PAOSS

Pneumatically Actuated Origami Sun Shading

Authors

  • Christina Eisenbarth ILEK Institute for Lightweight Structures and Conceptual Design, University of Stuttgart / Civil and Environmental Engineering, University of Stuttgart, Germany
  • Walter Haase ILEK Institute for Lightweight Structures and Conceptual Design, Faculty
  • Yves Klett IFB Institute of Aircraft Design, Faculty 6: Aerospace Engineering and Geodesy, University of Stuttgart, Germany
  • Lucio Blandini 1 ILEK Institute for Lightweight Structures and Conceptual Design, Faculty 2 Werner Sobek AG, Stuttgart, Germany
  • Werner Sobek 1 ILEK Institute for Lightweight Structures and Conceptual Design, Faculty 2 Werner Sobek AG, Stuttgart, Germany

DOI:

https://doi.org/10.7480/jfde.2021.1.5535

Keywords:

Adaptivity, textile, pneumatic cushion, sun shading, glare protection, origami folding, façade

Abstract

This paper describes the development of an innovative, material- and energy-efficient façade concept:
a pneumatically actuated Origami sun shading system - abbreviated “PAOSS” - which combines the
aesthetic and material-immanent qualities of textile materials with the functional aspects of a controlled
and targeted light transmission regulation by means of integrated active pneumatic components (Fig. 1).
Due to the possibility of reducing a given surface to a minimal form, textile-based folding structures are
highly suitable for selective sun and glare protection systems, in order to optimise energy consumption
and increase user comfort. For astrophysical purposes, the American space agency (NASA) developed
an Origami folding geometry called “Starshade,” which is characterised by a particularly high difference
between its closed and open state. Inspired by NASA’s “Starshade,” an adaptive, pneumatically
actuated sun and glare protection system was designed and developed to be embedded in the cavity of
pneumatically supported multi-layer ETFE cushion façades. By implementing active components, one
can obtain a targeted, partial, or full-surface regulation of light and radiation transmission as well as the
back-reflection properties of the façade. Within the scope of the research project “Adaptive Membrane
Façades” funded by the research initiative Zukunft Bau, the PAOSS will be prototypically built at a scale of
1:1 and implemented on one storey of the demonstration high-rise building of the Collaborative Research
Centre 1244 entitled “Adaptive Skins and Structures for the Built Environment of Tomorrow.” The goal is
the system validation and the monitoring of its reliability and efficiency, especially in terms of building
physics and daylight performance under real weather conditions.

References

Arya, M., Warwick, S., Webb, D., Lisman, D., Shaklan, S., Bradford, S., Steeves, J., Hilgemann, E., Trease, B., Thomson, M., Freebury, G., McGown, J., & Gull, J. (2017). Starshade mechanical design for the Habitable Exoplanet imaging mission concept (HabEx), Proceedings Vol. 10400, Techniques and Instrumentation for Detection of Exoplanets VIII, SPIE Optical Engineering + Applications, 2017, San Diego.

Bäumer, R., Haase, W., Mielert, F., Ocanto, L., & Schmid, F. (2012). Entwicklung leichter Profile und Bauteile aus faserverstärkten Kunststoffen für Anwendungen in der textilen Gebäudehülle und der Fenstertechnik (PROFAKU) (Development of lightweight, fiber-reinforced polymer-based profiles and components for applications in textile building envelopes and window technology). Research Report, Fraunhofer-IRB-Verl., Stuttgart.

Bender, A.-L. (2020). Weiterentwicklung und Optimierung einer adaptiven, textilbasierten Faltstruktur zum selektiven Sonnen- und Blendschutz (Further development and optimisation of an adaptive, textile based folding structure for selective sun and glare protection). Master Thesis, Universität Stuttgart

Blandini, L. (2020). Glasfassaden: Neue Herausforderungen und Entwicklungsmöglichkeiten im 21. Jahrhundert (Glass façades:

New challenges and development opportunities in the 21st century). Glasbau, Ernst & Sohn, p. 93–101.

Blandini, L., & Grasmug, W. (2018). The search for dematerialised building envelopes – the role of glass and steel. Steel Construction, 11, p. 140–145.

Blaser, W. (1999). Werner Sobek, art of engineering. Ingenieur-Kunst, Birkhäuser.

Deleersnyder, K., & Ruys, L. (2015). 3D-Druck auf Textilien (3D printing on textiles). Textilplus, 07/08, p. 23–25.

DIN EN 410. (2011). Glas im Bauwesen - Bestimmung der lichttechnischen und strahlungsphysikalischen Kenngrößen von Verglasungen (Glass in the construction sector - Determination of photometric and radiophysical parameters of glazings).

DIN EN 14500. (2018). Abschlüsse - Thermischer und visueller Komfort - Prüf- und Berechnungsverfahren (Terminations - Thermal and visual comfort - Methods for testing and calculation).

Eisenbarth, C., Haase, W., & Sobek, W. (2019). Adaptive membrane façades. 14th International Conference on Advanced Building Skins, Bern.

Fahrenwaldt, H. J., Schuler, V., & Twrdek, J. (2014). Thermisches Trennen (Thermal separation). Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung. Springer Vieweg, Wiesbaden, p. 241–263.

Gries, T., & Klopp, K. (2007). Füge- und Oberflächentechnologien für Textilien: Verfahren und Anwendungen (Joining and surface technologies for textiles: methods and applications). Springer-Verlag Berlin Heidelberg.

Gries, T., Veit, D., & Wulfhorst, B. (2014). Textile Fertigungsverfahren: eine Einführung (Textile manufacturing processes: an introduction). Carl Hanser, München.

Haas-Arndt, D., & Ranft, F. (2007). Tageslichttechnik in Gebäuden (Daylighting technology in buildings). Müller (C.F.), Heidelberg.

Haase, W., Klaus, T., Knubben, E., Mielert, F., Neuhäuser, S., Schmid, F., & Sobek, W. (2011a). Adaptive mehrlagige textile Gebäudehüllen: mit Anl. 1. Recherchebericht: Beispiele zur konstruktiven Ausführung mehrlagiger gedämmter Membranbauwerke; Anl. 2. Dokumentation: Simulationstool für mehrlagige Aufbauten (Adaptive multi-layer textile building envelopes: with annex 1. research report: examples for the structural design of multi-layer insulated membrane structures; annex 2. documentation: simulation tool for multi-layer structures). Research Report, Fraunhofer-IRB-Verl., Stuttgart.

Haase, W., Klaus, T., Schmid, F., Schmidt, T., Sedlbauer, K., Sobek, W., & Synold, M. (2011b). Adaptive textile und folienbasierte Gebäudehüllen (Adaptive textile and film-based building envelopes). Bautechnik, 88(2), p. 69–75.

Hammer, R., & Wambsganß, M. (2020). Planen mit Tageslicht - Grundlagen für die Praxis (Planning with daylight - basics for practical use). Springer Vieweg, Wiesbaden.

Knaack, U., Klein, T., Bilow, M., & Auer, T. (2007). Fassaden - Prinzipien der Konstruktion (Façades - principles of construction). Birkhäuser.

Knaack, U., Koenders, E., Alexandrakis, E., Bewersdorff, D., Haake, I., Hickert, S., & Mankel, C. (2018). Bauphysik der Fassade - Prinzipien der Konstruktion (Building physics of the façade - principles of construction), Birkhäuser, p. 135.

Lütke, M., Klotzbach, A., Wetzig, A., & Beyer, E. (2009). Laserschneiden von Faserverbundwerkstoffen (Laser cutting of fiber composites). Laser Technik Journal, 6, p. 23–26.

Machova, K., Zschetzsche, J., Füssel, U., Friedrich, C., Riedel, M., Schuster, H., & Rückert, R. (2011). Innovatives Schneiden technischer Textilien mittels Plasmastrahl (Innovative cutting of technical textiles by means of plasma jet). Schweissen und Schneiden, 63(10), p. 599–603.

Magli, S., Lodi, C., Lombroso, L., Muscio A., & Teggi S. (2015). Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering, 6(1), p. 91–99.

Meagher, M. (2014). Responsive Architecture and the Problem of Obsolescence. Archnet-IJAR International Journal of Architectural Research, 8(3), p. 95–104.

Sigel, D., Trease, B. P., Thomson, M. W., Webb, D. R., Willis, P., & Lisman, P. D. (2014). Application of Origami in Starshade Spacecraft Blanket Design. ASME 2014 Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC).

Sobek, W., Morgan, C. L., Bogdan, I. (2004). Poetry—Rotating umbrellas. Show me the future: Engineering and design by Werner Sobek, p. 50–51.

Sobek, W., Haase, W., & Teuffel, P. (2000). Adaptive Systeme (Adaptive Systems). Stahlbau, 69, p. 544–555.

Sobek, W., Speth, M. (1993). Von der Faser zum Gewebe. Textile Werkstoffe im Bauwesen (From fiber to fabric. Textile materials in the building industry). db Deutsche Bauzeitung, 127, p. 74–81.

Weidner, S., Kelleter, C., Sternberg, P., Haase, W., Geiger, F., Burghardt, T., Honold, C., Wagner, J., Böhm, M., Bischoff, M., Sawodny, O., & Binz, H. (2018). The implementation of adaptive elements into an experimental high-rise building. Steel Construction, 11(2), p. 109–117.

Zapala, E. (2018). Faltstrukturen in der textilen Gebäudehülle: Eine Erweiterung tradierter Entwurfsgrundlagen unter Berücksichtigung schall- und lichttechnischer Aspekte (Folded Structures in the Textile Building Envelope: An Extension of Traditional Design Principles Considering Sound and Light Engineering Aspects). Dissertation, Universität Stuttgart.

Downloads

Published

2021-04-06

How to Cite

Eisenbarth, C., Haase, W., Klett, Y., Blandini, L., & Sobek, W. (2021). PAOSS : Pneumatically Actuated Origami Sun Shading. Journal of Facade Design and Engineering, 9(1), 147–162. https://doi.org/10.7480/jfde.2021.1.5535