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This article proposes a genealogy of machine learning by contrasting 
two normative regimes: play and automation. Each one expresses 
differing, albeit not incompatible values, expectations and objectives 
when evaluating human-machine behaviors. Whereas automation 
pushes us to consider machines as ideally working by themselves and 
thus replacing humans, play involves a social and affective 
engagement whose outcome is always partially unpredictable. More 
specifically, I suggest that play provides a sweet spot for thinking 
about performances such as those we are increasingly seeing in 
machine learning systems, that combine both rule-following behaviors 
and forms of improvisation upon those rules. The genealogical 
approach serves to foreground certain aspects of machine learning 
which have been foreclosed, the point being not to unveil its hidden 
or deeper truth, but to make us rethink what we claim to know of our 
relationships with machines and how we might engage with them 
differently. 

1 INTRODUCTION 
Contemporary discourses accompanying the deployment of machine learning tend to fit within 
a meta-narrative of automation. Whether heralded as inevitable or criticized as reductive, this 
process of automation tends to be considered as concurrent to technology’s extension in 
general. By drawing on the social and technical history of machine learning, I will suggest that 
the concept of play offers at least one other way of framing machine learning’s development, 
one that could help foster other expectations and evaluations of machine learning 
performances. My main claim is that play can account for the relative open-endedness of 
machine learning behaviors as well as the forms of interaction they foster with their users 
within social practices. While I will draw on some of the material and conclusions developed 
elsewhere, the focus of this paper is not to discuss what a theory of learning could, or should, 
be for machine learning (Reigeluth & Castelle, 2021), nor how these sociotechnical assemblages 
should be qualified ontologically or epistemologically (Grosman & Reigeluth, 2019; Mackenzie, 
2017). Rather, it is to explore the normative discourse on the relationships between humans 
and machines, on what is expected of machines when they “learn”, and what humans are 
supposed to do when machines begin to learn. The genealogy of machine learning I will provide 
problematizes contemporary debates by drawing on certain recurring tropes. I will distinguish 
two normative paradigms: automation and play. Each one expresses differing, albeit not 
incompatible values, expectations and objectives when evaluating human-machine behaviors. 
Whereas automation pushes us to consider machines as ideally working by themselves and thus 
replacing humans, play involves a social and affective engagement whose outcome is always 
partially unpredictable. Technological performances are never just a matter of increasing 
efficiency, but also about experimenting with multiple outcomes regardless of whether we 
know exactly how they were produced (Dumouchel & Damiano, 2016; Ash, 2015; Pickering, 
1995; Flusser, 2004). As the historian of technology, Jonathan Sawday (2007, p. 111) underlines 
in his book on the rise of machine culture in the Renaissance, “play and fantasy [...] have 
perhaps been far greater elements in the evolution of different forms of technology than is 
suggested by the that popular (but wrong-headed) belief that 'necessity is the mother of 
invention'.” As we shall see, play is both a specific form of “experience” (Caillois, 1967) or 
“attitude” (Henriot, 1969) in which we are free to engage and a “social function” (Huizinga, 
1951) which primes and subtends everyday practices. More specifically, I underline why play 
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provides a sweet spot for thinking about performances such as those we are increasingly seeing 
in machine learning systems, that combine both rule-following behaviors and forms of 
improvisation upon those rules.   

I will first look at how machine learning came to be framed as the ultimate step in the process 
of automation or how industrial labor extended to learning itself. I will then show how this 
framing serves as a normative ideal rather than a concrete understanding of how machine 
behaviors are embedded within social practice. As an exemplification of this embeddedness, I 
will consider how debates around machine learning biases might be better understood in terms 
of socially instituted education. This will allow me to turn my attention to the (often neglected) 
pervasiveness of game-playing throughout the history of machine learning in the very material 
and situated strands of its development, as well as in the more general epistemological context 
of game theoretical debates and in the political stakes of war games. These elements, moments 
and distinctions will provide me with a basis to propose a final juxtaposition between two forms 
of play – divergent and convergent – which can help determine whether particular machine 
learning systems close or open unforeseen spaces of interactions. In keeping with my 
genealogical approach, each argument unfolded in this paper serves to foreground certain 
aspects of machine learning which have been foreclosed, the point being not to unveil its 
hidden or deeper truth, but to make us rethink what we claim to know of our relationships with 
machines and how we might engage with them differently.   

2 LABOR AND (MACHINE) LEARNING  
In his 1964 book, Understanding Media, Marshall McLuhan predicted a world in which learning 
would become the driving economic activity at the expense of fragmented and mind-numbing 
labor. Paid learning is already becoming both the dominant employment and the source of new 
wealth in our society. This is the new role for men in society, whereas the old mechanistic idea 
of ‘jobs,’ or fragmented tasks and specialist slots for ‘workers’, becomes meaningless under 
automation.” (McLuhan, 1964, p. 304) Almost sixty years later this extension of learning and 
creativity promised by automation seems to have acquired quite a different form than the one 
envisioned by McLuhan. While actors such as Cisco publish white papers claiming that the “the 
emergence of new technologies, designed around the principles of creativity and collaboration, 
are likely to prove central to both 21st century pedagogies and 21st century skills”, Amazon 
Turkers are paid to perform micro “Human Intelligence Tasks”, which generally involve 
mechanically clicking on images to help “intelligent” algorithms along in their learning process. 
A strange new “geography of intelligence” (Schaffer, 1994) seems to be emerging in which 
machines are supposed to be liberating human creativity and learning at an unprecedented 
scale all the while rivaling humans in these very faculties. We are increasingly faced with the 
prospect that machines are not only good at automating menial and repetitive tasks but may 
excel at socially and cognitively complex activities such as learning and creative problem-
solving. Contemporary proponents of machine learning even go so far as contending that we 
are experiencing a third historical revolution: “The Industrial Revolution automated manual 
work and the Information Revolution did the same for mental work, but machine learning 
automates automation” (Domingos, 2015, p. 10). In popular as well as academic discourse, the 
“automation of learning” is presented both as the next if not final stage of mechanization and 
industrialization, and as the expression of the “postindustrial” technologies that have come to 
epitomize a new phase of capitalism. Implicit in this way of framing machine learning is a 
tension between, on the one hand, the idea that learning itself can be understood as a form of 
labor or productive activity and, on the other hand, the idea that there are machines capable of 
heretofore exclusively organic abilities such as learning.  

Without diving into classical economic theories, the relationship between labor and automation 
is deeply rooted in the transformations brought about by the Industrial Revolution (Friedmann, 
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1946; Zuboff, 1988; Noble, 1984). More recently, machine learning’s relationship to labor has 
gained traction, namely within the “digital labor” literature (Cardon & Casilli, 2015; Crary, 2013; 
Steiner, 2012; Stiegler, 2015). What McLuhan’s passage stages even more accurately and 
presciently than the great emancipation of labor is the way in which learning and leisure have 
themselves been put to work through a logic of automation. In its endless extension, the 
“learning society” blended into “cognitive capitalism” (Moulier-Boutang, 2012) and the 
“attention economy” (Citton, 2017) whereby user experience, skill, and attention, namely on 
digital platforms, are harvested and monetized through a general process of “gamification” and 
“seamless” design. From this perspective, even when a technology’s “user” is not a worker, it is 
still unwittingly working. To help circumscribe this uneasy relationship between labor, 
automation and, learning we need to briefly retrace how classical “intellectual” activities such 
as mathematic operations came to be automated, that is turned into mechanical operations 
analogous to manual labor. The social history of the computer provides a perfect case in point 
of this mechanization of intellectual labor afforded by a preliminary division of labor and 
intelligence.  

Indeed, it is commonplace to reiterate that the first computers were human agents (Grier, 2007; 
Mindell, 2002) – often women (Light, 1999; Wise, 2007) – assigned to specific mathematical 
functions or operations, like cogs within a larger computational machine. A deskilling of 
computation occurred throughout the late 18th century as the labor it involved was broken 
down into algorithmic steps that would ultimately be programmed into computers. Simon 
Schaffer (1994) traced this process through the history of the mechanization of computation, 
namely in Charles Babbage’s attempts to build the first fully programmable calculating 
machines. The Babbagian project sought to mechanize the labor of computation as it had 
already been rationalized by Gaspard de Prony in revolutionary France where he applied Adam 
Smith’s theory of the division of manual labor to the computation of logarithmic tables. As 
Loraine Daston (1994) highlights, calculation went through a “declassing” before being 
automated: it is because computation was turned into a mechanical and “unintelligent” human 
activity that machines could be expected to automate this activity. The underlying belief driving 
this shift was that the same function could be performed and executed by different 
sociotechnical assemblages, and that ideally the best assemblage would be the most automatic 
one (i.e., the most unequivocal and least error-prone one). Social activities had to be boiled 
down to their algorithmic steps, written into code, hardwired into mechanism, for automation 
to be evaluated in terms of machines outperforming humans at the same tasks. 

The locus of intelligence thus shifted over time from the worker’s embodied skill and the 
tradition of its craft to the manager overseeing the execution of an algorithmic process and the 
coordination of its component parts. In his reading of the Babbagian moment, Schaffer sketches 
out this “geography of intelligence”: “Defining the site of intelligence was a key political task. 
Critics reiterated their suspicion that automatic machinery and factory discipline mechanized 
the proletariat. […] There was thus an unresolved contradiction between stress on the 
subordination of this mechanization of workers’ intelligence and on the coordination and thus 
cerebration of their labour.” (Schaffer, 1994, p. 222) Computation was gutted of its situated 
know-how (what we would today call embodied, enactive, or extended cognition), in a process 
of algorithmic rationalization so that “the very fact that a machine could execute the algorithms 
disqualified them as expressions of higher intelligence or rationality.” (Erickson, 2013, p. 44)  

This brief historical outline helps substantiate Harry Collins’ qualification of late-twentieth 
century computers: “[t]he organism into which the intelligent computer is supposed to fit is not 
a human being but a much larger organism: a social group.” (Collins, 1990, p. 14) The general-
purpose computer, as it later evolved, is less the prosthesis or amplification of a specific organ 
(i.e., the brain) – as a traditional reading of technology would have it – than it is the 
objectivation of a certain social division of labor and intelligence.  
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The automation of computation reads as a trope that, by and large, holds as a general theory of 
technological invention and transformation, especially when it comes to forms of industrial 
mechanization: for a labor process to be mechanized it had to have already been formalized to 
resemble behaviors that could be programmed into machines. This means that mechanism, as a 
form of behavior and social organization, preexists mechanization by/in machines. H. Collins 
captures this interplay between human and machine behaviors when he points out that “there 
is a large aspect of human behavior that mimics machines, and machines can mimic these 
aspects perfectly.” (Collins, 1990, p. 9) I would, however, take issue with the premise that 
machines perform certain behaviors perfectly. As French philosopher of technics, Gilbert 
Simondon, showed, the “perfection” we expect from machine automaticity is derived from a 
labor-centric evaluation of technology infused with a “yield/output morality” (Simondon, 2013). 
A perfect machine is akin to a compliant worker, one who flawlessly obeys commands as it 
executes its programmed behaviors all the while increasing productivity. “We want our robots 
to have all of the qualities that masters look for in their slaves, bosses in their employees, 
commanders in their soldiers, and we want them to have neither their weaknesses, nor their 
shortcomings, nor especially that irrepressible tendency towards insubordination, 
independence and to do as one pleases that characterizes human workers.” (Dumouchel & 
Damiano, 2016, p. 10 [my translation]) An ideal machine does not or rather should not commit 
errors. This a problem for living organisms confronted with conflicting values and norms in 
action (Canguilhem, 2009; Bates ,2016). However, such a machine is ultimately an abstract ideal 
that has little to do with any concrete functioning or operations. Real machines break down, 
require maintenance, upkeep and care, real machines exist within social relations and not 
simply as function maximizers. The fact that machines could exhibit forms of recalcitrance or 
ungovernability confounds the Modern equation in which mechanism confirms the human 
intellect’s power (who is in fact the master’s power) to order reality according to the knowledge 
it has of its laws.  

If we follow Simondon, both the industrial worker and automatic machine are subject to a 
functionalist labor regime whereby every individual (be it human or machine) is assigned a given 
position within an abstract and programmed order. It is no surprise that the master-slave 
analogy has so consistently irrigated the language and values of computer engineering 
communities (Eglash, 2007). Yield/performance morality is obsessed with the optimization of 
productive behaviors. Yet, as Simondon suggests, this morality does not stop at labor, but spills 
over into leisure and learning which become forms of production (Simondon, 2013, p. 345). In 
one of his more radical passages, Simondon calls upon a new form of humanism that would lift 
both the worker and the machine out of this yield morality (Simondon, 2013, p. 355)  

3 MACHINE LEARNING AS A SOCIAL ACTIVITY   
The tension between human and machine intelligence in the social division of labor is clearly 
palpable in the organization of contemporary labor by platforms such as Amazon’s Mechanical 
Turk, which offers collective, distributed and extensible workforce solutions to companies with 
particular tasks that brute computing cannot easily or affordably manage. These Human 
Intelligence Tasks (HITs), as Amazon calls them, involve “Turkers” (i.e., uncontracted and 
outsourced laborers working from their personal computers at all hours of the day and night)1 
clicking on images to label the training data used by supervised machine learning models (e.g., is 
this a picture of a cat or a dog? Is this content violent or sexually offensive?). This “click-labor”, 
which involves highly segmented and repetitive behaviors, is not so different at first glance from 

 
1 In Amazon’s own terms: “As a Mechanical Turk Worker you: Can work from home. Choose your own work 
hours. Get paid for doing good work” and “As a Mechanical Turk Requester you: Have access to a global, on-
demand, 24 x 7 workforce. Get thousands of HITs completed in minutes. Pay only when you're satisfied with 
the results”.  
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the behaviors involved in the Taylorist assembly line and contrasts starkly with contemporary 
“creative” or “innovative” work (Irani, 2013) supposedly inherent to digital culture. Yet, while 
nobody would have claimed that tightening the same bolt all day could amount to a form of 
distinctively human intelligence, Amazon maintains that these repetitive micro-tasks exhibit a 
form of “human intelligence”. This qualification might either be interpreted as cynicism from 
the world’s largest and most powerful techno-logistic platform or could be taken as a 
provocation to ask where the intelligence of human-machine interaction resides. Much of 
contemporary discourse on artificial intelligence and machine learning rests upon the invisibility 
of the material infrastructures, situated sources of data and human labor that go into training 
algorithms, maintaining datacenters and curating datasets (Crawford, 2021; Sadowski, 2018) 

From a socio-economical perspective, there is no doubt that the intelligence at stake in these 
HITs, is not that of the individual human MTurker, but the aggregated intelligence of the 
combined MTurkers working on a specific task. Amazon’s Mechanical Turk works rather like a 
remote and distributed version of a factory: it derives its surplus value from the concentration 
and coordination of fragmented units of labor (Cardon & Casilli, 2015, p. 92). As a platform, 
Mechanical Turk makes otherwise unintelligent behaviors intelligent, that is it gives them a 
distinct exchange value. The extraction of surplus value by aggregating labor into intelligence 
rests upon industrial ideals of efficiency and optimization (Wise & Smith, 1989; Rabinbach, 
1992). In other words, it is not a given activity itself that is deemed intelligent, but its 
coordination within an ordered process of production, an algorithm of sorts. As a mediator 
between theory and practice, the algorithm came to stand for Modern rationality (Totaro and 
Ninno 2014) and would find new expressions in the cybernetic emphasis on information and 
feedback as mechanisms of control and communication (Mindell, 2002; Wiener, 1961; 
Pickering, 2010).   

The Mechanical Turk platform is, of course, a sly reference to the eponymous late 18th century 
automaton, which was the first “successful” mechanical chess player. It toured the royal courts 
of Europe as well as popular fairs, bemusing spectators, including Edgar Allan Poe and Babbage. 
However, the chess player’s intelligence revealed the ingenuity of its mechanical design while 
hiding the human activity its mechanism required to function: a human chess player was in fact 
hidden under the board and was moving the pieces. The onlookers were willing to believe in the 
contraption’s mechanical intelligence because they were led to focus on only part of what was 
happening. Similarly, Amazon’s Mechanical Turk conceals the human labor involved in providing 
“intelligence” to its clients that it assembles and coordinates from the distributed and 
fragmented human behaviors. It might be said that machine intelligence – but this is perhaps 
true of any intelligence – is only as good as the labor it hides (Schaffer, 1996). What is labor in a 
“learning society” or “knowledge economy” if not learning? Paradoxically, the McLuhanian 
argument qua prophecy provides a back door for the automation of learning while claiming that 
automation frees up human learning to become the main form of employment.  

What the history of automation shows us, is that the mechanization of labor does not 
unconditionally liberate humanity’s “true potential” or simply free up more time for leisure. 
Such a “liberation” comes at a cost: the invisibilization of the labor involved in developing 
automatisms. Carnino and Marquet (2019) offer an excellent account of how the “myth of 
automation” covers-up the persistent failures, breakdowns and errors in contemporary 
technical systems such as “cloud” computing data centers, as well as the human labor involved 
in remedying those failures and reestablishing the external appearance of technical 
automaticity (i.e., functioning perfectly). The spectacle of automaticity is only as good as the 
stage wings it manages to conceal.  

Rather than “freeing” humans from repetitive tasks, automation maintains labor as something 
mechanical and devoid of intelligence. It neglects the inextricably social and embodied 
relationship between labor, learning and intelligence as labor supposedly translates into 
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automatic behaviors devoid of intelligence, consciousness or reflexivity (Bates, 2016b). 
However, it is not the repetition of gestures and behaviors in and of itself that is unintelligent or 
tedious (many games rely on repetition and automaticity as mechanisms of play), but the fact 
that this repetition is often regulated by a dissociated and asymmetrical intelligence which, in a 
capitalist mode of production, is able to extract surplus value from this accumulated repetition.  

To better grasp how machine behaviors interact with human ones beyond the one-sided 
reading of automation, a broader anthropological perspective needs to be adopted. The French 
paleoanthropologist of technics, André Leroi-Gourhan provided a generative distinction 
between three levels of human “operative chains” or behaviors: the automatic, the machinal 
and the lucid (or conscious). Crucially, machinal behaviors are not those that are carried out by 
machines, but those human behaviors which are neither purely kneejerk reactions, nor 
deliberate forms of attention and learning. Machinal behaviors occupy the “mental penumbra” 
(pénombre psychique) in which they disappear from consciousness throughout the normal 
course of events but reappear when problems or incompatibilities arise in practical situations. 
The ability to overcome these obstacles of daily life on an individual scale simultaneously define 
the locus of what is considered “intelligent” or “conscious” behavior within social practice 
(Leroi-Gourhan, 1965, p. 28-29). 

While classical accounts of automation tend to claim machines do what is nearly devoid of 
intelligence in humans, machine learning shows how limited this appraisal is. Following Leroi-
Gourhan’s distinction, we might consider machine learning systems as social activities in which 
machines and humans share and develop a certain repertoire of behaviors. The point here is not 
to claim that automation, as a normative objective, is necessarily irrelevant – in many instances 
it might be a perfectly desirable, helpful, or reasonable one to pursue – but simply that it cannot 
be the only norm involved in evaluating technologies characterized by a relative open-
endedness in their behaviors. Intelligence cannot be derived from automaticity. Its exercise 
requires behaviors that are neither completely automatic nor completely conscious. 
Considering machine learning developments, what Leroi-Gourhan called a mental penumbra 
might better be termed a sociotechnical penumbra or a “technological unconscious” (Thrift, 
2004). Who is aware of “unexpected events within the sequence”, who has the means of 
inventing solutions to problems, who gets to remember the technological unconscious and who 
gets to actively engage with machine behaviors and not simply react to their stimuli, are 
fundamental questions for tracing this emerging “geography of intelligence”.  

Automation presents at least three interrelated problems when applied to learning. First, and 
regardless of the learning theory one goes by, learning is an essentially diachronic process that 
involves the development of socio-technical and cognitive capacities. Automation, on the other 
hand supposes a compression of time whereby operations are merely the unfolding of 
programmed steps and time is merely the computational resource needed to execute those 
steps (Bachimont 2010). Second, one can never learn in someone else’s place, since learning is a 
relatively autonomous activity that cannot be reduced to simple “norm-following” or executing 
(as opposed to “norm-establishing”) behavior (Barandarian & Egbert, 2014) as is the case with 
automatic behavior. Third, learning’s relative autonomy can only be understood in terms of its 
socially embedded and instituted nature – i.e., we always learn how, to, from, with… What and 
how we learn always translates what social groups value and have instituted as the ends and 
means of learning.   

Somebody as foundational for the history and mythology of machine learning as Alan Turing 
was already extremely lucid about these questions when he wrote in his 1948 “Intelligent 
Machinery” paper about how “unfair” it would be “to expect a machine strait from the factory 
to compete on equal terms with a university graduate” who has been developing their 
intelligence over time and through social practices of learning (Turing, 1948).  Turing also 
insisted upon the idea that if machine intelligence were going to make any sense it would have 
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to exhibit forms of behavior which erred and did not simply fall into automatic repetition of its 
programmed norm (Turing, 1950; Bates, 2016). Thus, the experience of error as positive 
dynamic and not simply an error to be corrected, is essential to any notion of learning.  

It is precisely because machine learning techniques encounter failures and make mistakes that 
they are so powerful and enticing. It is precisely because their behaviors are partially intractable 
and opaque that they involve constant feedback mechanisms and couplings with engineers, 
designers, and users (Seaver, 2017; Grosman & Reigeluth, 2019). This tension between 
automaticity and intelligence is particularly palpable in contemporary ethical and social debates 
surrounding the opacity and biases in machine learning. They provide a clear and present 
example of how and why machine learning cannot be understood solely as a form of 
automation of human behaviors but as a social activity involving certain distributions between 
human and machine behaviors which do not always fit our preconceptions of how they should 
be distributed.  

4 THE BIAS PROBLEM AND MACHINE EDUCATION   
Without engaging directly in the discussion surrounding the need for algorithmic transparency 
(Pasquale 2015; Koliska & Diakopoulos, 2019; Sandvig, 2016) and the shortcomings or 
normative problems of such transparency (Annany & Crawford, 2018; Seaver, 2013; Burrell, 
2016), I would simply like to consider “the elephant in the room” when thinking of algorithmic 
bias: the idea that learning machines just might require a form of education, if we are truly 
serious about them learning. 

Based on this preliminary framing, we can start to look at the problem of algorithmic biases 
developed in supervised, reinforcement or unsupervised learning a bit differently. While biased 
performances in supervised and reinforcement learning should not surprise us, insofar as they 
are closer to forms of drilling or behaviorist conditioning, the biases developed in unsupervised 
learning or deep learning appear more surprising for processes where the human is supposedly 
more or less “out of the loop”. As Michael Castelle (2020) points out in his Bourdieusian reading 
of Generative Adversarial Networks (GANs), there is a sense in which these types of algorithms 
not only implicitly or explicitly express programmed biases but may generate new ones, in the 
richer sense of social reproduction (i.e., social structures maintaining themselves through the 
variation of individual behaviors). “Put simply, GANs reproduce bias not just through their 
facility for stereotyped classification, but through their potential for generating new biased 
data. They differ from the “algorithms of oppression” of Google’s search and recommendation 
engines, whose biases also exist, but which must be taken up and reproduced by humans in the 
loop taking practical action of their own” (Castelle, 2020). In this sense GANs manifest a degree 
of “technological intentionality” that emerges precisely in the open-endedness and emergent 
complexity of its behaviors that cannot be reduced to human intentionality through use or 
programming (Mykhailov & Liberati 2022). 

Regardless of the specific kind of machine learning techniques we look at, we cannot avoid the 
perplexing fact that algorithms tend to learn meaningful biases, that is ones we recognize as 
such and that are not random or unfamiliar to us. What seems to upset us from a moral and 
epistemological standpoint is that algorithmic biases mirror our own biases when they are 
supposed to neutralize them – according to the prevalent discourse that technological 
processes are more rational and objective than the human ones they replace or assist. As such, 
bias in machine learning processes cannot be treated simply as a mathematical-logical problem2 

 
2 “[o]ne way to understand overfitting is by decomposing generalization error into bias and variance. Bias is a 
learner's tendency to learn the same wrong thing. Variance is the tendency to learn random things irrespective 
of the real signal.” (Domingos, 2012)  
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that can have social and political ramifications when algorithmic systems go awry. Instead, it is 
an intrinsically social problem that can be formalized through machine learning processes. 
Machine learning systems are bound to develop biases (Kudina & de Boer, 2021), precisely 
because they are not fully automatic but relatively (depending on their degree of autonomy) 
open to their environments and behaviorally plastic in their responses. Just as the biases a 
human learner develops reveal the deeper and often cloaked stereotypes and prejudices 
embedded in social institutions and practices (Wellner, 2020), so too machine learning biases 
should draw our attention to the kinds of places, people and projects that develop them. Being 
able to perceive one’s own biases requires a normative perspectivism (Grosman & Reigeluth, 
2019) in which there are multiple optimal outcomes to a given situation. This perspectivism is 
impossible to foster so long as algorithms are expected to learn “on their own” and that their 
primary function is to optimize a given objective function established by relatively huddled 
engineering communities (Reigeluth & Castelle, 2021). The fact that Microsoft, for example, 
partially blamed ill-intentioned users for gaming its chatbot’s, Tay’s, “vulnerability” and inducing 
it to develop racist and antisemitic discourse, underlines just how limited the dominant 
understanding of “user interaction” is (Reigeluth, 2023). 

Interestingly, the ways in which algorithms reproduce bias are usually presented as accidental 
or as the algorithms being “unruly” and “misbehaving”, which illustrates: i) how attached we 
are to the image of the machine as a docile worker and how much we fear “losing control” over 
it (Winner, 1977), and ii) how the conjunction of learning and automaticity constantly produces 
double binds when it comes to the normative effects of algorithmic systems. Since machine 
learning behaviors are ever more intractable, unpredictable and analytically opaque (i.e., it is 
harder and harder for engineers to accurately predict how their algorithms are going to behave 
and to account for the actual computational steps which led to a questionable or problematic 
output), it might be worth approaching the engineering of these algorithms as an education 
process which involves not only the machines but also the engineers and designers (Winner, 
1995) and users who take part in shaping algorithmic behaviors. The ways in which algorithmic 
learning processes are evaluated might be reclaimed by the plurality of agents involved in the 
social practices, institutions, and contexts within which they are used and upon whom they 
produce effects. Considering how algorithms behave in play, that is in situations where specific 
rules only serve as the bounds of given social interactions and not as the explanation of the 
behaviors themselves, it could offer a lively perspective for embracing this plurality of agents 
and objectives. 

5 PLAYING OUT MACHINE LEARNING   
Machine learning serves as a technological staging of latent yet structural social relationships 
that do not simply disappear because putatively more “neutral”, “objective”, or “rational” 
technologies are used. Rather, these technologies in fact reproduce, amplify, and perhaps 
produce new biases embedded within the very social structures where they are developed, 
trained, tweaked and optimized. Machine learning thus stages the conflicting norms, values and 
expectations that emerge around algorithms’ design, implementation, and use. This brings us to 
the question of how error is evaluated and the status it is given within the learning process. I 
would like to approach this question by considering Adrian Mackenzie’s distinction between 
“function-execution” and “function-finding” in algorithmic processes and build on that 
distinction by dovetailing it with the one Simondon makes between “learning” and “training”.  

The history and development of machine learning as a subfield of AI, which has now become 
nearly synonymous of AI, enfolds dimensions of play, learning and labor as normative regimes 
for evaluating the performance and utility of specific machine learning applications. Some of the 
most remarkable advances in machine learning have built upon research and applications 
related to human leisure and game-playing activities (e.g., checkers, chess, Go, Atari games, 
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Starcraft 2, etc.) (Yannakakis & Togelius, 2018) and the pre-history of AI was dramatized, as we 
saw, by the spectacle of automata, of which the Babbagian calculating engines and the 
Mechanical Turk chess player stand respectively as ideal types of labor and play. The prevalence 
of games in the history of AI even led figures such as Herbert Simon to submit chess as AI’s 
“drosophila” (Chase & Simon, 1973; Ensmenger, 2012). I would like to focus here on how play, 
as a form of engagement with and through technology, gives us an alternate path to 
understanding some of the social implications connected to machine learning’s large-scale 
deployment; one that does not presuppose an ontological rivalry between humans and 
machines inexorably unfolding through the cumulative process of automation (i.e. machines will 
replace human activities as soon as they can do those activities better than humans), but one 
that understands machine learning as a sociotechnical assemblage (Mackenzie, 2017; Brooks, 
1990). 

Consider, for example, the extent to which rule-based games have been used throughout AI’s 
history – from Turing’s imitation game to Arthur Samuel’s checkers programs and Deep Blue or 
Alpha Go. The prevalence of computer gaming culture was one of the prime vectors for the 
development of applied algorithmic techniques from the 1960s onwards, wherein programming 
and play were synonyms for experimenting with the computer’s behaviors and fostering forms 
of engagement with technology essential to its popularization (Triclot, 2017). On a more 
material level, computer gaming has contributed essential innovations to the recent renewal of 
connectionist machine learning, namely Nvidia’s graphic cards which allowed for the parallel 
processing of high-dimensional matrices (Grosman & Reigeluth, 2019).  

Rule-based games not only offer a sweet-spot between formal rules and creative behavior for 
experimenting on machine learning models (Ensmenger, 2012), but are also dramatic 
engineering feats that can be exhibited through spectacle and capture the public’s imagination 
in ways that go beyond the mechanization of labor, precisely because the machines are doing 
something they are not supposed to be doing, or that nobody expected they would be able to 
do (Binder, 2021). While chess, for example, ultimately proved to be a computationally solvable 
problem, the fact that a computer beat the best human champion late in the 20th century does 
not mean humans have stopped playing chess between each other or against machines. As 
Ensmenger (2012) states, the fact that i) the minimax algorithm was linearly scalable with 
increased processing power, ii) that the game of chess had already been extensively codified 
(one might even say algorithmicized) by human players before ever being computerized iii) and 
that there were already clear benchmarks for evaluating improvement, made it look like a brute 
force victory over a human expert would cement its claim to a more general form of artificial 
intelligence. However, “other than making incremental improvements to the minimax 
algorithm, computer chess failed to deliver on its larger promise as a tool for exploring the 
underlying mechanisms of human intelligence.” (Ensmenger, 2012, p. 23) As McCarthy suggests, 
“Computer science chess has developed much as genetics might have if the geneticists had 
concentrated their efforts starting in 1910 on breeding racing Drosophilia. We would have some 
science, but mainly we would have very fast fruit flies” (McCarthy 1997, p. 1518). Beyond these 
epistemological shortcomings, what the emphasis placed on sheer computational power and 
speed shows is how consistently the norm of automation and its yield morality guides the 
engineering of technology and how, in this case, this emphasis neglected the actual social 
activity at stake: playing chess and not chess as formal problem space that could be reduced to 
a zero-sum game in which each player is simply minimizing at every turn their maximum 
possible losses, as the minimax algorithm posits. In other words, testing the algorithm in an 
abstract, rule-bound space became a way for improving the algorithm’s technical performance, 
but not for replacing the experience of playing chess. 

In its classic definition, an algorithm protects us from error and certifies outputs based on the 
formal procedure that was followed (Bachimont, 2010). Conversely, the epistemic and moral 
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appeal of machine learning is that, through its learning, it will teach us something new about 
the data we feed it; that it will reveal hidden patterns and bear witness to the future as it 
unfolds. Machine learning algorithms are expected to find functions and not simply execute 
functions (Mackenzie, 2015) in ways that make them irreducible to the prior formal knowledge 
we may have of them and that make them performative agents embedded within social 
activities. Mackenzie emphasizes the social nature of machine learning, which necessarily 
involves forms of labor, style, and valuation. Finding a function is never merely a mathematical-
logical problem, but an inherently practical one insofar as there must be some idea of how we 
know the function has been found and learning has thus been achieved (Mackenzie, 2015, p. 
436) 

The idea however, that function-finding is what confers algorithmic systems their specific 
learning capabilities is somewhat at odds with the overwhelming emphasis that is placed on 
optimization as a measure of algorithmic performance within machine learning communities 
and practices. While learning and optimization seem rather synonymous at first glance – indeed 
both denote an ameliorative performance of sorts – there is a sense in which they are barely 
synonyms at all. As a rule, machine learning algorithms are evaluated based on their ability to 
minimize a loss function or maximize an objective function, which serves as the mathematical-
behavioral norm to be achieved through learning. Although it is not clear in advance what it is 
they will learn (i.e., the specific correlation or prediction), formal criteria exist to determine 
whether the algorithm has improved its performance (i.e., it has achieved a better 
approximation of the objective function).  

6 TRAINING VERSUS LEARNING 

While evaluating learning based on standardized metrics may satisfy a minimalistic definition of 
learning, improved performance on a test certainly does not meet a socially and subjectively 
meaningful definition of learning in which the test is, at best, a way of determining what still 
needs to be learned, but not what has been learned and what that learning means for the 
learner (Vygotsky, 1987). Evaluating machine learning based on its optimization of an objective 
function is basically equivalent to the emphasis placed on skill acquisition measured by 
standardized testing. Just as the labor of calculation was broken down into a social algorithm 
before being mechanized, so too learning was already practically turned into an optimization 
problem by the widespread use of standardized testing and certification in human education 
before it could be presented as such by the machine learning community.  

The discrepancy between optimization and learning can be further problematized by way of a 
useful conceptual distinction made by Gilbert Simondon between two different modes of 
adaptation: training (dressage) and learning (apprentissage). Simondon, who was well-versed in 
cybernetics and information theory, developed this distinction throughout the 1960s and into 
the 1980s, when debates around the ontological and epistemological limits to artificial 
intelligence and learning were intense and transdisciplinary. Simondon recognized that 
computers exhibited complex forms of adaptive behavior as they processed information but 
was skeptical that this performance could be equated to a form of learning, or that this learning 
was something that could be automated. One of Simondon’s main contentions is that the 
feedback processes that characterize “open machines” whose behaviors are not entirely pre-
programmed do not eject humans from the loop, but in fact provide a new function for human 
regulation and intelligence. Training is characterized by a “convergent determinism” and 
learning by a “divergent determinism” (Simondon, 2013, p. 345). The former limits the impact 
new information has on a system by maintaining a certain functional stability (e.g., typically any 
negative feedback mechanism that ensures incoming information does not modify the system’s 
equilibrium beyond preset bounds). Conversely, learning overrides normative bounds by 
continuously opening itself to new forms and sources of information. Training involves 
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behavioral adaptation to meet an expected output or goal while learning is constantly 
reinventing the activity’s very goal. Simondon makes this epistemological distinction with a 
more social and political one in mind between the machine and the slave. The slave can 
hypothetically always reinvent the purpose of its action, while even the most sophisticated 
computational machine can only adapt to incoming information (Simondon, 2013, p. 344-346). 
Simondon stresses that the human is a rather “dangerous automaton” because it continuously 
threatens to override established norms, which of course is precisely the opposite of what we 
expect of a perfect automaton to do, that is execute a norm or function without erring, 
protesting, or changing course. In light of this distinction, it might then be more precise to 
qualify most current machine “learning” applications as machine training.  

Building upon a cybernetic approach to learning, the political scientist Karl Deutsch made a 
similar distinction as Simondon’s between “learning” in which feedback mechanisms simply 
converge towards an objective and learning through which the objective itself is displaced in the 
process (Deustch, 1966, p. 92). Interestingly, Deutsch uses this distinction to refute the 
dominant game-theoretic premises that games are played based on a shared knowledge of the 
rules by the players and that the rules of the game cannot be changed by the action taken. “Just 
as game theory ordinarily does not allow for changes in the performance characteristics of 
particular elements, so it does not provide ordinarily for changes in the rules of the game. Taken 
together, these two restrictions seem to cut it off from the description of much of the process 
of learning.” (Deutsch, 1966, p. 57) Castelle’s more recent critique of the game-theoretic 
underpinnings to GANs reminds us that while the connexionnist spirit of contemporary AI 
research is generally presented as a refutation of symbolist and rule-based cognitivism, “the 
dependency of neural network training on loss/utility function means that deep learning and 
GANs maintains a very close link with instrumental rationalism (i.e., players follow the rules to 
maximize their preferred outcome) (Castelle, 2017). In other words, there is still a penchant for 
mistaking the rules of the game for the game itself understood as an iterative, generative, and 
always partially unpredictable social activity.   

7 WAR GAMES 

The idea that human learning is constantly transforming the very objective of its learning was 
something Norbert Wiener clearly outlined when he wrote about the necessity of programming 
a learning machine for the simulation of nuclear war games to avoid the catastrophic outcome 
of a nuclear war (Wiener, 1961, p. 177). Victory here serves as the objective function to be 
maximized, but to what end? Can a war ever be properly simulated as a zero-sum game? We 
could formalize all the conditions whereby victory would be granted, but declaring victory is 
only ever as good as the social relationship whereby victory is conceded by the other party and 
means victory to those playing, be it in war, elections, kick-the-can or chess. We are faced with 
the inescapable and insolvable need to account for what we mean by “victory”. Simply following 
games’ rules does not entail the game will be won. There is always a certain social relationship 
involved. Even when one plays by oneself as is apparently the case with single player computer 
games: the player is in fact engaging with the game’s AI which embodies the social relationships 
and behaviors the game is supposed to simulate (Ash, 2015; Triclot, 2017). Moreover, while the 
computational simulation of war has consistently infused the history computer games, from 
Spacewar to Call of Duty, nobody would contend that such experiences of play are comparable 
to the experience of war itself. This points to the paradoxical and conditional nature of play as 
Bateson famously showed in his analysis of wolf cubs biting playfully: “These actions in which 
we now engage do not denote what those actions for which they stand would 
denote.”(Bateson, 1987, p. 139) Nibling is not a preparation to bite to wound or kill, it is 
something else entirely and yet it can become that at any moment, should the conditions of 
play fall apart. Play appears as both a form of social activity that breaks with the normal course 
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of events, as a distinct rule-bound space (Huizinga, 1951) and as the “self-obligating attitude” 
(Henriot, 1969) or form of “experience” (Caillois, 1967) latent within everyday activities and 
which brings the rules of the game to life. In other words, playful engagement is not simply 
about executing rules coded into an algorithm but about generating new forms of behavior that 
bend the rules into practice. Those familiar with Ludwig Wittgenstein’s concept of “language-
games” or Pierre Bourdieu’s theory of habitus will find heuristic connections in this framing of 
game-playing. The French word for game (jeu) denotes all the combinable elements of a game 
(e.g., “un jeu de cartes”) as well the spaces of indeterminacy in a mechanism (e.g., “il y a du jeu 
dans le mécanisme”), as in a doorhandle that needs to be jiggled to be opened (something we 
might call “drift” or “leeway”). This semantic ambivalence is helpful to characterize processes 
such as machine learning in which there is a space between the formal rules and their effective 
outputs, a space filled by playing out the possibilities, by developing styles and ways of doing 
things, by building repertoires of machinal behaviors. While this drift is not new, who defines its 
threshold for correction and how it is corrected, in part defines the locus of intelligence in these 
sociotechnical assemblages. 

8 DIVERGENT AND CONVERGENT PLAY 

The behavioral complexity of play thus involves both the capacity to follow rules (be they 
explicit or tacit) and to improvise upon their combination and potentially invent new moves or 
styles of play. When compared to the normative regime of automation, play tells us at least two 
important things in terms of the expectations placed on machine learning.  

First, nobody would expect computers to completely replace human-players in a game of chess 
or checkers: the whole point is to see what kind of specific challenge and pleasure can be 
derived from playing against a machine or watching a machine and a human play. The 
immediate pleasure and function of play is playing (Huizinga, 1951; Bateson, 1987; Massumi, 
2014), which cannot be said of automation where the value and utility lies outside the activity 
of labor itself. While even the most “low-skilled” jobs (e.g., cashiers, waiters in fast-food 
restaurants, cleaning jobs, etc.) have proven extremely complex to automate (Collins & Kusch, 
1998), there tends to be a general, if implicit and rather murky, consensus around the idea that 
these jobs should ultimately be automated so as to free up workers for learning and leisure, like 
McLuhan had prophesized. This is intriguing considering contemporary accusations leveled 
upon social media, digital platforms, and nudging technologies of “infantilizing” users by 
“gamifying” their engagement and fostering forms of unintelligent, regressive, or addictive 
behavior. The core of this charge lies in idea that the gamification of user engagement covers up 
the process of surplus-value extraction of users’ attention – hence the idea that users are in fact 
working by simply paying attention to certain applications. While gamification in and of itself is 
perhaps not to blame for this form of relationship to digital media, it is certainly ironic to see 
millions of users during their commutes, at home or in checkout lines, interacting with their 
smartphones with gestures that are about as limited and repetitive as industrial factory 
workers’, all optimizing the platform’s objective function.  

Second, and in contrast with this contemporary preoccupation around “gamification”, play, as 
form of social activity, points to a much different relationship to AI and, more generally, to 
technology. Whereas organized labor predicates technology’s value on its ability to maximize 
output functions by optimizing production processes, play involves a more open-ended 
engagement and use of technology, in which the machine is not simply seen as a tool, a means 
to an end, but as a partner in action through which new behaviors can be invented, often 
seamlessly or unwittingly (Winnicott, 2005). We might consider the human-machine interaction 
involved in recommendation algorithms used by platforms such as Netflix or Spotify as a 
paradigmatic case of a ludic interaction. The “collaborative filtering” techniques seek a sweet 
spot between items users have already consumed and ones they are likely to enjoy based on 
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what similar profiles have consumed.  Users are telling algorithms what they want; algorithms 
are predicting what users want; and both are playing out an iterative experience of culture 
(Reigeluth, 2017) akin to a certain form of mimesis evocative of Leroi-Gouran’s machinal 
behaviors. Interestingly, this is also perhaps one of the most publicized examples of platforms 
keeping their algorithms secret to foster “natural” interactions where users are not trying to 
“game” the system (Cardon, 2013) – A/B testing deployed on digital platforms generally 
operates according to the same normative camouflage when trying to measure the uptake by 
users of two different version or functionalities.  

Again, the normative stake that keeps rearing its head revolves around the fact that it is those 
who can design and predispose these different behavioral interactions to maximize an objective 
function who have a claim to the system’s intelligence. The drift or divergence inherent to play 
is constantly bounded, corrected, realigned by the rigidness of the rules and the strength of 
social relations involved. The issue, however, is not the boundedness of play in and of itself, but 
the power relations and types of collective behavior they reproduce and reinforce. Play is a 
disruptive yet necessary form of engagement for the logics of any system seeking to “trap” 
users (Seaver, 2019) and yet, play itself seems to challenge the very efficacy of recommender 
systems (e.g. the Amazon recommender algorithm cannot differentiate between “serious” and 
“playful” queries; YouTube cannot differentiate if you watch certain politically themed videos 
mockingly or approvingly). The continual improvement of recommender algorithms does not 
simply rely upon our automatic responses to pairwise stimuli, nor the exhaustive formalization 
of all possible behaviors in the AI. When we interact with machine learning systems in the 
“normal” sequence of behaviors, we do not distinguish our behaviors from the systems’, we are 
part of the system, folded into its “envelop” constantly soliciting our attention and engagement 
(Ash, 2015). Algorithms might be “black boxes” for users, but so are users for algorithms; it is 
the interplay of their partially indeterminate behaviors that tells us if something is being learned 
or if their behaviors are merely converging towards a preestablished norm. By taking up 
Simondon’s distinction between training (convergent determinism) and learning (divergent 
determinism), we might then distinguish between two kinds of play: divergent and convergent 
play. While the former might be seen as unproductive, wasteful, useless when looked at from 
the labor-centric automation paradigm, it helps us understand why complex sociotechnical 
assemblages such as machine learning have a nasty habit of drifting: rules do not govern social 
practice as a classical algorithm does a computer. It is by playing with rules that they become 
effective. And machine learning systems are closer to a social practice than they are to a 
classical algorithm. Convergent play, on the other hand, highlights when and how this inevitable 
tendency to drift is realigned on an objective function. Such convergence is inevitable in social 
practice: there is always a moment in which dispersion is unified. If, however, game-playing has 
become the predominant form of engagement with contemporary technology (Flusser, 1993) 
and if one of the essential characteristics of play is that the players are free to enter and leave 
as they please (Henriot, 1969, Caillois, 1967), then we must consider the leeway these 
algorithmic “traps” allowing in playing with their rules and whether we are able to leave them if 
we cannot.   

Recent debates around Open AI’s chat GPT underline the normative tensions at play within such 
systems. Social media and academic commentary have abounded around the playful, intriguing, 
and sometimes troubling interactions with the system. The prompts users (if this term is still 
appropriate) feed the algorithm are not simple commands that execute programmed behavior, 
they serve as new occasions for it to enrich its rule-based model of linguistic interaction. GPT 
can imagine a drunken rant by Michel Foucault but can have trouble figuring out whether 10kg 
of feathers weighs more or less than 10kg of iron. AI scholars like Gary Marcus have been quick 
to point out that “these systems can be incredibly fun to play with”, but how “unreliable and 
potentially dangerous” they could be (Marcus, 2022). It’s hard not to think of Simondon’s 
qualification of human’s as rather dangerous automata and wonder if these algorithmic systems 
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that imitate and iterate the human behaviors from which they learn are not rather dangerous 
automata; and whether the rule-based but playfully open-ended engagement with them is not 
in large part responsible for this uncanny feeling. 

9 CONCLUSION  

Interacting with machine learning algorithms and framing their behavior in terms of game-
playing, gives us a new dimension for thinking about what machines do when they are not 
simply obeying orders. By exploring some of the historical tropes behind contemporary machine 
learning, I showed that automation is not the only way to understand what it means for a 
machine to learn. Without its playful dimension, automation misses the potential inventiveness 
of machine behaviors within a social practice. If automation, as we have shown, perpetuates the 
moral economy of docility, efficiency, and control, play invites different moral criteria for 
evaluating learning, not merely as a means for maximizing an objective function, but 
recognizing the plurality of values at play. We might then ask: was the learner’s solution clever, 
creative, or boring? Did its learning conjure beauty, pleasure, or excitement? Were the effects 
its learning produced upon the social activity within which it unfolded redundant, sensible, or 
challenging? These questions may seem far removed from many of the technical stakes 
machine learning involves, but I am only asking what we might ask of machines should we want 
them to learn, which in turn begs the question of what it means for us to learn in a time when 
machines are embedded in our social practices, not only as things that operate in our stead, but 
as things which operate with and through us. 
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