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Abstract

Monopile foundations are the most built foundations in the offshore
wind industry. The diameter is also expected to increase in the near
future to accommodate larger wind turbines in deeper water depths.
The large monopile diameter imposes additional challenges in planning
marine operations near the monopile, as the monopile can no longer be
treated as a transparent monopile. Therefore, proper wave field estima-
tion around the monopile that also accounts for the monopile existence
is needed to assure the safety of the operations. An investigation of
the wave field around a monopile due to long crested irregular incident
waves is provided in the present study. An experimental study was
performed with different irregular wave properties, varying the wave
steepness and the wave diffraction number. The present study extends
the available experimental studies that focus primarily on the runup
of the monopile. Initially, Linear Transfer Functions (LTFs) of the
wave field around a monopile from the experimental study were com-
pared to the linear theory and found to match well in the high energy
frequency range. Small linear coherances are also seen in the low and
high frequency ranges, indicating pronounced nonlinear effects in those
frequency ranges. Further, the elevation time series is investigated via
exceedance probability analysis and significant value computation. It
is found that the crest exceedance probability of the wave field around
a monopile does not correspond to the linear theory, while the wave
height exceedance probability can be predicted well using the linear
theory. Moreover, Wave Type II, which travels in the clockwise/anti-
clockwise direction around a monopile and not in the radial direction,
influences the crest properties.
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1 Introduction

Climate change has brought the need to rely more on affordable and clean energy, as mentioned in one of the
Sustainable Development Goals (UN, 2015). Among various renewable energy sources, offshore wind energy has been
explored and exploited substantially, giving notable growth in the last decade (≈ 36%) (GWEC, 2023). Oil and gas
offshore structures, such as monopiles, jackets, and gravity-based foundations, are adapted to support wind turbines in
the coastal or offshore environment. Notably, monopiles have become the most built offshore wind turbine foundations
(Ramirez et al., 2020). The diameter of the offshore wind monopiles has also increased recently to extend its capability
to operate with higher wind turbine rated power in the intermediate water depth, going from a typical monopile radius
of 5− 7 m for ≈ 3 MW wind turbines (Negro et al., 2017) into the monopile radius of 10 m for 15 MW wind turbines
(Gaertner et al., 2020).

Safe marine operations close to a monopile require proper estimation of the Wave Field Around a Monopile (WFAM).
MacCamy and Fuchs (1954) derived an analytical solution for the regular WFAM, employing potential flow and free
surface linearisation. Consequently, the linear solution underestimates regular WFAM experiments in the moderate to
high steepness incident waves (Kriebel, 1992; Morris-Thomas and Thiagarajan, 2004). Further, nonlinear analytical
solutions have been studied to address the underestimation (Kriebel, 1990; Chau and Taylor, 1992; Molin et al., 1995).
The linear regular WFAM solution is also utilised to estimate the WFAM from irregular incident waves, introducing
Linear Transfer Functions (LTFs). The LTF method manages to capture the runup spectrum (i.e. the WFAM
spectrum at the surface of the monopile) (Niedzwecki and Duggal, 1992; Wang and Low, 2019).

A comparison between input and output time series can extract the LTFs and Quadratic Transfer Functions (QTFs)
(Kim, 2008). The LTF and the QTF can be used to construct an input-output model through a Volterra Quadratic
Model, having been used for e.g. ship added resistance problems (Dalzell, 1976), moored structures (Kim and Kim,
2005), or runup on a mini Tension Leg Platform (TLP) (Sibetheros et al., 2005). There are also linear and quadratic
coherances to quantify the significance of the LTF and the QTF contributions. Herdayanditya et al. (2024b) performed
a comparison analysis between the incident waves and WFAM time series, finding that the LTF is applicable between
0.75fp − 1.75fp, where fp (Hz) is the peak frequency of the incident wave spectrum. Outside that range, nonlinear
interactions between the incident waves and the WFAM are more pronounced. The finding in Herdayanditya et al.
(2024b), employing low diffraction number monopile, is similar to Sibetheros et al. (2005) despite the difference in
modelled structures: a monopile and a Tension Leg Platform (TLP). Furthermore, the nonlinear irregular WFAM is
also studied by Wang and Low (2019) via semi-analytical solutions, concluding that nonlinearity has a negligible effect
on the spectral estimation but is important for the extreme value estimation.

Numerical simulations are also employed to study the WFAM, making it easier to solve complex cases, such as
multi body simulations between a monopile and an operation vessel. Herdayanditya et al. (2024a) demonstrated the
need to account for the operation vessel to estimate the WFAM in the monopile-vessel situation where the findings are
deduced from a linear potential flow solver, Capytaine (Ancellin and Dias, 2019; Babarit and Delhommeau, 2015). The
WFAM nonlinear properties can also be obtained with numerical simulations, solving either Fully Nonlinear Potential
Flow (Ferrant et al., 1999; Büchmann et al., 1999; Lin et al., 2021) or Navier-Stokes equations (Liu et al., 2019; Jiang
and el Moctar, 2022; Herdayanditya et al., 2022). However, it should be noted that high-fidelity numerical tools might
not be suitable for marine operational needs where the computational cost of the tools is considerably expensive. For
instance, Herdayanditya et al. (2022) observed a computational time of around 50 minutes for 1 second simulated
time of only regular waves around a monopile in Lagrangian and Eulerian Incompressible Navier-Stokes simulations.
Meanwhile, the operational limit is usually investigated with the irregular waves assumption and in the nature of rapid
decision-making situations.

ζC = αηC + β
u2η
2g

(1)

Empirical equations have also been studied to provide fast estimation of the WFAM, although it is limited to the
maximum wave runup, ζC (m), around a monopile, as in Eq. (1). The α and β in Eq. (1) are the dimensionless empirical
constants giving the relationship between the incident wave crest, ηC (m), the water velocity, uη (m/s), and the gravity
acceleration, g (m/s2). It comes from the stagnation point condition derived with Bernoulli equation; α = 1 and β = 1
(Hallermeier, 1976). Further, α and β are tuned empirically from a set of experiments (Niedzwecki and Duggal, 1992).
De Vos et al. (2007) observed new empirical coefficients of α and β by considering uη of the Stoke’s second order
theory rather than the linear theory, giving better estimations of their experiment results. Moreover, Andersen et al.
(2011) reanalysed the data and applied the stream function to estimate the velocity and split the coefficients into low
and high steepness cases. This approach also gives satisfactory results for wave runups in breaking wave conditions
(Ramirez et al., 2013). Although the empirical estimation excels in estimating the maximum wave runup around a
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monopile, it misses the WFAM information in various radial and angular positions around the monopile.

The present research investigates the WFAM from irregular incident waves with moderate steepnesss via physical
experiments. The incident wave steepness is limited to the moderate steepness condition considering that the research
interest lays within the marine operational limits in the offshore wind farm. Thus, high nonlinear waves or breaking
incident waves are outside of the scope in this study. Section 2 provides the theoretical background needed to assess the
experiment campaigns. It contains the analytical solution of the WFAM, post processing method to extract the LTF,
and time series analysis method. Afterwards, in Section 3, the physical experiment cases and procedures are given,
extending the study cases given in Herdayanditya et al. (2024b). The LTF and Exceedance Probability discussion are
given in Section 4 and Section 5. Additionaly, significant value of the WFAM is also discussed in Section 6. Finally,
the conclusion is drawn up in Section 7.

2 Wave Field Around a Monopile

2.1 Linear Potential Theory

Potential flow theory, within the inviscid, irrotational, and incompressible fluid assumptions, is employed to calculate
the WFAM. Free surface linearisation is also applied to the free surface boundary condition, giving the analytical
solution of the linear regular WFAM, shown in Eq. (2) (MacCamy and Fuchs, 1954; Kriebel, 1990). Eq. (2) computes
the WFAM complex amplitude, ζo (m), for a monopile with radius, R (m), at a radial position, r (m), and an angular
position, θ (rad), where Hη (m) is the incident regular wave height, ϵn = 1 if n = 0, else ϵn = 2i−n, Jn(kr) is the
Bessel function of the first kind, and Hn(kr) is the Henkel function. The wave number, k (rad/m), is related to the
wave angular frequency, ω (rad/s), along with the water depth, h (m), and the gravity acceleration, g (m/s2), via
dispersion relation, Eq. (3). Thus, different incident regular waves properties induce different WFAM properties.

ζo(r, θ) =
Hη

2

∞∑
n=0

ϵn

[
Jn(kr)−

J
′

n(kR)

H ′
n(kR)

Hn(kr)

]
cos (nθ) (2)

The absolute magnitude of the complex amplitude, |ζo(r, θ)|, gives the amplitude of the WFAM, while the arctan (ζo)
gives the phase of the WFAM with units of meter and radians respectively. Thus, the WFAM time series can be con-
structed as Eq. (4), where t (s) is the time. It has to be noted that the linear regular WFAM also assumes linear incident

waves where the time series of the water elevation is η(x, y, t) = R
{

Hη

2 exp [i (kx cosψ + ky sinψ)] exp [i (−ωt+ ϕη)]
}

in which x, y (m) are the cartesian position, ψ (rad) is the incident wave direction, and ϕη (rad) is the incident wave
phase. The unit of η(x, y, t) is meter.

ω2 = gk tanh kh (3)

ζ(r, θ, t) = R {ζo(r, θ) exp (−iωt)} (4)

2.2 Linear Transfer Function

The linear irregular WFAM can be constructed as the superposition of the regular WFAM from Eq. (4) accounting
for multiple ωj and ζo,j as shown in Eq. (5). The multiple incident wave components (Hηj

and ϕηj
) can be computed

from the incident spectrum, Sη(f) (m2/Hz), where Hηj = 2
√

2S(fj)∆fj , and ϕηj is randomly selected. f (Hz) is
the wave frequency where it is related to the wave angular frequency as ω = 2πf . Since this study is limited to
the long-crested waves, ψj of the incident waves is assumed to be 0 and there is no directional spectrum introduced.
The WFAM in short-crested waves can also be derived in the same manner including the directional components as
explained in Ji et al. (2017). From Eq. (5) the WFAM statistics can be deduced (e.g. significant height of the WFAM,
Hsζ (m)).

ζ(r, θ, t) = R


N∑
j=1

ζo,j (r, θ) exp (−iωjt)

 (5)
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The WFAM statistics can also be estimated via frequency domain analysis rather than constructing the time domain
simulation of Eq. (5). The WFAM spectrum, Sζ(f) (m2/Hz), is computed according to Eq. (6) (Niedzwecki and
Duggal, 1992), utilising Sη(f) and the WFAM Linear Transfer Function, LTF(f ) (m/m). LTF is also sometimes refered
as Respones Amplitude Operators (RAO) in the context of seakeeping analysis. There are various Sη(f) models where
JONSWAP spectrum is applied in this study. Eq. (7a) shows the JONSWAP spectrum in a function of ω thus
S(f) = 2πS(ω) where a and α are computed with Eq. (7b) and Eq. (7c). ϵS = 0.07 when ω ≤ ωp else ϵS = 0.09. The
JONSWAP spectrum requires information of the significant incident wave height, Hsη (m), the peak period, Tp = 2π

ωp

(s), and the peak enhancement factor, γ. Meanwhile, the LTF is the ratio between the regular WFAM height, Hζ (m),
and the incident regular wave height, Hη (m), computed as in Eq. (8). Hζ can also be written as twice of the WFAM
amplitude, ζo (m). The LTF computation employs Eq. (2) in various incident wave frequencies, resulting theoretical
LTF(f) as a function of wave frequencies. The LTF also characterises the WFAM for a particular monopile because
different monopile R, and different h, would derive different LTFs. Moreover, the LTF provides generalised solution
of the WFAM in various locations so that it is not limited to the runup around the monopile. The computation cost
is also minimal, suitable for marine operation planning needs.

Sζ(f) = LTF2(f)Sη(f) (6)

Sη(ω) =
5

16
H2

sηω
4
pω

−5 exp

[
−5

4

(
ω

ωp

)−4
]
γaα(γ) (7a)

a = exp

[
−1

2

(
ω − ωp

ϵSωp

)2
]

(7b)

α(γ) = 1− 0.287 ln (γ) (7c)

LTF(r , θ) =
Hζ

Hη
=

2ζo(r , θ)

Hη
(8)

While the analytical LTF is avalaible a priori, the physical experiment LTF is computed from the irregular incident
waves, η(t) (m), and the irregular WFAM, ζ(t) (m), time series. Utilizing Fast Fourier Transform (FFT) analysis,
the FFT complex amplitude of the irregular incident waves and the WFAM time series, in meter, are P (f) and Q(f)
respectively. Afterwards, P (f) and Q(f) are utilised for the LTF computation in Eq. (9). E [PQ∗] refers to the
cross density spectrum between the incident waves and the WFAM while E

[
|P |2

]
refers to the incident waves density

spectrum. Linearity between the two signals can also be assessed with dimensionless linear coherence (Coh.) as in Eq.
(10). The value of coherence is 0 ≤ Coh. ≤ 1, one refers to fully linear relationship and zero means fully nonlinear
relationship. The present study is limited to the LTF evaluation, thus the QTF and the higher-order coherance are
not discussed.

LTF =
E [PQ∗]

E [|P |2 ]
(9)

Coh. =
E
[
(PQ)2

]
E [|P |2 ]E [|Q |2 ]

(10)

2.3 Time Series Assessment

Zero up-crossing components are assessed for the time series evaluation. Within each up-crossing wave component,
l, the maximum elevation (crest), ζCl

(m), and the minimum elevation (trough), ζTl
(m), are recorded. The difference

between ζCl
and ζTl

is identified as wave height, being twice of the amplitude (Hζl = 2ζol , m). The present study focuses
on ζC and Hζl . To generelize the discussion, the two up-crossing parameters are identified as x, thus x ∈ [2ζC, Hζ ]
(m).
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2.3.1 Exceedance Probability

Rayleigh distribution is employed as the theoretical estimation for wave height and crest exceedance probabilities,
PE(xp). The Rayleigh cummulative distribution function, seen as theoretical F (xp), quantifies the probability of
occurrence for which x is under a specified threshold, xp, i.e. F (xp) ≡ Pr (x ≤ xp). Eq. (11) computes F (xp) where
m0 (m) is the zeroth moment that is computed from either Sη(f) or Sζ(f) in Eq. (6), computing F (xp) of either the
incident waves or the WFAM. Meanwhile, the physical experimental F (xp) is computed by at first reordering the xl
in the increasing order so that xp < xp+1. By computing the number of sample x at below xp, notated by nxp , the
F (xp) of the experiment data can be computed with Eq. (12) where N is is the total number of x records.

Fp(xp) = 1− e−
x2
p

8m0 (11)

Fp(xp) =
nxp

N
(12)

From the theoretical and experimental F (xp), theoretical and experimental exceedance probability, PE(xp), can be
obtained. Eq. (13) computes PE(xp), considering that PE(xp) ≡ Pr (x ≥ xp). It describes the probability of x being
larger than xp. Furthermore, exceedance probabilities assuming nonlinear waves have also been studied to account
for the crest exceedance of the ocean waves (i.e. without monopile in place). Nonlinear crest exceedance probability
from Forristall (2000) and Gramstad and Lian (2024) are utilised for the nonlinear crest distribution, described in
Appendix A.

PE(xp) = 1− Fp(xp) (13)

2.3.2 Significant Value

The xp list from the experimental records is employed to obtain the significant value of x. The significant value is
defined as the average of the largest one-third of xp, Eq. (14). The time series significant value from the experiments is
compared to the theoretical significant value which is computed with the spectra analysis. The theoretical significant
value of the WFAM height and the WFAM crest are computed with Eq. (15a) and Eq. (15b) respectively, where m0ζ

is the zeroth moment of Sζ(f).

xs =

∑N
p= 2

3N
xp

1
3N

(14)

Hsζ = 4
√
m0ζ (15a)

ζCs = 2
√
m0ζ (15b)

3 Experiment Set-Up

The Coastal & Ocean Basin (COB) in Ostend, Belgium, was utilised to perform the experiment campaigns. The
wave tank dimension is 30 m × 30 m with 20 m × 20 m L-shaped wave makers and absorber beaches on the other two
sides (Figure 1). The wave makers are also able to perform active absorption beside generating the waves. A monopile
was placed at coordinates x = 8400 mm, y = 13400 mm (see Figure 1) in the basin. From a series of regular wave tests
without the monopile in place, it was concluded that at this location, unwanted waves (e.g. diffraction effect from
the short guiding wall near the rear end of the east wave maker) and dissipation effects from the north side passive
absorber were minimized, ensuring optimal wave quality at the measurement location. It has to be noted that different
guiding wall arrangement would consequently result in different optimised location. During the campaign, only east
wave maker was activated to generate the waves while the south wave maker only acted as an active wave absorber
and a guiding wall. Resistance wave gauges were utilised to measure the free surface elevation with measurement rate
of 40 Hz.
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Figure 1: Experimental set up scheme of the monopile location during the experiments in the Coastal & Ocean basin
(COB). The wave basin consists of wave makers along the east and south sides and wave absorbing beaches along
the north and west sides. All units are given in mm.

Table 1: Irregular wave parameters for the experimental campaign. The wave properties in the model are scalled by
the Froude’s length scale, w = 25 and the Froude’s time scale,

√
w = 5.

Model Full Scale
Tp (s) Hsη (m) Tp (s) Hsη (m)

Wave 1
1.00

0.037
5.00

0.93
Wave 2 0.050 1.25
Wave 3 0.075 1.88
Wave 4

1.67
0.10

8.35
2.51

Wave 5 0.13 3.35
Wave 6 0.20 5.02

3.1 Test Cases

A monopile with 10 m diameter, expected for 15 MW wind turbine, was taken as the monopile reference (Gaertner
et al., 2020). The experiment Froude’s length scale is 1:25, i.e. w = 25. Hence, the model diameter was 0.4 m.
The wave tank water depth was 1.4 m which mimicked the 35 m water depth. Six long crested irregular waves were
generated with two peak periods, Tp, where in each Tp (s), the wave steepness, 1

2kpHsη, is varied. Table 1 shows the
model and full scale wave parameters, identified by Wave 1 - Wave 6. The full scale and model wave properties are
related by Froude’s law. According to the Froude’s law, the ratio between the full scale wave height and the model
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Table 2: Nondimensional parameters in the wave monopile experiments

Diffraction Number Dispersity Steepness
kpR kph

1
2kpHsη

Wave 1
0.82 5.75

0.075
Wave 2 0.10
Wave 3 0.15
Wave 4

0.30 2.09
0.075

Wave 5 0.10
Wave 6 0.15

10−5

10−4

10−3

10−2

10−1

H
sη
/(g

T2 p)

10−4 10−3 10−2 10−1 100
h/(gT2

p)

Wave 1
Wave 2
Wave 3
Wave 4
Wave 5
Wave 6

Figure 2: Wave case properties plotted in the Le Méhauté diagram.

wave height is w while the ratio between the full scale wave period and the model wave period is
√
w. The full scale

properties provide the typical limiting wave conditions for marine operations. The irregular waves were generated with
JONSWAP wave model, Eq. (7a), where the peak enhancement factor, γ, was 3.3. JONSWAP spectrum describes
better the fetch-limited regions where the parameter is accounted for by γ. Meanwhile, the fully-developed waves (e.g.
in the open ocean or areas facing the open ocean) can be described by Pierson-Moskowitz spectrum, equivalent to
JONSWAP with γ = 1. Furthermore, the offshore wind turbines are also mostly built in the fetch limited area (e.g.
Belgian Part of the North Sea), thus JONSWAP is more suitable to investigate the WFAM.

The nondimensional wave parameters, such as the wave steepness, the wave dispersity, and the diffraction number,
are shown in Table 2. The steepness of the cases is within the moderate steepness 1

2kpHsη = 0.075 − 0.15, where
nonlinear effect is also expected. The wave dispersion suggests that the experiments were in the intermediate water
depth ( π

10 < kph < π) and in the deep water depth (kph > π), while the diffraction number indicates that both effect
of small and high diffraction force were taken into account. Despite the small diffraction number, disturbance of the
waves is expected to be still observed around the monopile, as seen in the nonlinear regular waves runup (Kriebel,
1992). Furthermore, Figure 2 shows the wave properties location at the Le Méhauté diagram, from which H and T
of the regular waves in the diagram are computed with Hsη and Tp of the irregular waves, indicating Stoke’s second
order wave domination in the present wave cases.

3.2 Experiment Procedure

3.2.1 Incident Wave Assessment

Initially, the irregular waves in the wave tank is assessed, employing the measurements of the reference wave gauge
(WG) (Figure 1) without the monopile in place. The physical experiments aimed for ≈ 3 hours full scale time range,
thus the reflection waves were inevitable. Utilizing the reflection decomposition method from Zelt and Skjelbreia
(1992), the reflection coefficients in the wave tank ≈ 12% in the wave frequencies. Figure 3 shows the measured
incident wave spectrum compared to the theoretical JONSWAP spectrum. Qualitatively, the measured spectrum are
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0.0008

0.0010

0.0012
S η
(f)
 (m

2 /H
z)

Wave 1 Meas. 12kpHsη=  0.080
Wave 1 Theo.
Wave 2 Meas. 12kpHsη=  0.105
Wave 2 Theo.
Wave 3 Meas. 12kpHsη=  0.151
Wave 3 Theo.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
f/fp

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

S η
(f)
 (m

2 /H
z)

Wave 4 Meas. 12kpHsη=  0.075
Wave 4 Theo.
Wave 5 Meas. 12kpHsη=  0.101
Wave 5 Theo.
Wave 6 Meas. 12kpHsη=  0.146
Wave 6 Theo.

Figure 3: Comparison between the measured (Meas.) and theoretical (Theo.) incident wave spectrum, Sη(f), for
Wave 1 - Wave 6. The measured steepness 1

2kpHsη is also shown.

in good agreement with the JONSWAP model. Further, the measured steepness is computed to quantify the measured
spectrum, which appears to be considarably similar to Table 2. kp is computed with fp employing Eq. (3). There is
a post processing uncertainty in defining fp where Young (1995) employed the weighting method with power of four
to address the uncertainty, also applied in the present study. On the other hand, Hsη is computed with 4

√
m0η where

m0η is the zeroth moment of the measured incident wave spectrum.

3.2.2 Wave Field around a Monopile

The reference WG and the monopile were installed side by side with two different WG arrangements namely B01
and B02 (Figure 4a). The WGs were placed at 5 radial positons and 7 angular positions in which only two radial
positions are reported in this study, r = [1.5R, 3R]. B01 and B02 arrangements were employed to cover all the angular
postions θ = [0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦] with limited number of WGs. Initially, the B01 arrangement was used
to record all the wave cases in Table 1, covering θ = 0◦ − 90◦. Figure 4b shows the actual installation of the B01.
Afterwards, the WGs were rotated into the B02 arrangement to measure the other angular positions. Meanwhile, the
WGs at the θ = 90◦ were kept in place as the check point between the B01 and B02.

Comparisons of the WG measurement in the Wave 3 and Wave 6 at θ = 90◦ between B01 and B02 are shown in
Figure 5. The time series between the two measurements are almost identical, suggesting similar condition between
B01 and B02, although there is a slight temporal shift in the Wave 6. Noticable shift also occurs in Wave 4 and Wave
5 with shifting of ≈ 0.25 s, but in Wave 1 - Wave 3. However, the time shift does not appear to affect significantly
the LTF and the time series analysis exceedance probability analysis.

4 Transfer Function

η(t) and ζ(t) from the experimental campaigns are utilised to compute the physical experimental LTF, Eq. (9), and
the coherance, Eq. (10), at the various angular and radial positions. The physical experimental LTF is compared to
the theoretical LTF, Eq. (8). The theoretical LTF does not vary in different steepness due to the linearisation. From
the avalaible WFAM locations, the upwave position (θ = 180◦) from two Tp at r/R = 1.5 are shown in Figure 6. The
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(a) B01 and B02 scheme for the Wave Gauges (WGs) arrangements during the experiments of irregular incident waves and
monopile with radius R. The WG radial and angular positions are indicated by r and θ where the origin is at the center of the
monopile.

(b) Actual condition of the wave gauges and the monopile in B01.

Figure 4: Wave gauge arrangements during the experiments.

frequency domain of the LTF and the coherance in Figure 6 can be split into three frequency ranges: 1. low frequency
(f/fp < 0.75), 2. wave frequency (0.75 < f/fp < 1.75), 3. high frequency (f/fp > 1.75). The splits are based on the
significance of the incident wave energy.

The theoretical LTF in the first frequency range is unity (LTF = 1) indicating the monopile as a transparent
structure. Nevertheless, the experimental LTF shows different value along with their low coherence values, as seen in
Figure 6a and Figure 6b. Low coherance indicates that the experimental WFAM elevation in this frequency range does
not linearly comes from the same frequency components. The experimental WFAM is most likely contributed from
the interaction between two different wave frequencies from the wave frequency input range, possibly the difference-
frequency interaction (Kim and Yue, 1990; Taylor and Huang, 1997; Wang and Low, 2019). Interestingly, the LTF at
f/fp = 0 also does not collapse to 1, suggesting that there is a change of mean value between the incident and the
WFAM. The change of mean value of the WFAM is known in the regular wave cases, usually identified as the set-up
or set-down of the the WFAM. In the regular waves, the set-up/set-down is contributed from the square of the first
order potential (Kriebel, 1990) .

In the wave frequency region, Figure 6a and Figure 6b show different characteristics. The high coherance (Coh.>
0.85) frequency range in Wave 1 - Wave 3 is smaller than in Wave 4 - Wave 6. In the latter cases, the high coherance
extends up to f/fp = 1.75. Therefore, the shorter peak period cases pronounce more nonlinearity. In this frequency
range, the LTF estimation from the experiments correspond with the estimation of the linear potential flow, even in
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Figure 5: Comparison of the WG measurements of Wave 3 and Wave 6, featuring two different WGs layout (B01 and
B02).
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Figure 6: Comparison of the Linear Transfer Function (LTF) and Coherence (Coh.) at the upwave θ = 0, r = 1.5R
between the experiments and theoretical estimation.

the increasing steepness cases. This suggests that the WFAM spectral analysis of the WFAM in linear or nonlinear
computation methods provide similar results, similar to the findings of Wang and Low (2019).

In the last frequency range, the coherance changes in increasing steepness. The small steepness waves generally
have higher value of coherance, indicating that the nonlinear effect is less pronounced than the high steepness incident
waves. The nonlinear effects are due to the sum freqeuncy interactions (Kim and Yue, 1990; Taylor and Huang,
1997; Wang and Low, 2019). It is also interesting to note that the theoretical LTF is also seen to oscillate in the
high frequency. This is caused by the interaction between the incident and the diffracted waves creating a standing
waves pattern in different frequency (Kriebel, 1990). Nevertheless, the experimental LTF does not correspond to the
theoretical LTF in this frequency range.

The fact that the experimental LTF deviates from the theoretical LTF in the low and the high frequencies in the
present study can be attributed to the numerical deffects to estimate the LTF for the low amount of energy in the waves.
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(b) PE is computed with Wave 6 where Tp = 1.67 s and Hs = 0.20 m

Figure 7: Comparison of the wave height exceedance probability, PE , for the incident waves and the WFAM between
the experiments and the linear theory at θ = 180◦ and r = 1.5R, normalised with the incident significant wave height.

This can be elaborated from the wave frequency range of Figure 6a where the LTFs of Wave 1-3 at f/fp = 1.5− 1.75
still correspond to the theoretical LTFs, eventhough coherence values are small. This is mainly due to their sufficient
amount of energy.

5 Exceedance Probability

At θ = 180◦ and r = 1.5R, Wave 3 and Wave 6 are selected to identify the WFAM PE . Besides, the incident waves
PE for Wave 3 and Wave 6 are also computed. Wave 3 and Wave 6 are selected as they are the most nonlinear cases
in each Tp. PE for both the incident waves and the WFAM are computed with Eq. (13). Figure 7 and Figure 8 show
the wave height PE and the crest PE respectively for both the incident waves and the WFAM. The theoretical and
experiemental F (xp) are computed with Eq. (11) and Eq. (12) in turn. PE in Figure 7 and Figure 8 is shown in two
styles: 1. linear scale (left side) and 2. logarithmic scale (right side). The logarithmic scale is utilised to zoom in the
low PE while the high PE is more visible in the linear scale.

For both Tp at the sampled position, the WFAM wave height PE (Figure 7) and crest PE (Figure 8) are higher

Journal of Coastal and Hydraulic Structures Vol. 4, 2024, Paper 39 11 of 21



Herdayanditya et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
2ηC/Hsη or 2ζC/Hsη

0.0

0.2

0.4

0.6

0.8

1.0

P E

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
2ηC/Hsη or 2ζC/Hsη

10−4

10−3

10−2

10−1

100

P E

Exp. I c. Wave
Theo. I c. Wave

Forristall (2000) I c. Wave
Gramstad a d Lia  (2024) I c. Wave

Exp. WFAM
Theo. WFAM

Corr. 1 WFAM

(a) PE is computed with Wave 3 where Tp = 1.00 s and Hs = 0.075 m

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
2ηC/Hsη or 2ζC/Hsη

0.0

0.2

0.4

0.6

0.8

1.0

P E

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
2ηC/Hsη or 2ζC/Hsη

10−4

10−3

10−2

10−1

100

P E

Exp. I c. Wave
Theo. I c. Wave

Forristall (2000) I c. Wave
Gramstad a d Lia  (2024) I c. Wave

Exp. WFAM
Theo. WFAM

Corr. 1 WFAM

(b) PE is computed with Wave 6 where Tp = 1.67 s and Hs = 0.20 m

Figure 8: Comparison of the wave crest exceedance probability, PE , for the incident waves and the WFAM between
the experiments and the linear theory at θ = 180◦ and r = 1.5R, normalised with the incident significant wave
height. Corr. 1 applies the mathematical model of Forristall (2000) but the inputs are with WFAM spectral analysis.

than the incident waves. This can be correlated with the LTF of the sampled position (Figure 6), for which at the
wave frequency range the LTF is more than one (i.e. amplification of the incident waves). The WFAM PE being
higher than the incident waves PE is also observed from the theoretical PE . Nevertheless, the theoretical PE appears
to perform differently between the wave height and crest estimations. The experimental wave height PE is seen to be
closer to the theoretical PE than the experimental crest PE to the theoretical crest PE .

The wave height PE of the experimental incident wave and the WFAM can be estimated well with the theoretical
estimation, especially up to PE = O(10−1). Furthermore, the tails of Wave 6 experiment (Figure 7b) are matching
well with the Rayleigh wave height, but Wave 3 (Figure 7a). The tails of the theoretical wave height PE at Tp = 1.00 s
underestimate the experimental PE . The underestimation for the WFAM can be explained by the LTF and coherence
findings (Figure 6). From the LTF discussion, Wave 3 has shorter range of high coherance than Wave 6, indicating more
pronounced nonlinearity, despite being in the same wave steepness. This consequently results in the underestimation
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of the wave height PE tails with the linear theory in Wave 3. On the other word, having wider linear frequency
range in the LTF study provides more similarity of wave height PE to the Rayleigh PE , as in Figure 7b. This also
demonstrates that the nonlinear dynamics of the WFAM also depends on the diffraction number, for instance between
Wave 3 and Wave 6. Wave 3 has higher diffraction number than Wave 6, indicating the importance of nonlinearity
interaction in estimating the wave height tail distribution in the large monopile. Nevertheless, the linear theory is still
applicable to predict the majority of the wave height distribution.

Deviation from the Rayleigh theory is even more pronounced in the crest distribution. The Rayleigh distribution
appears to perform well for the high exceedance probability, PE ≈ 1.0 − 0.5, representing low elevations. This is
observed at both the incident waves and the WFAM. Corrections to the incident wave tail are available, e.g. Forristall
(2000); Gramstad and Lian (2024), meanwhile the nonlinear wave-monopile simulations also observes the tail properties
of the WFAM being off from the linear theory (Wang and Low, 2019). They also suggested that the increase of the crest
estimation is due to the sum frequencies interactions, which is obviously not captured in the Rayleigh distribution. The
underestimation of the crests are also seen in the study of nonlinear runup of the regular waves (Herdayanditya et al.,
2022). Furthermore, the findings that linear theory performs better in the wave height than wave crest distributions
also appears in different angular and radial positions (Herdayanditya et al., 2024b), although their study only involves
Tp = 1.67 s.

Correction of the crest distribution of the incident waves based on Forristall (2000) and Gramstad and Lian (2024)
are also given in Figure 8. Forristall (2000) requires m0η and m1η inputs which can be obtained from the JONSWAP
spectrum. Meanwhile, Gramstad and Lian (2024) developed a parametization of the skewness and kurtosis of the
incident waves to feed the crest distribution from Tayfun and Fedele (2007). The details of both methods are given
in Appendix A. The methods are applied in the present study, which both appear to be better than the Rayleigh
distribution. The performance of the distributions from nonlinear waves is also better in Wave 6 than Wave 3. Wave 6
gives good agreement up to ≈ 10−2. Despite the improvement from Rayleigh distribution, further investigation on the
deviation of the observed incident wave crests for the short waves in the Coastal & Ocean Basin shall be performed.
This might be caused by the excessive extreme cases near the wave generator or the high frequency cut off in the
energy spectrum for the wave maker input, as seen in Tang et al. (2022). It should also be noted that Gramstad
and Lian (2024) appears to give better improvement, although still underestimating the experiments. Correction to
the WFAM distribution is also performed with the mathematical model of Forristall (2000), where m0ζ and m1ζ are
used instead, obtained from Eq. (6). It is seen that the correction gives better agreement to the observed WFAM.
However, it shall be noted that the WFAM correction is not robust as it was initially derived for the ocean waves,
not the WFAM. Therefore, although Corr. 1 works well in Figure 8, it does not perform decently in other locations,
resulting in significant value missestimation (discussed in Section 6). An attempt to correct the WFAM crest with
Tayfun and Fedele (2007) by feeding the measured skewness and kurtosis from the WFAM time series instead of the
parameteric study from Gramstad and Lian (2024) is also performed, but the results are unphysical, possibly because
Tayfun and Fedele (2007) was derived for the ocean waves and not for the WFAM.

6 Significant Value Variation

Significant value is usually computed to assess the overall statistics of the WFAM, typically used in engineering
analysis. Significant value is the mean of the one-third highest measurements. Figure 9 shows the significant wave
height and crest in all the angular positions for the two radial positions. Besides the significant value from the
experiments computed with Eq. (14), the theoretical significant value is also shown, computed with Eq. (15a) or
Eq. (15b). Corr. 1 distribution in Figure 8 is also employed to correct the linear theory of the significant crest. The
correction is based on the practical approach. Knowing that PE(ζCs) = exp (−2) for the Rayleigh distribution, the
corrected significant crest is then computed from Corr. 1 distribution with the corresponding PE , identified by Corr.
1.

Figure 9 shows that the WFAM significant height can be predicted well with the linear theory via spectral analysis.
Furthermore, the linear theory performance is decent in both of the peak periods and all the measurement positions.
It is interesting to see that despite the tail difference observed in the wave height of the WFAM at the Wave 3 (Figure
7a), the significant value appears to agree decently with the linear theory (Figure 9a and Figure 9b). Similarly, the tail
of Wave 6 (Figure 7b) results in good agreement of significant wave height between the linear theory and the physical
experiments (Figure 9c and Figure 9d). Moreover, the WFAM significant height also appears to be not sensitive to the
incident wave steepness (Wave 1 - Wave 3 and Wave 4 - Wave 6 in Figure 9). Meanwhile, the WFAM significant crests
around the monopile is observed to deviate from the linear theory in the investigated points. This is in agreement with
the discussion of Figure 8, in which the crest properties deviate further from the linear theory than the wave height
properties. Furthermore, the magnitude of the significant crest is also sensitive to the incident wave steepness. On
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the other hand, the corrected significant crest appears to give closer estimation to the physical experiments, especially
at the upwave part. The downwave part from the corrected value still shows noticable deviation with the physical
experiment, especially at r/R = 1.5. It is also seen that the corrected values even overestimate the value of the highest
incident wave steepness for Tp = 1.67 s at r/R = 1.5; θ = 30◦ and θ = 60◦. These missestimations also demonstrate
the unrobustness of the corrected method.

Generally, larger incident wave steepness gives larger significant crest elevation in all the measurement points. The
general increase of the value in the increasing incident wave steepness is also captured with the corrected value.
However, at r/R = 1.5; θ = 30◦ and θ = 60◦ of Tp = 1.67 s, it is the opposite, making the corrected value overestimate
the physical experiments. This can be explained by Wave Type II breaking phenomena. Wave Type II will also be
elaborated to explain the high crest occurance that occur in the downwave side of the monopile (θ = 0◦). For instance,
in Figure 9a and Figure 9c, the crest significant value at θ = 0◦ deviates the furthest from the linear theory and the
correction method also fails to capture it, despite good agreement observation in the wave height significant value.

When regular waves hit a monopile, there are Wave Type I that travels cocentrically due to the wash up-down at
the viscinity of the upwave and downwave of the monopile and Wave Type II that travels clockwise and anti-clockwise
around the monopile. This is explained by Swan and Sheikh (2015) from a series of regular wave experiments.
Previously, the observation of waves travelling around the monopile has also been similarly seen when moving the
cylinder in the still water condition (Retzler et al., 2000), although it is unable to explain the recirculation observed
in the fixed cylinder with long incident waves. Wave Type I and Type II are nonlinear wave behaviours that can only
be captured with nonlinear free surface solvers in either potential flow (Christou, 2009) or Navier Stokes (Sun et al.,
2016; Mohseni et al., 2018) solvers. Thus, it is missing in the Rayleigh estimation. The sequence of the observed Wave
Type I and Type II in regular incident waves can be described in the following:

1. When the regular wave crest hits the upwave side of the monopile, a lump of water is created.

2. As the regular wave crest travels to the backside of the monopile, the lump of water at the front side of the
monopile is wash-down, creating cocentric waves at the upwave side of the monopile, defined as Wave Type I.

3. When the crest is travelling to the downwave side, edge waves are also travelling along with the crest, on one
side moving clockwise and on the other side moving counter-clockwise. In Mohseni et al. (2018), they described
them as edge waves while Swan and Sheikh (2015); Sun et al. (2016) described them as Wave Type II.

4. Afterwards, the incident crest arrives at the downwave side of the monopile, from which the Wave Type II,
collapse to each others.

5. As the next phase, the water velocity is in the opposite direction of the wave propagation, creating the same
phenomena but with the opposite direction (i.e. Wave Type I is formed at the downwave side and the Wave Type
II travels to the opposite of wave propagation and collapse at the upwave part of the monopile). However, the
strength of the Wave Type II collision in the upwave side depends on the wave and cylinder properties (Mohseni
et al., 2018).

Wave Type II also appears in the present experiments where irregular waves are employed. An example of Wave
Type II is shown in Figure 10, although it is broken. The snapshot consists of snapshot of waterlump initialization,
Figure 10a, followed by unstable and broken waves in Figure 10b and Figure 10c. Besides the broken Wave Type II
(Figure 10), there also exists the unbroken Wave Type II that embeded in the total WFAM. Wave Type II travels
around the monopile and collides at the downwave side of the monopile, which gives the explaination of large crest
occurance in the downwave of Figure 9a and Figure 9c. Further, when the Wave Type II increases, the stability of
the waves decrease and cause breaking waves, thus the significant value of θ = 30◦ and θ = 60◦ of Tp = 1.67 s gets
lower in increasing steepness. In order to elaborate further, the crest exceedance probability of three locations are
shown in Figure 11, zoomed in on the one-third highest value which defines the significant value of the crests. In the
upwave (θ = 180◦), Wave 3 and Wave 6 exceedance probability are higher than the other less nonlinear waves in the
respective periods. As seen in the Figure 10a, there is a lump of water in front of the monopile, due to Wave Type
I and Wave Type II. This lump of water, therefore, gets larger in increasing incident wave steepness, causing higher
crest at θ = 180◦. However, at the θ = 60◦, the highest nonlinear waves does not necessarly gives the highest crests.
The tails of Wave 3 and Wave 5 appears to be bended resulting lower PE than the less steep waves, Wave 2 and Wave
4 in turn. The bended shape of PE is a typical shape of broken waves (Karmpadakis and Swan, 2022). Furthermore,
Wave 6 does not show bended shape, but the PE is lower than the other less steep waves, indicating that the breaking
phenomena is more severe. Afterwards, Wave Type II that travels clockwise and anti-clockwise collapses again at the
θ = 0◦ resulting the deviation of exceedance probability of the crest to the linear theory. Despite the observed broken
waves, the impact on the significant value wave height is not significant as seen in Figure 11. This can be explained
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(b) Significant Value of the WFAM height (left) and crest (right) of Tp = 1.00 s at r = 3R
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(c) Significant Value of the WFAM height (left) and crest (right) of Tp = 1.67 s at r = 1.5R
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(d) Significant Value of the WFAM height (left) and crest (right) of Tp = 1.67 s at r = 3R

Figure 9: The comparison between the physical experiment significant values and the theoretical significant values.
Signficant wave height and significant crest are computed.

by the fact that the breaking waves only occur at the low exceedance probability, thus the average of the one-third
highest value are relatively similar.
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(a) Water lump at the upwave side of the monopile (b) Wave Type II travels and starts to destabilise

(c) Broken Wave Type II

Figure 10: Snapshot of broken Wave Type II from Wave 6. The evolution of the Wave Type II is identified with red
circle. Wave Type II is wave that travels around the monopile in clockwise and anti-clockwise that collides at the
downwave side.

The crest missestimation in locations around the monopile can be improved with more advanced analytical/numerical
solutions or more robust distribution correction obtained through parametric study. The former would require the
capability to capture the breaking waves, as observed in the present study despite moderate incident wave steepness.
Since, the advanced solvers take a large computational time, it might not be suitable to the marine operation plannings,
making the distribution correction more preferable. The correction for the WFAM distribution would require WFAM
in various wave steepness and/or wave diffraction number. The parametric equation approach has also been applied
to improve the crest nonlinearity, by mean of fitting the observations to the Weibull distribution for the ocean waves
(e.g. Forristall, 2000) or the wave field at sloped beach (e.g. Xu et al., 2021). This approach can similarly be performed
to correct the WFAM crest. In that way, the Wave Type II and the tail breaking waves are also accounted for, rather
than relying on the open-ocean crest correction.

7 Conclusions

Monopile diameter has increased significantly in the recent years, posing a new challenge to safe marine operation
plannings. When the monopile size is small, it is acceptable to neglect the monopile for marine operability analysis,
but not for the large monopiles. In the present study, the effect of the monopile on the WFAM is investigated via
physical experiments that were performed in The Coastal & Ocean Basin, Ostend. Six long crested irregular waves
were simulated to investigate the WFAM in two diffraction numbers and two wave steepness. Initially, the Linear
Transfer Function (LTF) of the monopile is evaluated. It is found that the LTF matches the linear theory within
the frequency of the notable incident wave energy. It is also found that the frequency range of the good agreement
becomes less in the large monopile case. Consequently, the exceedance probability of the wave height around the large
monopile slightly deviates from the linear theory. The nonlinear effect is even more pronounced in the crest properties
of the WFAM.

Significant value of the WFAM height and crest are computed as it is typically employed in ocean engineering
analysis. Despite the slight tail difference in WFAM height to the linear theory, the significant value of the WFAM
height are predicted well with linear theory, but the WFAM crest deviates from the linear theory. Present study also
introduces a practical correction method based on the ocean crest distribution. It appears to performs well in the
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Figure 11: The significant value comparison between the physical experiments and the theoretical.

upwave part but not in the downwave part. The crests are driven by the nonlinear effect in Wave Type I or Wave Type
II. Therefore, the practical solution accuracy also depends on the evolution of the Wave Type II. At region where the
Wave Type II collapse, in the present study on the downwave side, the practical correction method performs the worst.
Furhtermore, it has been demonstrated as well that broken Wave Type II can also cause lower tail crest distribution
than the less steepness incident waves. This seems to also cause the correction method to overestimate the observed
significant value in some locations. Nevertheless, provided that the wave height information is needed for a marine
operation, linear theory can be used, for instance, to feed the wave field information for anode-cage installation or
fallpipe operation analysis around a monopile. Meanwhile, if the marine operation is more sensitive to the wave crest
information, the linear theory is not sufficient, for instance, deck wetness during the crew transfer operation at the
boat landing. In the condition where fast computation with better accuracy than linear theory in the crest elevation
estimation is needed, the correction method can be utilised on the fly, along with its limitation to capture the Wave
Type II collision and breaking phenomena. It is also a recommendation to the marine operation planning that broken
waves might be seen around the monopile. From this study, the breaking waves at tail of the wave distribution is
already seen in the range 1

2kpHs = 0.10− 0.15 although the order of magnitude differs in different period. While the
breaking condition can be defined via breaker index in the coastal environment, the quantification of the breaking
waves limit around the monopile is not clear yet, requiring further investigation.
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Appendix

A Nonlinear Crest Distribution

A.1 Crest distribution according to Forristall (2000)

The crest distribution from Forristall (2000) is derived from the parametric study of their second-order wave sim-
ulations based on the second-order solution of Sharma and Dean (1981). The parametric study employs Weibull
Distribution, Eq. (16). α and β are assumed to be equal to Rayleigh distribution when the irregular waves have zero
steepness, Eq. (17a) and Ursell number, Eq. (17b), where T1 and k1 are the mean period and its corresponding wave
number. The mean period can be computed with m0η and m1η information. They found that α, β for the long crested
waves (α2, β2) are as in Eqs. (18) and for the short crested waves (α3, β3) are as in Eqs. (19).

PE(ηC) = exp

[
−
(

ηC
αHsη

)β
]

(16)

S1 =
2πHsη

gT 2
1

(17a)

Ur =
Hsη

k21h
3

(17b)

α2 = 0.3536 + 0.2892S1 + 0.1060Ur (18a)

β2 = 2− 2.1597S1 + 0.0968Ur2 (18b)

α3 = 0.3536 + 0.2568S1 + 0.0800Ur (19a)

β3 = 2− 1.7912S1 − 0.5302Ur + 0.284Ur2 (19b)

A.2 Crest distribution according to Gramstad and Lian (2024)

Gramstad and Lian (2024) derived a parametric equations, Eqs (20) to describe skewness, Sη, and kurtosis, Kη of the
nonlinear irregular waves based on their nondimensional steepness (ϵ), nondimensional dispersion (ξ), nondimensional
peak parameter (ν), and nondimensional spread (τ) parameters described in Eqs. (21) where σθ is spreading standard
deviation. They used their parametric Sη and Kη to feed Tayfun and Fedele (2007) crest distribution, described in
Eq. (22), where χ is a solution of Eq. (23).

Sη =
(
2.89 + 1.19ξ3.3 − 0.28ν0.8 + 0.35ξ2.9ν1.1

) (
1 + 1.42τ − 3.81τ2 + 2.25τ3

)
ϵ (20a)

Kη = (2.34− 0.31ξ)S2
η (20b)

ϵ = kp
√
m0 (21a)

ξ = (kph)
−1 (21b)

ν = ln(γ) (21c)

τ = sin(σθ) (21d)

PE

(
ηC
Hsη

)
= exp

(
−8χ2

){
1 +

8

3
Kη

(
ηC
Hsη

)2
[
4

(
ηC
Hsη

)2

− 1

]}
(22)

ηC
Hsη

= χ+ 2Sη
χ2

3
(23)
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