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Allocation of resources to improve security is ¢aligvhen we consider people’s safety on transport
systems. We show how a system engineering methgglan be used to link business intelligence
and railway specifics toward better value for mandy model is proposed to determine a
probability of a success in service management.fdtexzasting model is a basic Markov Chain. A
use case demonstrates a way to align statistica (aime on stations) and probability of
investment into resources (people, security meastimee).
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1. Introduction

Railway systems that are safe and secure and thapeaceived to be safe and secure by the
commuter are essential to global societies andaun@s. Over 3,000 billion passenger-kilometers
and 10,000 billion freight ton-kilometers are penfied annually around the world, excluding
metro systems. In the UK alone 1.69 billion passerjgurneys were recorded between March
2015 and 2016 (Passenger rail usage statisticzdsel2015-16 Q4). The responsibility for safety
and security on the British rail network falls toxamber of stakeholders, including the Office of
Rail and Road, individual train operating companistwork Rail, the Rail Safety and Standards
Board and the British Transport Police (BTP).

The BTP are a specialist force, that patrol Britamailways and light rail systems. They are unlike

any other police force in the UK as 95% of theinding comes from privatized train operating
companies rather than the Home Office (Head Ligbf4). The BTPs current objectives by 2019
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are to reduce crime (20%), disruption to servi@®%§) and to increase passenger and rail staff
confidence (10%), whilst providing value for mon@&TP annual report 2014-15, 2015). The BTP
currently deploys over 3000 officers and operatéhimvan annual budget of £280 million. In
Autumn 2015 the BTP conducted a Public Consultatoridentify what matters to people
travelling or working on the railway. Some of theylpriorities identified were reducing antisocial
behavior, greater visibility and police presenaajrtering terrorism, reducing violent and sexual
crimes and reducing crime related disruption onr#ilvays. These expectations are not specific
to the BTP, transport police departments all over world are challenged with expectations to
deliver services at lower cost to tax payers witipioved or minimum destruction of public
provisions. BTP Annual Report 2012/13 stated: “W# feduced crime for the ninth year in a row
and have done this in the context of a reductioouinbudget in real terms of 14% since 2008. We
think that represents exceptional value for monay we are determined to improve on this level
of performance and service to rail passengersstations and businesses. [...] Violent crime also
rose in 2012/13, with an additional 201 crimes sasrihe network following a slightly larger fall
the previous year”. The question to be asked isefehs it most effective to allocate resources to
improve security?” in light of fixed operational digets.

There is an increasingly substantial body of redearound predictive policing and fire-fighting to
forecast crime and fire clustering in urban aréasation of emergency services for response time
and developing resource allocation formulae. A eald mixed approaches have been used,
including geographical information systems, geolbiegd visualisation, intensity plots, Diggle’s
function, cluster analysis, artificial neural netk® (ANN), Chaotic Cellular Forecasting (CCF),
Kernal smoothing, gamma test and chaos time th@@eyhan et al 2013, Corcoran et al 2003,
Eckley and Curtin 2012, Gorr et al 2003, Brantinghd993, Ackerman and Murray 2004,
Brunsdon et al 2007, Murray 2013, McLafferty e28D0). These approaches allow us to gain a
deeper insight into where incidents are most likelyoccur and can give us insight into how to
allocate limited resources.

Information technology is seen as a resource tastapslice efforts. The significant body of
knowledge related to IT governance, business ig&ite and project management provides some
guidance to mediate the concurrent priorities thtouseful data insight. Police forces are already
using predictive analytics to improve public safettyit must rethink traditional organisational
structures and practices to maximise return onsiment (Yu, 2014):
e The Los Angeles Police Department (LAPD) reporteat property crime rates fell 12%
within six months.
e According to police in Memphis, Tennessee, sericime decreased by 30% between
2006 and 2010.
« In the UK, the Metropolitan Police discovered tlmatalytics data makes it easier to
prioritize and deploy limited resources.

There are a few more examples of success fourtteireferred literature:
« The effectiveness of predictive policing was rebetgsted by the LAPD, which found its
effectivity to be twice that of its current praes
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e In Santa Cruz, California, the implementation oé&dictive policing over a 6-month
period resulted in a 19 percent drop in the nunalbéurglaries.

* In Kent, UK, 8.5 percent of all street crime oceuatrin locations predicted by PredPol,
beating the 5 percent from police analysts.

Enterprise can be considered as a collection cérosgtions that have a common set of goals
and/or a single bottom line (TOGAF, 2006). The #@extiure will provide a way to incorporate
best practices in enterprise information systemaagament. The Rail Architecture Framework
(TRAK) is a general enterprise architecture framdwthat sets the rules to develop systems
architecture models across the airspace, defendetransport industries (Transport for NSW,
2014). The foundation of TRAK is aligned with ISQ0L0 Systems & Software engineering —
Architecture description requirements and the Uknistry of Defence Architecture Framework
(MODAF). The railway system is shown in contexfiigure 1.
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Fig. 1. System context diagram for the UK

Current literature on the modelling of securitksisn railway systems is not yet mature. However,
modelling techniques which are widely applied tonage risks could be effective for modelling
security risks in railway systems. Such technigimdude: Markov Chain and Fault Tree
Handbook with Aerospace Applications (NASA, 200&2acker - defender modelling as a game
(Loukianov and Ejov, 2012), a multi-objective netlwsecurity countermeasure selection (Viduto
et al, 2012), Failure Mode and Effects Analysis FMESoddard Space Flight Center, 1996),
attack trees (Ingoldsby, 2013), attack graphs (@ai Singhal, 2012), system anti-fragility (Viek
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2013, Bergmeister et al 2013), Supervisory Corgral Data Acquisition SCADA (an overview by
Cherdantseva et al, 2016).

The initiative “improving safety and security onlnays using forecasting” can be abstracted by
the notion of a “project”. Given a project's hist@nd current state in terms of time, budget and
value, we are going to apply a mathematical modgbredict how successful a project will be
finalized, according to these three parameters.foitmal mathematical approach is Markov Chain
which is widely used to determine system perforrea(Bravetti et al, 2006). The statistical
analysis and stochastic modeling are exercisedata filom the only found publicly available
dataset by BTP (about 92000 records, 2011/12).spkeific data is extracted (statistics on violent
crime at Northern Rail and Mersey Rail in 2012).eT¢ase study is referred to a question of
priority and better value for money when allocatiegources (for example uniformed staff, CCTV
or additional lighting) for improving security orstation vs. train” and reaction on passenger's
trust to the future success of the mission.

The cautious approach is taken to introduce a ndethibich was not found referred in the

literature. The paper is structured as followsSattion 1 an introduction to the problem is given
that transport police departments face with regéoddelivering safe environment to tax payers.
Section 2 describes a problem with the need forntiiadive solutions to measure service

improvement followed by the case study where TRAX &MC are used to demonstrate the
application to the problem BTP tries to solve odadly basis. Then, a theoretical application of
this approach to trains passing signals at darg§@ADs - Signal Passed at Danger) is given to
evaluate efficacy. The fictional records are used demonstration purpose. Section 3 will

summarise the results and discuss new raised quosstfollowed by future research steps
discussed in Section 4.

2. Methods

It is widely accepted that in order to develop afusand valuable solution, which matches the
point of view of the user and is efficient from therspective of service provider, some
quantitative measures should be defined. The cost®uld be examined thoroughly to be able to
provide a solution, including interactions betwebe user, service provider and third parties
through time, budget, safety levels and adjustetzessefficiently as possible with each other. Very
often Project Managers (PM) are faced with the lehgk of allocating given resources among
concurrent tasks. Looking holistically for a bestusion in this case would require taking into
account organisational goals, capabilities, praeesand its structure. Therefore, the solution
should be driven not just by a project managerfgeeience but also verified by some quantity.

A typical task for a transportation project manager a squad lead) is allocation of limited
resources among concurrent tasks. For example,enn@iforms should be allocated for better
chance to respond to the valiant crime events?o@pine is patrolling Merseyrail and Northern
Rail stations. Option two is walking the route wghitrains are on the move. Another question is,
what activity (a patrol on station or a patrol oairt) is more promising in terms of improvement
of the commuter's trust to police efforts? The nihtef this example is to align statistical data
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(crime on stations) and probability of occurrendaundesired events into investment options of
resources (security measures, time, people).

An analytical scenario by calculating the relevagrformance indicators is complex. The
evaluation is difficult for experts and not verylgfal for non-experts and decision makers. An
introduction to TRAK and finite discrete perturbedrkov Chain is a start.

The Markov property means that given the preseate sbf the processhe future state is
independent of the past. The concept of Markov depecy was published by the Russian
mathematician Andrei Markov (1906). Only a few neatfatical definitions to demonstrate the
theoretical potential are provided.

The discrete time proce$k,, k = 0,1,2, ... } is called a Markov Chain if for all j, ..., m the
following is true:

P[Xy = jlXk-1 =10,...Xo =m] = P[X} = j|Xp_y = i] = Dij - 1)
The quantityp;; is called thestate transition probability which is the conditional probability that

the process will be in stajeat timek immediately after the next transition, given thas in state
i attimek — 1 (Ibe, 2009). The numbeys; can be arranged inteansition probability matrix

P11 P12 - Pin
B @
Pn1 Pn2 <+ DPnn

It is astochastic matrix because for any roly ;p;; = 1.

For certain types of MC, after a number of trapsisi the values of the transition matrix are
approximately the same from transition to tranasititf this is the case, the MC reached steady
state. The values of the matrix atationary probabilities.

A perturbed Markov chain is a dependency struotitie the transition matrix
P(e) = P(0) + &C, 3)

where P(0) € R™™ is the transition matrix of the unperturbed cha&ns a small perturbation
parameter and’ represents the likely direction of the data déwviatThe analytic perturbations
theory and perturbed MC are discussed in detawmachenkov (1999). A generic workflow of
how to apply stochastic analysis in the modelirip¥as:

1. Define the set of system components to be trangfdroy a change.

2. Define what is the desired change and the tramnsitio

3. Define the meaning of a transition.

4. Define the states.
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5. Define the states properties.

6. Calculate the transition probabilities.

7. Draw a transition matrix.

8. Calculate the stationary probabilities.

9. Interpret the difference between stationary angioai values.
10. Specify the data deviation direction.

11. Specify the value of perturbation.

12. Calculate a transition matrix for perturbed MC.

13. Calculate the stationary probabilities.

14. Interpret the difference between stationary andioai values.

2.1. A casestudy to support a decision on resour ce allocation

A scenario is that a manager is required to aloasources aiming to reduce a number of crimes
in the future. The statistic of violent crime oaitr platforms and on trains is known. The scenario
includes open source crime data on UK railway atetiand on trains. The resources include
police staff to act on platforms and on trains,stoained by time and budget.

The TRAK approach was used to develop the systerterbdiagram for a railway link (Transport
for NSW, 2015). Figure 1 illustrates the linkagedlod interacting systems.

A state transition model for the projects is dedingth three dimensions (schedule, budget, value)
and three status summaries (on, behind, aheadioBaich dimension. Hence in MC terms there
are twenty-seven states, for example “on schedueyudget, on value” and “ahead of schedule,
ahead of budget, behind value” and all other coatimns permissible in the set. It is assumed that
an initial state and a final expected state for prgject are “on schedule, on budget, on value”.
The states are bound to the first day and thedkgsbf the project.

0.4 0.6
1 0.4
STATION e ‘ e
L 0.2 0.4
0.2 0.2
1 0.6
-® . ®
p 0.8
0.2

| Fig. 2. Markov Chains on violent crime performaat®orthern Rail, in which B, A and O stand for Beh/ Ahead / On
respectively.
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The general statistics is 200 events of violemherbn Northern Rail stations in 2012 (the data set
was extracted from BTP Crimes Recorded 2013):

e The monthly number of violent crimes is 14, 15,21, 15, 19, 23, 20, 23, 8, 17, 14 from
January to December.

e 17 events per month is average.

It means the currently invested resources hastegkinl 17 crimes per month on average

The logic of transition is tracking monthly charegainst average amount. For example,

January is 14 which is less than the 17 averagis, isterpreted as “ahead of value”.
* The data extract is in Table 1.

Table 1. Northern Rail and Mersey Rail franchisiedent crime statistics for 2012

Northern Rail M ersey Rail
STATION TRAIN STATION TRAIN
Monthly Average 17 12 8 3
January 14 7 5 6
February 15 15 7 2
March 11 5 11 4
April 21 16 6 1
May 15 12 13 5
June 19 11 6 6
July 23 9 10 4
August 20 19 13 3
September 23 11 5 2
October 8 14 6 3
November 17 15 11 2
December 14 8 5 2
Annual 200 142 98 40

Suppose, there is historical data for a team delteover 12-month assignment. The MC states are

state 1 (B) “behind value”, state 2 (O) “on valuahd state 3 (A) “ahead of value” (see Figure 2).
The team performance is statistically described.

For example, a transition matrix is constructedtfa Station events in Northern Rail. There are
14 events in January which is less than 17 avetsgemeans state A “ahead of value”. There are
15 events in February which is less than 17 avethge means state A “ahead of value”. The
sequence is constructed as such AAABABBBAOA. Tlanditions are AA, AA, AB, BA, AB,
BB, BB, BB, BA, AO, OA. There are the occasions B%, AB (2), BB (3), AA (2), AO (1), OA

(1). For the state “behind value” is BB = 3/ (BABB) =3/5 and BA = 2/ (BA + BB) = 2/5 (see
Table 2).

Table 2. The transition matrix for the Station eégdn Northern Rail.

State B O
B 0.6 0 0.4
(0] 1

A 0.4 0.2 0.4
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For a station in Northern Rail: if the team is &dts B “behind value” they used to deliver 60
percent “behind”, never “on”, and 40 percent “aliedadhe next time period. When the team is at
state O “on” (performing on average statisticakraf violent crime) they used to deliver 100
percent “ahead”. When the team is at state A “ahesde” they used to deliver 40 percent
“behind”, 20 percent “on”, and 40 percent “ahead”.

Suppose, a question is how the team will performa roject with a 4 years’ duration assuming
the routine does not change. In MC terms the gigam will pass 4 transitions

046 0.09 045
l- (4)

P*=PXPXPXP= [0.45 0.10 0.45
0.45 0.09 0.46

An answer is that the team will be better in gogadii’ (0.4 vs. 0.45) and in getting out of “behind”
(0.0 vs. 0.09). Then we solw® = x and find a steady state probability distributiond given
transition matrixP? which is x = [0.45 0.10 0.45] for the states B, O and A respectively. The PM
could expect the team to deliver on earned vali¢ lzetter in general.

Now a perturbed mathematical model is considerearkbVy Chain is taken from previous section
and matrix C is constructed to represent the liki#lgction of data deviation.

Suppose, the PM has an optimistic attitude andebedi that the team can perform at 10 percent
(0.1) better than usual in the discussed 4 yeasb@. PM's belief means that the probability to
stay in state “behind” and the probability to gorfr state “ahead” to state “behind” will have
negative dynamic. The matr@ will have ‘-1’ in first row first column and ‘-1in third row first
column. PM also believes that the probability to fjom state “behind” to state “on” and
probability to go from state “ahead” to state “adhed’ will have positive dynamic. The matriX

will have ‘1’ in first row second column and ‘1’ third row third column.

11 0
C=[0 0 0]. (%)
-1 0 1

The transition matrix for the perturbed MC will koo

0.6 0.0 04 -1 1 0 05 01 04
P(e) = [0.0 0.0 10(+01f0 0 Of= [0.0 0.0 1.0]. (6)
04 02 04 -1 0 1 03 02 05

Now we do the same operation of 4 multiplicationthwwerturbed matrix to pass 4 transitions in 4
years to have

0.32 0.14 0.54
l. 7)

P*=PXPXPXP= [0.32 0.14 0.54
0.32 0.14 0.54
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The PM can conclude that the team will perform atvid times better at value “behind” (0.6 vs
0.32) if an inspirational boost takes place to Himdgs a little bit better when the project is at

“behind” value.

Table 3. Response dynamic to reduce violent criatéstics at Northern Rail

Markov Chain STATION TRAIN
behind on ahead behind on ahgad
Original behind 0.6 0 0.4 0.2 0.2 0.6
on 0 0 1 0 0 1
ahead 0.4 0.2 0.4 0.8 0 0.4
Perturbed behind 0.32 0.14 0.54 0.44 0.09 0.47
on 0.32 0.14 0.54 0.48 0.6 0.4p
ahead 0.32 0.14 0.54 0.46 0.1 0.44

The calculus is completed for the data extract wairf” and “station” (violent crime, Northern
Rail, 2012). The response dynamic is completelfedbht. On “station” the probability to stay in
poor performance at the state “behind” is decregaéné vs. 0.32). On “train” the probability to
stick with disappointing “behind” is increasing Z0vs. 0.44). Given the question “where an extra
resource could be applied to improve the violeniner statistic on Northern Rail route?” a

confident answer is on “station” (see Table 3).

A specification of a resource is out of scope & paper. There are people, technical security
measure (gates, camera’s) or procedural measumspe(tions). The next effort is to model
Markov chains addressing these challenges.

The same calculus is applied for the data extradlersey Rail “train” (violent crime, 2012). On
“train” the probability to stick with “behind” is lmost the same (0.4 vs. 0.37). The biggest
increase is in the fare optimism to keep high perémce at the state “ahead” (see Table 4).

Table 4. Response dynamic to reduce violent criatistcs at Mersey Rail and Northern Rail trains

Markov Mersey Northern
Chain Rail TRAIN Rail TRAIN
behind on ahead Behind on ahead
Original behind 0.4 0.2 0.4 0.2 0.2 0.6
on 0 0 1 0 0 1
ahead 0.5 0.25 0.25 0.8 0 0.2
Perturbed behind 0.37 0.18 0.45 0.44 0.09 0.47
on 0.37 0.18 0.45 0.48 0.6 0.46|
ahead 0.37 0.18 0.45 0.46 0.1 0.44
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2.2. A casestudy to support a decision on efficacy evaluation

The same computational approach is carried on figagig a case where basic statistical analysis
is not able to support a decision-making procedse Tataset and tasks were used for an
examination and selection process for an acadeasitign in UK.

Suppose, a hypothetical SPAD Management Progran) (4B introduced in January or February
2012. The business intelligence task is to evalae#fteiency of the program and speculate about
impact of an intervention. Table 5 shows the numifeSPADs (fictional data) recorded by a

railway for one year prior to, and one year aftieg, introduction of a SPAD management program.

Table 5. The amount of SPADs (fictional data)

Month Number of SPADs
Feb-11
Mar-11
Apr-11
May-11
Jun-11

Jul-11
Aug-11
Sep-11
Oct-11
Nov-11
Dec-11
Jan-12
Feb-12
Mar-12
Apr-12
May-12
Jun-12
Jul-12
Aug-12
Sep-12
Oct-12
Nov-12
Dec-12
Jan-13
Feb-13

plolrdId iRl INIE o [NF oo ]o v |d (P lov

A discrete finite perturbed Markov Chain is suggdsfor further investigation. The probabilities
are quantified based on frequency of the events.pdfformance is defined as less amount of
SPADs per calendar month.
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The first block is before the program introduct{@eb 2011 to Jan 2012 called "before"):
e The states are “zero” (“zero” SPAD in a month), ér'two”, “three”, “four”, “six”
(“six” SPADs in a month)
* The transitions are-@, 01, 1-4, 42, 2-0, 00, 06, 61, 1-2, 23, and 31. |
e The number of transitions by type “zero” (3), “or@), “two” (2), “three” (1), “four” (1),

“six” (1).
There are N states, going from 0, 1, ... N-1 and oohthe numerical analysis in the future work.
In principal, we could jump from state | to J (5D, ..., N-1).

The second block is after the program introductin2012 (Feb 2012 to Jan 2013 called "after"):
e The states are 1 (“one” SPAD in a month), 2 (“tv@?ADs in a month).
e The transitions are 22, 21, 12, 21, 11, 11, 1122221, and 12.
e The amount of transitions per type “one” (6), “tw&).

The basic statistical analysis appears inconclusige Table 6), but perturbation analysis with MC

shows results.
Table 6. SPAD management program statistical aisalys

SPAD MP amount mean median mode Range var std
before 22 1.8 0 ?(0,1,2) 6 3.24 18
after 18 15 1 ?(0,1,2) 1 0.27 0.5

For example, there is a question: “Can the datpatphe claim that the SPAD management
program has been effective and explain why?" Owsmwan is “Yes, it can. The data support the
claim the MP has been effective.” Someone couldie@rthat if it is statistically significant given
the only 2 years of data investigated. Future mebewill try to answer the question (subject of
data availability).

Let’s have a look at the dynamic of change in tiant of events per month before and after the
program was introduced.

The first case is to consider that thesao program in 2011. The transition matrix is followin

0.33 033 0.00 0.00 0.00 0.34
0.00 0.00 0.50 0.00 0.50 0.00
_10.66 0.00 0.00 0.34 0.00 0.00 ®)
0.00 1.00 0.00 0.00 0.00 0.00f
0.00 0.00 1.00 0.00 0.00 o0.00
l0.00 1.00 0.00 0.00 0.00 0.00J

P

Suppose, a question is how the rail road will pgnfavith 48-month duration. In MC terms, the
rail road will pass 4 transitions:
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031 0.14 030 0.13 0.07 0.05
[0.15 0.43 0.14 0.00 0.14 0.15]
4_ _ 1021 0.10 0.43 0.10 0.15 0.02
PP=PxPXPXP =1044 028 000 017 000 011 ©
l0.07 0.30 0.28 0.00 0.28 0.07J
0.44 0.28 0.00 0.17 0.00 0.11
An answer is that the risk of multiple SPAD evenilf increase dramatically.
The second case is to consider that theagprogram in 2012
_[05 0.5
P=los o4l (10)
4_ _ [0.55 0.45
P —P><P><P><P—0.55 0.45)" (11)

There is no predicted risk for multiple events lat Bhe performance will slightly improve in the
long run (0.6 for “two”- “one” decrease at the iaitstage vs. 0.55 in the long run).

Another example question is that “How to estimaténapact of an intervention which might have
been included in the MP?” An answer is that “The MBuld provide a framework for
enhancements. An engineering invention itself candlly improve the overall picture.”

Now a perturbed model is considered. Suppose,nlagiinable CEO introduced a technology to
improve visibility in wet conditions. He believesat the road can perform at 10 percent(0.1)
better than usual in one year. Thex€PAD MP in place.

CEO's belief means that the probability to go fretate “one” (one SPAD per month) to state
“two” (two SPADs per month) and probability to steystate “two” will have negative dynamic.
The matrixC will have ‘-1’ in first row second column and ‘-ii second row second column. The
CEO also believes that the probability to staytatesone and the probability to go from state two
to state one will have positive dynamic. The ma@iwill have ‘1’ in first row first column and
‘1" in second row first column.

-1

it
€= [1 —1r (12)
The transition matrix for the perturbed MC will koo
_ 0.5 05 1 —11_[06 0.4
P@=[pe gal*01ly T3l=lo7 o3 (13)

The same operation is 4 multiplications with pdrad matrix to pass 4 transitions in 4 years to
have
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4 _ _10.64 0.36
Pr=pPxPxPxP=|r0 ] (14)
The CEO can conclude that the rail road will parfdretter.
Suppose the CEO made the change when the@®SPAD MP in place.
0O 00 0o 0O
[0 0 0 0 O 0]
|t o0 -1 0 0
€= 0 00 0 0 of (15)
lo 0 0 0 O OJ
0 00 0 0O
0.33 0.33 0.00 0.00 0.00 0.34
[0.00 0.00 0.50 0.00 0.50 0.00]
_ _l0.76 0.00 0.00 0.24 0.00 0.00
P(e)=PO)+0.1xC = 0.00 1.00 0.00 0.00 0.00 o0.00/ (16)
0.00 0.00 1.00 0.00 0.00 0.00J
0.00 1.00 0.00 0.00 0.00 0.00
[0.35 0.13 0.30 0.09 0.07 0.05]
0.17 042 0.12 0.00 0.12 0.17
pt — 0.21 0.11 042 0.06 0.17 0.03 (17)
l0.51 025 0.0 0.12 0.00 013

[0.08 0.34 0.25 0.00 0.25 0.09J
0.51 0.25 0.00 0.12 0.00 0.13

The risk of multiple SPADs stands and an internamtivas not successful.

2.3. Technological implementation
There are two software engineering technologiesd uge analyse the data. The Konstanz
Information Mining (KNIME, 2015) platform is to bidi a basic analytical workflow (see Figure
3):

* read data from the file

¢ make standard statistical analysis

* visualise the data
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z@&@@@%&@@|§ﬁ

(@ Welcome ta KNIME

File Reader
(G

Statistics
Node 8 MNode &

MNode 9

Fig. 3. Information mining and statistical analylsisKNIME

The second technology is R language (The R Fowmdtr Statistical Computing, 2015) and
“markovchain” package (see Table 7) for a few basips of the analysis (e.g. construct a Markov
Chain, compute the transitions and draw a Markoai®h

Table 7. R implementation by markovchain package

R version 3.1.1 (2014-07-10) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for StatistiCamputing
Platform: x86_64-w64-mingw32/x64 (64-bit)
> library(markovchain)
Package: markovchain
Version: 0.4.2
Date: 2015-08-30
BugReport: http://github.com/spedygiorgio/markovaliasues
Warning message:
package ‘markovchain’ was built under R version3.1
> projectStatesNR <- c("behind", "on", "ahead")
> byRow <- TRUE
> projectMatrixNR <- matrix(data = ¢(0.60, 0, 0.4,
+ 0,0, 1.0,
+ 0.4, 0.2, 0.4), byrow = byRow, nrow = 3,
+ dimnames = list(projectStatesNR, projectStateNR)
> mcProjectNR <- new("markovchain", states = prijéatesNR,
+ byrow = byRow, transitionMatrix = projectMatrixNRame = "ProjectNR")
> show(mcProjectNR)
ProjectNR
A 3 -dimensional discrete Markov Chain with éaliing states
behind on ahead
The transition matrix (by rows) is defined aidws
behind on ahead
behind 0.60.0 0.4
on 0.00.0 1.0
ahead 0402 04
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3. Discussion

Applicability of Markov processes in safety andahllity is a long-standing discussion (Birolini,
1985). There is an international standard on apfitin of Markov techniques (IEC 61165,
2006:2009). A view is that the transition probadtah should be calculated by statistical methods
only. In our opinion, any approach of predictivedabing includes a certain level of risk of being
inefficient. The suggestion is to calculate thensiion probabilities by observation and assume
them as constant at the time of the observatiormamy situations, it is also possible to use a
combination of Markov analysis and fault trees (r@016).

The main question the model tries to answer is “Whshe probability to finish a project on time,
on budget whilst meeting the quality requirement$®s a sensible question to ask a plumber or a
house renovator before someone signs off for agrstgmaintenance adventure. This is the crucial
question to ask a consulting company bidding fasuastantial project given the well-known
statistics on unmatched expectations in IT indakirnplementations. The discussed approach
provides at least an educated guess in the forstatément “a degree of belief that the renovation
will be finished in agreed time &N". In that case, it is reasonable to negotidteercent of total

as “on-going payment” and rest of the sum paid wtherjob is done”. The numerical analysis is
also intended to contribute in a business case lg@@vent and negotiations of terms and
conditions of a service level agreement.

Another question arising from the approach intre@duim this paper is “How can someone predict
the termination state (schedule, budget, valugase a project risk materialises?” Therefore, the
discussion about perturbed MC is to be continued.

The safety can be viewed from the chosen indugbeaspectives as a product that needs to be
delivered at the highest level. When trust levehisafety product decreases, the reputation of
safety providers is reduced and can have significaostly effects on business continuity.
Therefore, integrated cross-modal safety managesyatéms and models are required to allow
adjustment of costing for the evaluation of theeptill security and safety solutions. The
proposed approach is capable to provide a projesmbager with the decision that predicts
investment strategy in terms of resource utilisato stations or on trains. Further work expands
towards identifying main contributors and trustdesswhich commuters gain in police efforts.

Another case is to analyse where a violent crin@igcon a train or platform with the presence of
police resources in those places. In addition topblice resources, it is interesting to consider
security measures in place and their effectivetessmrds reducing the probability of a crime

occurring, on train and on platform.

4 Conclusion
The proposed model is based on historical dataelfis to better manage resources. In this paper,

the resources are not specified (e.g. people, ispoueasures, time). The future work is to discuss:
« specification of resources
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» statistical significance

* hypothetical linkage to events or conditions

* measure of effectiveness

e further numerical analysi®)(... N — 1 states, jumps frorh to])
« software implementation of the analysis

A member of the British Police has reviewed thequaft has been recommended consultation
with BTP to obtain their views and feedback on daga itself, the benefits under consideration,

the future work on analysing a case and potentéaily opportunity to work with them and run this
as a pilot.
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