Photovoltaic Warm Façades with Phase Change Materials in European Climates

Authors

  • Christian Popp Technische Universität Dresden, Institute of Building Construction
  • Dirk Weiß Technische Universität Dresden, Institute of Building Climatology, Dresden, Germany
  • Katja Tribulowski Technische Universität Dresden, Institute of Building Climatology, Dresden, Germany
  • Bernhard Weller Technische Universität Dresden, Institute of Building Construction, Dresden, Germany

DOI:

https://doi.org/10.7480/jfde.2021.1.5513

Keywords:

Building-integrated photovoltaics, efficiency increase, phase change materials, thermal simulation, yield simulation

Abstract

Since façade-integrated photovoltaic (PV) modules heat up greatly, which reduces the efficiency of the
PV, façade panels with PV and phase change materials (PCM) were developed. PCMs absorb a significant
amount of thermal energy during the phase transition from solid to liquid, while maintaining a specific
melting temperature. This cools down the PV and increases the electrical yield. Numerical studies on
PV-PCM warm façades without rear-ventilation have so far been missing. Therefore, a thermal and
an electrical simulation model for PV-PCM warm façades were developed and validated. They were
then used to analyse the yield increase of two PCM-types and -quantities in PV warm façades facing
east, south, and west in Athens, Potsdam, and Helsinki. An annual yield increase of 1.2% to 8.5% for
monocrystalline PV modules was determined. The maximum monthly yield increase is 8.0% in Helsinki,
11.4% in Potsdam, and 11.3% in Athens. The study shows that a case-specific selection of the appropriate
type and quantity of PCM is necessary. Using the models, a design tool for PV-PCM warm façades will be
developed. It will be validated with real monitoring data from PV-PCM façade test rigs at the Technische
Universität Dresden and the National Technical University of Athens

References

Aelenei, L., Pereira, R., Gonçalves, H., & Athienitis, A. (2014). Thermal Performance of a Hybrid BIPV-PCM: Modeling, Design and Experimental Investigation. Energy Procedia, 48. https://doi.org/10.1016/j.egypro.2014.02.056.

Čurpek, J., & Cekon, M. (2020). Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renewable Energy. https://doi.org/10.1016/j.renene.2020.01.070.

Decker, B., Grimmig, B., Mencke, D., & Stellbogen, D. (1998). Besonderheiten bei der Projektierung von Photovoltaikfassadenanlagen [Special requirements for the planning of photovoltaic façade systems]. Forschungsverbund Sonnenenergie - “Themen 97/98,” Solare Gebäudetechniken, 95-103.

Dobos, A. (2012). An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model. Journal of Solar Energy Engineering, 134. https://doi.org/10.1115/1.4005759.

Elarga, H., Goia, F., & Benini, E. (2017). PV-PCM integration in glazed buildings. Numerical study through MATLAB/TRNSYS linked model. Building Simulation Applications 2017, 3.

Engin, B., Brandau, K., Flohr, S., Horn, S., Roos, M., Vaupel, G., & Bernhard, W. (2016). Photovoltaik Fassaden: Leitfaden zur Planung [Photovoltaic façades: planning guide]. DAW SE und GWT-TUD GmbH.

European Commission. (2016). Commission Recommendation (EU) 2016/1318 - Of 29 July 2016 - On guidelines for the promotion of nearly zero-energy buildings and best practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings. 12.

Fath, K. (2018). Technical and economic potential for photovoltaic systems on buildings. (Doctoral dissertation). KIT Scientific Publishing, Band 25_Produktion und Energie. https://doi.org/10.5445/KSP/1000081498.

Giuseppina, C., Lo Brano, V., Cellura, M., Franzitta, V., & Milone, D. (2012). A finite difference model of a PV-PCM system. Energy Procedia, 30, 198-206. https://doi.org/10.1016/j.egypro.2012.11.024.

Hansen, C. (2015). Parameter Estimation for Single Diode Models of Photovoltaic Modules. Sandia Report SAND2015-2065. https:// doi.org/10.13140/RG.2.1.4336.7842.

Horn, S., Seeger, J., Scheuring, L., & Weller, B. (2017). Fassade mit temperaturregulierenden Photovoltaik-Paneelen - Ergebnisse aus einem ersten Praxistest [Façade with temperature-regulating photovoltaic panels - results from a first field test]. ce/ papers, 1(1), 240-253. https://doi.org/10.1002/cepa.25.

Huang, M. J., Eames, P. C., & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, 47, 2715-2733. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015.

Krippner, P. D. R., Becker, P. D. G., Maslaton, P. D. M., Maurer, D. C., Seltmann, T., Kuhn, T. E., Kämpfen, B., Reinberg, G. W., Haselhuhn, R., & Hemmerle, C. (2016). Gebäudeintegrierte Solartechnik: Photovoltaik und

Solarthermie - Schlüsseltechnologien für das zukunftsfähige Bauen: Energieversorgung als Gestaltungsaufgabe

[Building-Integrated Solar Technology: Architectural Design with Photovoltaics and Solar Thermal Energy] (1. Edition). Institut für internationale Architektur-Dokumentation GmbH & Co. KG, DETAIL.

Ullrich, S. (2018, October 16). Der Mehrpreis schreckt ab [The additional price deters]. photovoltaik, 10-2018, 10-13.

Weller, B., Hemmerle, C., Jakubetz, S., & Unnewehr, S. (2009). Detail Praxis: Photovoltaik: Technik, Gestaltung, Konstruktion [Photovoltaics: Technology, Architecture, Installation] (1. Edition). Institut für internationale Architektur-Dokumentation GmbH & Co. KG, DETAIL.

Wieprzkowicz, A., Knera, D., & Heim, D. (2015). Effect of Transition Temperature on Efficiency of PV/PCM Panels. Energy Procedia, 78, 1684-1689. https://doi.org/10.1016/j.egypro.2015.11.257.

Downloads

Published

2021-04-06