reduced airport capacity that triggers holdings or even diversions. The
latter issue was addressed in [6], which introduced a tree-based model designed to predict diversions
caused by adverse weather conditions. In a follow-up study [7], supervised clustering was used to

categorise the causes behind these diversions, identifying events such as low visibility or snow.

Whether for evaluating the environmental impact or developing models to predict and mitigate these
events, dedicated algorithms are essential for detecting them from surveillance data. [8] explored
rule-based and statistical methods for detecting various events. Notably, some of these methodolo-
gies, such as a neural network for detecting holdings, have been integrated into traffic [9].

3. Method

The method starts by detecting holdings patterns from ADS-B trajectories with the neural network
integrated into traffic [9]. These holdings are then grouped in 30-minute intervals, which is the
typical frequency of weather updates at major airports, and enriched with weather observations from
the closest meteorological aerodrome report (METAR). This enables the creation of an unlabelled
dataset, with each observation corresponding to a 30-minute period in which at least one holding
was identified, and where the various features represent the observed weather conditions.

Each observation is then assigned the label "weather" or "other" based on the cause of the air traffic
flow management (ATFM) regulation in effect at the airport at that time (if any). Observations with
no concurrent ATFM regulation at the airport remain unlabelled and are addressed in the next step.

Figure 1 provides examples of detected holding patterns at Zurich airport during three different
days at the same hour. Figure la represents observations labelled as weather, Figure 1b depicts
observations labelled as other, and Figure 1c represents scenarios where no holdings were present.
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Figure 1. Highlighted in blue are the arrival trajectories near Zurich Airport, covering a 50-nautical mile radius, between
10:00 AM and 11:00 AM. The segments of these trajectories marked in red represent holding patterns identified by the neural
network implemented in the traffic library.

In Figure 1b, you can see some irregular holding patterns to the north of Zurich. These patterns
are called 360s or orbits, and they are circular patterns in which the aircraft maintains a constant
rate of turn. They are used mainly for sequencing and spacing reasons. In this study, we would
like to consider them as holdings, as they still induce some non-negligible amount of airborne delay.
However, the neural network implemented in the traffic library sometimes detects these patterns as
holdings, and sometimes not. All in all, as any machine learning model, the neural network is not
perfect, and some false positives or negatives could be found. The exact performance of the neural
network is still unknown, as a publication presenting the details is not yet available. Nevertheless,
we have observed that it performs very well, and that missed predictions are very rare.

The cause of the unlabelled observations is estimated by using a simple yet effective self-training
algorithm [10], which allows any base_classifier (e.g., a decision tree or a neural network) to learn
from unlabelled data. The steps of the self-training algorithm are listed in Algorithm 1.

Algorithm 1 Self-training

Require: base_classifier, threshold (or k_best), max_iter, labelled set, unlabelled set
Initialise the empty set of pseudo-labelled observations
repeat
Fit the base_classifier using labelled and pseudo-labelled sets
Predict label probabilities for all observations in the unlabelled set
if threshold is used then
Unlabelled observations with predicted probabilities exceeding the threshold parameter are assigned that label
and transferred to the pseudo-labelled set
else
(k_best isused) Transfer the k_best unlabelled observations with the highest predicted probabilities to the pseudo-
labelled set, assigning them the corresponding most probable labels
end if
until No additional observations are added to the pseudo-labelled set, all unlabelled observations have been labelled,
or after completing max_iter iterations

The base_classifier is responsible for predicting labels for unlabelled observations during each
iteration. Then, a portion of these observations may be transferred into the pseudo-labelled set. The
selection of candidates can be accomplished through two methods: either by applying a threshold
to the predicted probabilities or by selecting the k_best observations with the highest predicted
probabilities. The reader is referred to the scikit-learn documentation for further details'.

Uhttps://scikit-learn.org/stable/modules/semi_supervised accessed on 7 October, 2023
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In practice, this procedure allows the majority of observations to be labelled as "weather" or "other,’
allowing the expected proportion of each cause to be determined. Some labels are given, while others
are inferred by the model (the pseudo-labels). The fuel consumption associated with each holding
can then be calculated using the OpenAP framework and attributed to the corresponding cause.

4. Experiment

The experimental setup for this study involved using ADS-B data for arrivals at the top 45 busiest
airports in Europe during 2022, as determined by Wikipedia. This dataset covers the period from
January 1%, 2022, to June 1%, 2023. metaf orai was used to extract the weather conditions from the
raw METAR:s for the same airports and period. Table 1 provides an overview of the dataset.

Table 1. Dataset description.

Features Label
Numerical Boolean

Name Mean Q1 Q2 Q3 Name Proportion of falses  Class Occurrences
speed (m/s) 4.0 2.1 3.6 5.1 precipitation 0.87 Unlabelled 41620 (85%)
gust (m/s) 0.6 0.0 0.0 0.0 obscuration 0.94 Weather 3484 (7%)
visibility (m) 9242 9999 9999 9999  thunderstorms 0.98 Other 4051 (8%)
ceiling (m) 2252 1067 3048 3048 snow 0.99

cover (oktas) 3 0 2 6 clouds 0.92

The dataset mostly includes features related to weather conditions. However, other features like air-
port congestion (which could be expressed as the ratio between the scheduled demand and the de-
clared capacity) as well as more detailed information related to on-airport emergency situations, e.g.,
an emergency aircraft on the runway, or even information from NOTAMs (notice to airmen) could
be included to further help the model identify holdings caused by reasons different from weather
during the self-supervision process. However, we kept the study as simple as possible for the sake of
reproducibility. Obtaining airline schedules, airport capacities, and NOTAMs is not straightforward,
and including these features would have made the reproducibility of the study more complex.

The dataset comprises 41620 (85%) unlabelled observations, 3484 (7%) weather-related observations,
and 4051 (8%) observations attributed to other causes. Remember that each observation represents a
30-minute period during which at least one holding was identified. To evaluate the model’s perfor-
mance on unseen data, a subset of 10% randomly selected and labelled observations was set aside.

The experiment made use of two base classifiers to (1) cross-check the results and (2) demonstrate
that simple models can perform this task comparably to more sophisticated ones. The simple model is
aDecisionTreeClassifier, while the complex model is a LGBMClassifier composed of 60 decision
trees with the same hyper-parameters as the simple model but trained with gradient-boosting.

We manually selected the hyper-parameters of the models based on our understanding of the prob-
lem and the characteristics of the data. The hyper-parameters were chosen to create models capable
of capturing the complexity in the data while also being robust to over-fitting. The decision to not
use a validation set was primarily driven by the limited amount of labelled observations (less than
10K). Although we did not use a validation set, we believe that our choices of hyper-parameters are
justified given our understanding of the problem and the data. More specifically:

Zhttps://github.com/ramondalmau/metafora
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« We set the maximum depth of each decision tree (max_depth) to 10 considering the complexity of
the problem and the number of features in the dataset. A depth of 10 allows the models to learn
complex patterns in the data, but not so intricate that they fit to the noise.

« We also set the minimum number of samples required to be at a leaf node (min_samples_leaf) to
25 with the size of the dataset in mind. This parameter ensures that the models make decisions
based on a substantial amount of data, which helps to prevent over-fitting by avoiding rules that
are too specific and based on a small number of observations.

« Finally, we set the number of trees in the gradient-boosting ensemble (n_estimators) to 60 to
strike a balance between model performance and the risk of over-fitting. While a higher number
of trees can potentially lead to better performance, it can also increase the risk of fitting to the
noise.

Furthermore, monotone constraints were applied to the LGBMClassifier to achieve consistent fea-
ture attribution. These constraints enforce that, all else being equal, higher values of wind speed,
gust, sky cover, precipitation, obscuration, thunderstorms, snow, and presence of clouds increase
the likelihood of an observation being classified as weather. Lower visibility and ceiling values, on
the other hand, must increase the likelihood of an observation being classified as weather.

In the context of the self-training algorithm (see Algorithm 1), we adopted a threshold selection
criterion with the threshold parameter set at 0.75. This high threshold ensures that only predictions
made with high confidence are added to the training set, which helps to maintain the quality of the
labels and prevent the degradation of the model. We chose not to limit the number of iterations,
allowing the model to learn as much as possible from the unlabelled data. These parameters also
happen to be the default settings in the scikit-1learn implementation. While we did use the default
settings, our decision was not solely based on convenience or lack of consideration. Instead, it was a
deliberate choice informed by our understanding of the problem, the data, and the model’s behaviour.
The alignment of our choices with the scikit-1learn defaults further substantiates our decisions.

Further investigation included computing Shapley values for the observations labelled as weather
(both given and pseudo-labelled), which provided insights into the impact of the various weather
events (e.g., obscuration, snow, thunderstorms). Then, the Birch clustering algorithm was applied
to the Shapley values to group observations with comparable characteristics. Regarding the con-
figuration of Birch, a threshold parameter of 0.25 was chosen and the development of 6 clusters
was enforced, guided by a visual inspection of the data. Additionally, dimensionality reduction was
carried out via principal component analysis (PCA) in order to facilitate the interpretation of results.

Lastly, environmental impact was quantified through fuel consumption estimation using the Ope-
nAP framework, providing valuable insights into the environmental consequences associated with
primary causes (i.e., weather and other) and weather events (e.g., obscuration, snow, thunderstorms).

5. Results

This section presents the key findings of the experiment. Section 5.1 illustrates the distribution of
observations by cause (weather or other) obtained through semi-supervised training. Section 5.2
delves into the specific weather events that likely prompted each observation labelled as weather.

5.1 Proportion of observations per cause

Figure 2 illustrates the evolution of the proportion of labels (weather, other, and unlabelled) as a
function of the self-training iteration. Note that both given labels and pseudo-labels are considered.
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Figure 2. Proportion of labels per self-training iteration. Red is weather, blue is other, grey is unlabelled.

As shown in Figure 2, DT and GBDT successfully labelled approximately 80% and 90% of the ob-
servations, respectively. The observations that remain unlabelled are observations for which the
probability of being caused by adverse weather is higher than 25% but lower than 75%, indicating
cases that cannot be attributed to a cause with sufficient confidence to satisfy the threshold criteria.
It is worth noting that GBDT required twice the number of iterations compared to DT to complete
the self-training process.

Table 2 shows the label occurrence on the entire dataset (including the 10% of labelled observations
reserved for assessing the performance of the models on unseen data), after the self-training process.

Table 2. Label occurrence after the self-training process on the entire dataset.

Model  Unlabelled Weather Other
DT 9825 (20%) 10871 (22%) 28456 (58%)
GBDT  4708(9%) 13618 (28%) 30829 (63%)

As indicated by the data in Table 2, both models allocate a comparable proportion of observations to
different causes. Approximately two-thirds are ascribed to factors other than weather, one-quarter
to weather-related factors, and the remaining observations are not classified due to insufficient con-
fidence.

This categorisation is only valid, however, if the models have effectively learned the patterns that
certainly lead to weather-related airborne holdings. In order to check that this condition is met, two
steps will be taken: (1) measuring binary classification metrics on the 10% of reserved observations,
and (2) computing the Shapley values of the model to investigate the attribution given to the features.

To start with, Table 3 presents the classification metrics on the 10% of labelled observations randomly
sampled (with stratification) from the dataset before starting the self-training process.

It is important to note that the self-training algorithm operates independently of the performance
evaluation conducted on 10% of the labelled observations. For instance, an observation that yields a
prediction of 55% for weather and 45% for other reasons would be considered unlabelled within the
self-learning algorithm, as it does not meet the threshold criteria. However, during the following
performance evaluation, the observation in question would be classified as a weather observation,
given the default threshold (also known as cut-off in the machine learning terminology) of 50%.
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Table 3. Classification metrics on the 10% of labelled observations randomly sampled with stratification from the dataset.

Weather (349 obs.) Other (405 obs.)
Model  Precision Recall Precision Recall Accuracy Average Precision ROCAUC
DT 0.82 0.77 0.81 0.86 0.82 0.84 0.87
GBDT 0.83 0.80 0.83 0.85 0.83 0.86 0.87

The metrics shown in Table 3 reveal comparable performance between the DT and GBDT models,
with both excelling at predicting the cause for airborne holdings. Their accuracy is higher than 80%,
and the precision and recall on the two categories are alike. Outstanding results are also observed
for the average precision and the area under the receiver operator characteristic curve (ROC AUC).

Figure 3 shows the distribution of Shapley values for the two models. In this graph, the y-axis indi-
cates the name of the features, in order of mean absolute Shapley value from the top to the bottom.
Each dot in the x-axis shows the Shapley value of the associated feature on the prediction for one
observation, and the colour indicates the magnitude of that feature: red indicates high, while blue
indicates low. A positive Shapley value indicates that the feature contributes to the prediction for
the observation by increasing the probability of weather-related airborne holding (i.e., the positive
class) relative to the expected value in the train set, while a negative value indicates the opposite.
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Figure 3. Shapley values distribution on the entire dataset. Red is high, blue is low.

Figure 3 shows that the models have learned patterns that correspond to human intuition. Notably,
visibility emerges as the most important feature, with higher values implying that the observed hold-
ings are less likely to be driven by weather conditions, while lower visibility values indicate that the
likelihood of weather-related holdings increases. Common sense also extends to the other features,
where the presence of precipitation, obscuration, snow, and/or thunderstorms positively influences
the model’s output. Figure 3 also showcases the importance of enforcing monotone constraints.

In contrast to the GBDT model, the DT model does not always adhere to these constraints. For
instance, it exhibits occasional instances where strong wind gusts contribute to a decrease in the
probability of weather-related holding. However, it’s worth noting that such undesirable behaviour,
stemming from minor over-fitting to noise in the data, occurs infrequently.
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This analysis could be enhanced by further categorising airports based on the precision approach
categories associated with the active runway configuration at the time of observed holdings. Inves-
tigating such a relationship between the precision approach category and the likelihood of aircraft
holding for weather improvement could yield valuable insights. Unfortunately, to the best of the
authors’ knowledge, publicly available datasets detailing historical runway configurations at each
airport and precision approach categories per runway and airport, are not available. The former
dataset could potentially be acquired through the traffic library, utilising some of the provided
methods, whereas obtaining the latter dataset necessitates manual extraction from the aeronautical
information publications. Despite the extraction of such data falls outside the defined scope of this
paper, we strongly encourage future research endeavours to explore this avenue.

It is important to remark that, in the context of self-training classification tasks employing a thresh-
old criterion, the use of a well-calibrated classifier is imperative. The calibration curves of the DT
and GBDT models after the last self-training iteration are shown in Figures 4a and 4b, respectively.
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Figure 4. Calibration curve. The diagonal dashed line represents a perfectly calibrated model.

Figures 4a and 4b indicate that the models are relatively well calibrated, despite the fact that the
separation from the perfectly calibrated line shows a pessimistic tendency to over-forecast low prob-
abilities of weather-related holdings (i.e., the positive class).

Finally, Figure 5 shows the proportion of fuel consumption attributed to the various causes, demon-
strating the alignment of outcomes between the two models, with the proportion of fuel consumption
attributed to unknown causes closely resembling the frequency of these events.
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Figure 5. Proportion of fuel consumption in airborne holdings attributed to the various causes.
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Interestingly, both models attributed approximately 40% of fuel consumption to weather-related
causes, despite this class representing only a quarter of the observations. This intriguing finding
suggests that while weather-related holdings occur less frequently, they have a higher impact on
fuel consumption. In other words, periods with holdings caused by weather tend to be more severe.

5.2 Proportion of observations per weather cluster

Figure 6 shows the projection, into two components, of the Shapley values computed for the obser-
vations labelled as weather (either given labels or pseudo-labels after the self-training process) as a
result of the PCA algorithm. Each point corresponds to one of these observations, and the colour
indicates the cluster as detected by the Birch algorithm, which humanised identifiers, like "snow"
instead of just "0", were based on the manual inspection of the feature distributions that will follow.
Please keep in mind that the cluster names merely reflect the most significant weather event, but
ultimately, a holding may be prompted by a combination of multiple weather events.
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Figure 6. Principal components computed by using PCA and clusters on the Shapley domain computed by using Birch.

According to Figure 6, the PCA projection into two dimensions captures a large variance of the
data. Generally speaking, the six clusters are well-separated, with similar or concurrent weather
events appearing closely grouped in the lower-dimensional space. For instance, thunderstorms are
in between clouds, obscuration and speed, while obscuration slightly overlaps with snow.

It should be noted that the cluster named "other" includes most of the observations labelled as
"weather" but which predicted probability of belonging to that category is very low according to the
model. To elaborate further, these are instances where holdings were observed during a weather-
related ATFM regulation, but the weather conditions may not be exceptionally severe.

Figures 7 and 8 show the empirical cumulative distribution and the normalised histogram per cluster,
respectively, for the DT model that were taken into account during the identification process. The
equivalent graphs for the GBDT model are shown in Figures 9 and 10, respectively.
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Figure 9. Empirical cumulative distribution function for the GBDT model. Colours follow the same notation as in Fig. 6b.
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Figure 10. Normalised histogram for the GBDT model. Colours follow the same notation as in Fig. 6b.

11 shows the Sankey diagram representing the relationships between observations within

the 6 clusters generated from the Shapley values of the GBDT model (left) and their connections to
either the same or different clusters based on the Shapley values of the DT model (right).
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Figure 11. Sankey diagram depicting the relationships between observations within clusters generated from the Shapley
values of the GBDT model (left) and their connections to those based on the Shapley values of the DT model (right).

Figure 11 reveals that about two-thirds of the observations originally allocated to the obscuration
cluster in the left categorisation are correlated with ceiling in the right categorisation. This flow of
data is caused by the manner in which metafora encodes periods with vertical visibility information
(VV), which often occurs during low-visibility times. In these circumstances, the vertical visibility
is used to fill the ceiling feature, yet actually it reflects the vertical visibility. In contrast, around
one-third of the observations originally classified as speed in the right clusters are now classified
as ceiling in the left clusters. This flurry of observations is caused by the fact that severe winds
frequently occur in the midst of storms, when the ceiling is low. Overall, it is worth noting that the
two models have produced similar outcomes.

Lastly, Figure 12 depicts the distribution of fuel consumption in airborne holdings attributed to var-
ious weather events, each of which is associated with a specific cluster
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Figure 12. Proportion of fuel consumption in airborne holdings attributed to the different clusters.

Figure 12 shows that, in both clusters generated by the DT and GBDT models, obscuration and ceiling
together appear as the major contributors to fuel consumption. This fact is not surprising, as most
of the observations belong to these clusters. Wind speed and the presence of convective weather
also appear to have an important environmental impact, despite the presence of these occurrences
is not as significant.



12 Ramon Dalmau et al.

6. Conclusions

Leveraging the power of semi-supervised learning, this study revealed that approximately 25% of
the 30-minute time periods with airborne holdings in Europe (independently of the severity) are
weather-related, with reduced visibility, winds and convective weather as the main contributors,
constituting around 40% of total fuel consumption during these procedures.

It is critical to emphasise that airborne holdings are just one of the many factors influencing flight
efficiency within the TMA. This paper primarily focused on the methodology, which is why it specif-
ically addressed one particular tactical control strategy for illustration purposes. However, it is im-
portant to note that other tactical control strategies, such as path stretching or level-offs, also have
a significant impact and cannot be ignored [1]. Therefore, we strongly encourage the research com-
munity to explore the potential of extending the method proposed in this study to comprehensively
unravel the causes of flight inefficiencies within the TMA in a more generalised manner.

For example, the current study’s methodology could be reproduced by integrating the additional
ASMA time® [11] rather than relying solely on the binary indicator of the presence or absence of a
holding pattern. Following the approach outlined in this paper, each observation could correspond to
the weather conditions during a specified time period (e.g., 30 minutes), enriched with the associated
additional ASMA time. These observations could then be categorised as weather-related or others
based on the presence of ATFM regulations. Subsequently, employing the semi-supervised approach
introduced in this study would facilitate the extrapolation of labels for unclassified observations.
This method promises to provide a more exhaustive understanding of the contributing factors to
overall airborne delay within the TMA, attributable to airborne holdings and other tactical control
techniques.

Furthermore, it is worthwhile to investigate the various practises regarding the utilisation of airborne
holdings at various airports. While some airports use holding patterns primarily in response to
extreme weather conditions, as a safety measure to ensure the orderly and safe flow of air traffic
during adverse conditions, others take a more strategic approach. Airborne holdings are not just
a backup plan for bad weather at these airports; they are a deliberate strategy used during peak
hours of air traffic congestion. Airborne holdings are useful in these situations for orchestrating the
complex ballet of incoming and outgoing flights. This intriguing study, however, falls outside the
scope of this paper, as our primary focus has consistently been on detailing the methodology for
identifying the causes of airborne holdings in a semi-supervised fashion.

In the next phase of our research, we intend to apply our methodologies to a another, yet critically
important area: quantifying environmental inefficiencies, particularly in terms of fuel consumption.
This endeavor will focus on identifying the primary causes of fuel burn inefficiency by crossing
available key performance indicators.

Additionally, in order to improve reproducibility within the research community, this study used the
OpenAP framework for fuel consumption computation. Nonetheless, we strongly advise using the
base of aircraft data (BADA) performance model to achieve more accurate estimates.

Last but not least, while our study has demonstrated promising results with manually chosen hyper-
parameters for the models, the self-training algorithm, and the Birch clustering algorithm, we ac-
knowledge that there is room for further optimisation. In future work, these parameters could and
should be fine-tuned to potentially improve the quality of the models and the overall self-training

3ASMA stands for arrival and sequencing metering area, representing a 40NM cylinder around the airport. The addi-
tional ASMA time provides an approximate measure of the average inbound queuing time on the inbound traffic flow during
congested airport periods.
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process, which would also provide more accurate figures about the fuel consumption share. Tech-
niques such as cross-validation and grid search, for instance, could be employed to systematically
explore the hyper-parameter space and identify the best values.
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