
Journal of Open Aviation Science (2023), Vol.1
doi:10.59490/joas.2023.7071

SOFTWARE

impunity: Enforcing Physical Unit Consistency at Definition Time
in Python
Antoine Chevrot

*
and Xavier Olive

ONERA DTIS, Université de Toulouse, Toulouse, France

*Corresponding author: antoine.chevrot@onera.fr

(Received: 23 June 2023; Revised: 18 July 2023; Accepted: 19 July 2023; Published: 20 July 2023)

(Editor: Martin Strohmeier; Reviewers: Enrico Spinielli, Junzi Sun)

Abstract
We introduce impunity, a Python library that enables static analysis of code annotations to ensure the

consistency of physical units. It provides a framework for developers to annotate their Python code with

physical units and automatically verifies if the units are compatible and adhere to predefined coherence

rules. impunity comes as a decorator to apply on functions: it analyses the source code to check for

consistency of physical dimensions, and applies minimal code rewriting if conversions are necessary.

Overall, this approach takes the best of type-checking based methods and dynamic methods and provides

a robust approach with no overhead at runtime.

Keywords: Python; physical units; static analysis; code rewriting

1. Statement of need

Programming and scripting has become part of the daily routine of scientists of all domains. Many

such programs involve physical quantities such as distance, duration, speed values. The importance

of dimensional and unit consistency can be compared to the significance of types in programming.

Similar to how passing a program through a type-checker eliminates a potential cause of failure, en-

suring the dimensional and unit consistency in equations and formulas serves as an initial validation

for their correctness. The catastrophic NASA Mars Climate Orbiter probe in September 1999 sadly

resulted from a critical confusion between the SI unit of force, newtons (N), and the US customary

unit of force, pound-force (lbf). In the aviation domain, the infamous Air Canada’s Boeing 767 flight

incident in 1983 crash-landed due partially to a mishap between imperial and metric system.

Many scientists often resort to basic techniques for managing physical units, such as incorporating

the unit directly into variable names (e.g., altitude_in_ft), adding comments in the code, or in the

documentation of their functions and routines. Unfortunately, this error-prone approach is widely

adopted, despite the availability of libraries designed to address physical unit consistency. Potential

users tend to dismiss such libraries, prioritizing their domain-specific interests over learning new

tools, fearing that it may impede their software development process. The challenge of ensuring

physical unit consistency is perceived as unattractive to scientists, similar to how enforcing type

consistency can be unappealing to programmers from various backgrounds.

This paper presents impunity, an open-source Python library that makes use of type annotations

defined in PEP 486 to ensure physical consistency in code and to automatically modify the source

© 2023 by the authors. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International

(CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/)

https://orcid.org/0000-0003-3677-5150
https://orcid.org/0000-0002-2335-5774
antoine.chevrot@onera.fr
https://creativecommons.org/licenses/by/4.0/

2 Antoine Chevrot et al.

code if necessary. Annotations with physical units look similar to comments in the code; they are

optional, and consistency checking is conducted only when hints are available, minimizing the

mental burden on the user. The library hasminimal side effects, imposing virtuallyno performance
overhead, and exclusively generating non-breaking warnings at definition time.

A typical usage would look as follows:

from impunity import impunity

@impunity
def speed(distance: "meter", duration: "seconds") -> "m/s":

return distance / duration

>>> speed(10, 10)
1

This example illustrates themost common use case of the library: compatibility of units of measure is

verified at the time of definition. For instance, when evaluating the expression distance / duration ,

the resulting value is expressed in m/s, aligning with the provided annotation. Consequently, the

function remains unchanged, eliminating any potential computation overhead during runtime.

In the following example, impunity detects that dimensions are correct, but that some conversion

is necessary if a result in km/h is to be ensured. This is the only situation when impunity edits the
source code of the function.

@impunity
def speed(distance: "meter", duration: "seconds") -> "km/h":

impunity rewrites this as: return 3.6 * (distance / duration)
return distance / duration

>>> speed(10, 10)
3.6

However, if the source code contains anomalies or dimension inconsistencies (e.g., sum distances and

durations, annotate the return type of the function as ft, etc.), the function is not edited. However,

a warning is raised to notify the developer of the error.

After a software review of similar libraries in many programming languages in Section 2, Section 3

explains the design and rationale of the impunity library. Section 4 presents a vision for the future

of the development and usage of the library, and concludes.

2. Related works

The absence of built-in support for units of measurement (UoM) in major programming languages

has led to the development of specialized libraries. In a recent study [1], Mc Keever et al. conducted

a comprehensive review and evaluation of UoM libraries. They identified 38 open-source libraries

and explored their features and evaluation strategies. The study also investigated the perceptions

of developers and practitioners regarding the usability of UoM libraries. The findings highlighted

barriers to adoption, such as limited awareness, usability concerns, performance issues, and devel-

opment processes that exclude unit information. In this section, we present various strategies to take

UoM into account in various languages, and how well those suit different programming paradigms.

This description of the various strategies that have been explored should help understand the design

choices made for impunity.

https://orcid.org/0000-0003-3677-5150

Journal of Open Aviation Science 3

2.1 Type-checking based methods

First attempts to include physical dimensions in the type checking process date back to 1994 with

works by Kennedy [2] and Goubault [3] in ML based languages. After Andrew Kennedy was hired

by Microsoft, they developed the F# language, with a native support of dimensions in the typing

system
1
. In the basic following example, float is indexed by a Measure generic type.

[<Measure>] type meter
[<Measure>] type second

let speed (distance: float<meter>) (duration: float<second>) =
distance / duration

[<EntryPoint>]
let main argv =

let distance = 12.<meter>
let duration = 4.<second>
let value = speed distance duration
printfn "Speed: %f m/s" value
0

Basic arithmetic is implemented to check that addition can only be applied on the same units, but

multiplication creates a new dimension. If the division operator in distance / duration is replaced
by an addition with distance + duration, a typing error is raised:

error FS0001: The unit of measure 'second' does not match the unit of measure 'meter'

However, it is important to note that no checking is performed during the automatic formatting of

the value into a float using the %f placeholder. In this case, the physical unit remains hardcoded

within the string. In 2017, Garrigue and Ly [4] implemented aminimal patch in the OCaml language
2

(which has not been merged into the main branch) with similar functionalities.

let speed (distance : <m> dfloat) (time : <s> dfloat) = distance /: time
(* val speed: <m> Dim.dfloat -> <s> Dim.dfloat -> <m / s> Dim.dfloat = fun *)

Overall, the advantage of this approach is that dimensions are embedded into types which disappear

at runtime: computations are only performed with native types and the unit checking does not

create any overhead. As with F#, automatic conversion to commensurable units is not possible, and

converting units with properly typed functions falls back to the responsibility of the programmer:

let foot : <m/ft> dfloat = create 0.3048
let feet_to_meters (x : <ft> dfloat) = x *: foot

2.2 Template based methods

Template programming provided by C++ provides a code generation that is well suited to such a lan-

guage equipped with a preprocessor and providing function overloading. There are two advantages

with this approach: code is generated at compilation time with native types only, so the overhead

is minimal, if any. Boost
3
is a C++ library for zero-overhead dimensional analysis and unit/quantity

manipulation and conversion.

1
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure

2
https://github.com/tournemire/ocaml/blob/dim/typing/units.ml

3
https://www.boost.org/

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://github.com/tournemire/ocaml/blob/dim/typing/units.ml
https://www.boost.org/

4 Antoine Chevrot et al.

#include <iostream>
#include <boost/units/systems/si.hpp>

using namespace boost::units;

quantity<si::velocity> speed(quantity<si::length> distance,
quantity<si::time> duration)

{
return distance / duration;

}

int main() {
double distance = 12, duration = 4;
quantity<si::velocity> value = speed(distance * si::meters,

duration * si::seconds);
std::cout << "Speed: " << value.value() << " m/s" << std::endl;
return 0;

}

Errors are raised when operations are not available, at preprocessing time, in a similar fashion to the

type checking time in strictly-typed ML family languages. With C++, the relevant part of the error

raised during template expansion would look as follows:

return distance + duration;
~~~~~~~~ ^ ~~~~~~~~
| |
| quantity<unit<list<dim<boost::units::time_base_dimension,

[...]>,[...]>,[...]>>
quantity<unit<list<dim<boost::units::length_base_dimension,

[...]>,[...]>,[...]>>

A notable caveat specific to the template-based conversion method is its susceptibility to floating

precision errors arising from unnecessary conversions to the SI system, unlike other methods that

employ compatibility checks to avoid such conversions when not required:

>>> m_to_feet = 0.3048
>>> ((890 * m_to_feet) + (890 * m_to_feet)) / m_to_feet # expect 1780
1779.9999999999998

2.3 The quantity pattern

The quantity pattern [5] is based on the implementation of a class which acts as a container model for

physical quantities, consisting of a magnitude and a unit. This approach provides a convenient and

structured way to handle units of measurement within a program. This pattern is the most widely

implemented in UoM management libraries in Python as it is compatible with the dynamic nature

of the language. For every operation, the physical units of all parameters are checked at runtime,

and conversion is dynamically performed if needed.

A Quantity class (see example below) typically consists of at least two attributes for the magnitude

(a floating point number) and a unit (a string, or a specific class). The class usually implements unit

conversion (which returns a new Quantity object) and all arithmetic operations, by implementing

https://orcid.org/0000-0003-3677-5150


Journal of Open Aviation Science 5

all adequate dunder methods __add__ (the + operator), __sub__ (the - operator), __mul__ (the *
operator), __div__ (the / operator), __pow__ (the ** operator), etc.

from dataclasses import dataclass
import numpy as np

@dataclass
class Quantity:

magnitude: float | np.ndarray
unit: str

def convert_to(self, new_unit: str) -> Quantity:
...

def __add__(self, other: Quantity) -> Quantity: # and other operators
converted = other.convert_to(self.unit)
return Quantity(self.magnitude + converted.magnitude, self.unit)

>>> result = Quantity(1, 'm') + Quantity(1, 'cm')
>>> result
Quantity(1.01, 'm')
>>> result.magnitude
1.01

3. Structure of the library

This section introduces the core structure of the impunity library, a more advanced example com-

patible with the static analysis mypy tool, and assesses the performance of the library in comparison

to state-of-the-art tools.

3.1 The @impunity decorator

impunity aims to process physical units in annotated code. It ensures the consistency and accuracy

of functions, their parameter variables and return values as long as they are annotated with physical

units. impunity uses annotations and a decorator function called @impunity.

In Python, a decorator function in Python is a higher order function which changes the behaviour

of a given function. Let’s consider an illustrative code snippet to understand how impunity operates
in practice. Given the following Python function:

def speed(distance: "meters", duration: "seconds") -> "km/h":
res = distance / duration
return res

If the decorator function is used at definition time, the following code is executed and the same

function is returned:

>>> def decorator(function):
... print(f"Function definition for {function.__name__}")
... return function



6 Antoine Chevrot et al.

>>> @decorator
... def speed(distance: "meters", duration: "seconds") -> "km/h":
... ...
Function definition for speed

>>> speed = decorator(speed) # the @decorator is equal to running this line
Function definition for speed

In practice, decorator functions are mostly used to change the behaviour of functions at runtime. A

common example is the logging of the execution of a function, or the timing of its execution. Then

a new (nested) function must be defined based on the old one:

def logger(function):
def new_function(*args):

print(f"Executing function {function.__name__} with parameters {args}")
return function(*args)

return new_function

@logger
def speed(distance: "meters", duration: "seconds") -> "km/h":

res = distance / duration
return res

>>> speed(1, 2)
Executing function speed with parameters (1, 2)
0.5

The impunity library provides the @impunity decorator in order to check the coherence of physical

units defined within the code: it traverses (and sometimes modifies) the Abstract Syntax Tree (AST)

of the code for the function. Annotated variables and functions are logged for future reference. The

AST of the speed function can be depicted in a visual representation, as shown in Figure 1 below:

FunctionDef

"speed" arguments Assign Return Constant

arg arg

"distance" Constant

"meters"

"duration" Constant

"seconds"

Name BinOp

"res" Store Name Div Name

"distance" Load "duration" Load

Name

"res" Load

"km/h"

Figure 1. Abstract Syntax Tree (AST) of the annotated speed function

As the decorator function walks through the AST, variables annotated with units of measures (i.e.

distance and duration) are logged. Then, each time a call to an annotated function is detected,

@impunity compares the expected units of measures from function parameters and return values

with the units specified in the function definition (Figure 3). When amismatch is detected, indicating

an inconsistency in units, impunity takes one of the following actions:

https://orcid.org/0000-0003-3677-5150


Journal of Open Aviation Science 7

• if the two units are commensurable, @impunitymodifies theAST to include a conversion operation;

• if the two units are not commensurable, an IncommensurableUnits warning is raised.

In the case of the speed function example, the expected return UoM is "km/h" while the UoM in-

ferred from the division between distance and duration variables is "m/s". impunity identifies this

discrepancy and takes action by modifying the AST accordingly. It introduces a binary operation
(BinOp) node to convert the result to the proper UoM, as depicted in Figure 2.

FunctionDef

"speed" arguments Assign Return Constant

arg arg

"distance" Constant

"meters"

"duration" Constant

"seconds"

Name BinOp

"res" Store Name Div Name

"distance" Load "duration" Load

BinOp

Name Mult Constant

"res" Load 3.6

"km/h"

Figure 2. Modified Abstract Syntax Tree (AST)

Here, the constant value of 3.6 is calculated by determining the conversion factor between the two

units "m/s" and "km/h". Impunity leverages the capabilities of the sister Pint library: however, the

Pint functionalities are called only once at definition time, and not at runtime (i.e. every time the

function is executed) resulting in a tremendous gain in performance (see Section 3.3).

assignation of an
annotated variable

Does the
expected unit

match the
received one?

do nothing

Are both
units

commensurable?

edit the code

raise a warning

yes

no

yes

no

Figure 3. Decision diagram when @impunity detects an assignation of a variable with a unit of measure.

3.2 A fully commented running example

In the following, we comment the code printed below to go through various functionalities of the

impunity library. The code is fully checked with both mypy (for types) and impunity (for physical

units). The full annotated code is available in the repository as scripts/sample_code.py.



8 Antoine Chevrot et al.

from typing import TypeVar
from typing_extensions import Annotated # ➀

import numpy as np
from impunity import impunity

GAMMA: Annotated[float, "dimensionless"] = 1.40 # ➁
R: Annotated[float, "m^2 / (s^2 * C)"] = 287.05287
STRATOSPHERE_TEMP: Annotated[float, "K"] = 216.65

F = TypeVar("F", float, np.ndarray) # ➂

@impunity
def temperature(h: Annotated[F, "m"]) -> Annotated[F, "K"]:

"""Temperature of ISA atmosphere."""
temp_0: Annotated[float, "K"] = 288.15
c: Annotated[float, "K/m"] = 0.0065
temp: Annotated[F, "K"] = np.maximum( # ➃

temp_0 - c * h, # ➄
STRATOSPHERE_TEMP,

)
return temp

@impunity(rewrite="sound_speed.py") # ➅
def sound_speed(h: Annotated[F, "ft"]) -> Annotated[F, "kts"]:

"""Speed of sound in ISA atmosphere."""
temp = temperature(h) # ➆
a: Annotated[F, "m/s"] = np.sqrt(GAMMA * R * temp) # ➇
return a

@impunity # ➈
def main() -> None:

altitude: "m" = 1000
print(sound_speed(altitude)) # ➉ a.
# 653.9753225425684

altitude_array: "ft" = np.array([0, 3280.84, 5000, 10000, 30000])
x = sound_speed(altitude_array) # ➉ b.
print(x)
# [661.47859444 653.9753223 650.00902555 638.3334048 589.32227624]

y: "m/s" = sound_speed(altitude_array) # ➉ c.
print(y)
# [340.29398803 336.43397136 334.39353203 328.3870738 303.173571 ]

if __name__ == "__main__":
main()

https://orcid.org/0000-0003-3677-5150


Journal of Open Aviation Science 9

➀ typing.Annotated has been supported since Python 3.11. In earlier versions, the object is part of

the typing_extensions package. Annotated allows the developer to add extra information to type

annotations. impunity supports this notation to provide unit annotations which do not conflict

with static type checkers such as mypy or pylance. Both notations are supported by impunity, but
only Annotated is supported by static checkers.

➁ Global variables can be annotated without being wrapped in an @impunity decorated function. At
the time being, decorated global variables are only partially supported due to limitations of the

language:

>>> from constants import GAMMA # @impunity cannot find the unit information
>>> import constants
>>> constants.GAMMA # @impunity finds the unit information

➂ (about the typingmodule in Python) Such TypeVar definition can be convenient for typing purposes:
in the temperature function, if h is a float, the return value is a float; if h is a NumPy array, the return
value is also a NumPy array.

➃ Some functions (e.g. all NumPy functions) cannot be fully impunified. Here, the return value of

np.maximum() is undefined: in order to propagate the physical unit information to the return

type, and possibly convert the return value of the function into a compatible unit, it must be
annotated.

➄ Inside the function call, unit consistency for the expression temp_0 - c * h is ensured.

➅ The @impunity decorator can also be called with arguments. Here, the amended version of the

sound_speed function is dumped in sound_speed.py: the dumped code may not be executable as

is; this mode is intended for debugging purposes.

Here is the result of the impunification (as printed in the output file):

def sound_speed(h: Annotated[F, 'ft']) -> Annotated[F, 'kts']:
"""Speed of sound in ISA atmosphere"""
temp = temperature(h * 0.30479999999999996)
a: Annotated[F, 'm/s'] = np.sqrt(GAMMA * R * temp)
return a * 1.9438444924406049

➆ (to be compared with ➃) The annotation of the temp variable is here optional: impunity knows

the physical unit for the return value of the temperature function from its signature. As a result,

a conversion for h is triggered, and the physical unit for temp is considered to be "K". The temp
variable may still be annotated as Annotated[F, "K"] for redundancy, or as another compati-

ble unit (e.g., Annotated[F, "deg_C"]) in order to include a conversion operation at the time of

assignment.

➇ (to be compared with ➃) Again, the return unit of the np.sqrt() is undefined. When clarified that

it is expressed in "m/s", automatic conversion to "kts" may be automatically performed.

➈ Only impunified functions can be processed by the unit checking process. If the variables altitude
or altitude_array are defined (even with annotations) in the Python REPL console, or outside a

function in a Python file, no checking or transformation can be performed.

Note that in this main() function, we switch back to simple unit annotations, supported by impunity,
but incompatible with mypy, which raises errors.



10 Antoine Chevrot et al.

➉ a. The first sound speed value is directly printed, therefore, it is expressed in the unit specified

in the function annotation ("kts"). b. With the array for altitude values (returning variable x), the

variable is also automatically labelled as "kts". Redundancy is of course possible. c. If the user

expects a result in a different unit (variable y), the result of the function must be assigned to an

annotated variable so that it can be converted prior to printing.

3.3 Performance assessment

Mc Keever et al. [1] justifies the fact that Python-enclined scientists do not use any UoM checking

library with the computation overhead they often induce during execution. Python is a dynamic

language, and most tools provide dynamic checking of the UoM, every time a function is called with

potentially different parameters and different units of measures. impunity statically checks the UoM

of variables in the code based on annotations and modifies the AST at definition time. The following

assessment shows that impunity is a lot quicker than four existing libraries, chosen among other

Python libraries dealing with UoM for their support, regular updates and community.

conversion
correct units

conversion
correct units

conversion
correct units

conversion
correct units

conversion
correct units

0 2 4 6 8 10 12 14 16 18 20 22
Computation time (ratio to baseline)

impunity

quantities

astropy

numericalunits

pint

Figure 4. Comparison of performance for several libraries handling units of measurements : impunity has no overhead
when units are correct, and a minimal one when units need to be converted.

• numericalunits (https://github.com/sbyrnes321/numericalunits) uses a complete set of indepen-

dent base units (meters, kilograms, seconds, coulombs, kelvins) that are defined as randomly-
chosen positive floating-point numbers, different for all executions. If units are consistent, the

randomness disappears; if not, two executions of the same code return different values.

• astropy [6] is a Python package offering functionalities aimed at astronomers and astrophysicists.

It also includes an implementation of the quantity design pattern. astropy also implements a

decorator to check calls of functions with quantity parameters.

• Pint (https://github.com/hgrecco/pint) also provides an implementation of the quantity design

pattern as a standalone library. It is flexible and provides good integration with other scientific

libraries like Pandas (through extension types) or NumPy.

• Quantities (https://github.com/python-quantities/python-quantities) is designed to handle arith-

metic and conversions of physical quantities, which have a magnitude, dimensionality specified

by various units, and possibly an uncertainty. Quantities builds on the popular NumPy library and
is designed to work with NumPy’s standard ufuncs, many of which are already supported.

https://orcid.org/0000-0003-3677-5150
https://github.com/sbyrnes321/numericalunits
https://github.com/hgrecco/pint
https://github.com/python-quantities/python-quantities


Journal of Open Aviation Science 11

For each library, two different use-cases are considered based on the example speed function. One

with variables annotated with the correct units (meters and seconds), and one with different but

commensurable units (meters and hours). In both cases, two NumPy arrays of shape (10000,) are sent
as parameters. The computation time over 300 iterations is then averaged. Execution times for both

use-cases are displayed in Figure 4.

As observed, the overhead induced by impunity is minimal. This is mainly due to the difference be-

tween the dynamic checking of the other libraries and the static analysis done by impunity. By

changing the AST directly before execution, impunity limits its overhead to the multiplications

added to keep the units coherent between each others. This is also why, when UoM are identical,

the overhead is non-existent.

4. Conclusion and future developments

This paper presents impunity, a new library for managing units of measure in Python. The most

notable improvements compared to other similar libraries boil down to:

• Integration with legacy code.
– The library leverages the existing Python type hinting system: it is non-intrusive, optional,

and compatible with widely used Python development tools and frameworks;

– It requires only annotations and a decorator function, not more than what a meticulous devel-

oper would write as comments in his code. Annotations naturally appear in the documentation

later in the process;

– Existing code does not break after a dependency library is impunified: native structures
are not changed in the process, and possible inconsistencies only raise warnings.

• Minimal overhead. The library is designed with minimal overhead: it does not significantly

impact the runtime performance of scientific computations. If annotations do not raise any need

for unit conversions, existing code is left as is, running with native structures.

• Completeness and versatility. impunity provides a comprehensive set of predefined physical

unit types and support the creation of custom units to accommodate a wide range of scientific

domains and applications.

The authors created this library because of numerous unit incompatibility errors in their existing

code base, which depends on different aeronautical libraries using both SI (e.g. meters) and non-SI

units (feet, knots, nautical miles, etc.). A first attempt at rewriting legacy code with existing libraries

caused an unacceptable drop in performance, more than 20 times slower.

The future of the impunity library will be mostly led by the development of other existing open-

source Python libraries for aviation, e.g. pitot (https://github.com/open-aviation/pitot), OpenAP [7]
and traffic [8]. In the long run, a standalone code analysis program, possibly integrated with IDEs,

would be a great addition. A complete integration with popular Python code analysis tools, such as

pylance and mypy, would also improve the usability and promote the adoption of best practices for

unit management in scientific codebases. We also aim at providing proper annotations for units in

typed records, such as named tuples, typed dictionaries, dataclass structures or Pandas DataFrame.

Author contributions

• Antoine Chevrot: Conceptualization, Methodology, Software, Validation, Writing – Original draft

• Xavier Olive: Conceptualization, Validation, Writing – Original draft

https://github.com/open-aviation/pitot


12 Antoine Chevrot et al.

Reproducibility statement

impunity is an open-source library under MIT licence. The source code is available on GitHub at

https://github.com/achevrot/impunity. The performance assessment presented in this paper can be

reproduced according to the readme file in the scripts/performance folder.

This software is archived at https://doi.org/10.5281/zenodo.8167457

References
[1] Steve McKeever, Oscar Bennich-Björkman, and Omar-Alfred Salah. “Unit of measurement li-

braries, their popularity and suitability”. In: Software: Practice and Experience 51.4 (2021), pp. 711–
734. doi: 10.1002/spe.2926.

[2] Andrew Kennedy. “Dimension Types”. In: Proceedings of the 5th European Symposium on Pro-
gramming: Programming Languages and Systems. ESOP ’94. 1994. doi: 10.5555/645390.651419.

[3] Jean Goubault and Michiel Korthals. “Inférence d’unités physiques en ML”. In: 5e journées fran-
cophones des langages applicatifs. 1994.

[4] Jacques Garrigue and Dara Ly. “Des unités dans le typeur”. In: 28e journées francophones des
langages applicatifs. 2017.

[5] Martin Fowler. Analysis patterns: reusable object models. Addison-Wesley Professional, 1997.

[6] Astropy Collaboration et al. “The Astropy Project: Sustaining and Growing a Community-

oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package”. In: apj
935.2, 167 (Aug. 2022), p. 167. doi: 10.3847/1538-4357/ac7c74. arXiv: 2206.14220 [astro-ph.IM].

[7] Junzi Sun, Jacco Hoekstra, and Joost Ellerbroek. “OpenAP: An open-source aircraft perfor-

mance model for air transportation studies and simulations”. In: Aerospace 7.8 (July 2020),

p. 104. doi: 10.3390/aerospace7080104.

[8] Xavier Olive. “traffic, a toolbox for processing and analysing air traffic data”. In: Journal of Open
Source Software 4.39 (2019). doi: 10.21105/joss.01518.

https://orcid.org/0000-0003-3677-5150
https://github.com/achevrot/impunity
https://doi.org/10.5281/zenodo.8167457
https://doi.org/10.1002/spe.2926
https://doi.org/10.5555/645390.651419
https://doi.org/10.3847/1538-4357/ac7c74
https://arxiv.org/abs/2206.14220
https://doi.org/10.3390/aerospace7080104
https://doi.org/10.21105/joss.01518

	Statement of need
	Related works
	Type-checking based methods
	Template based methods
	The quantity pattern

	Structure of the library
	The @impunity decorator
	A fully commented running example
	Performance assessment

	Conclusion and future developments
	Author contributions
	Reproducibility statement
	References

