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Abstract

The linear wave theory according to Airy/Laplace (1842) is widely
used by engineers designing offshore structures. When applying the
theory, the over estimation of wave forces is due to the theory vio-
lating the law of mass conservation. Moreover, incorrect recording of
the orbital flow direction on inclined tubular structural members and
locally existing inclined seabed with α ̸= 0 deliver inaccurate results.

Both shortcomings can be avoided (a) by extending Schulejkin’s mir-
ror method to represent orbital kinematics over flat ground to inclina-
tions 0◦ ≤ α ≤ 90◦ and (b) by referring to the phase shift ∆φ between
incident and reflected waves according to the author’s definition of the
complex reflection coefficient Complex Reflection Coefficient (CRC).

This paper introduces Exponentially Reduced Reflection (ERR) for
the first time as a wave theory that is applicable to complex boundary
conditions and considers a compelling cause of wave deformations over
inclined seafloor. The change in the total orbital kinematics (trajec-
tories, velocities, and accelerations) with respect to the water surface
is shown for decreasing water depths on a slope 1 : n = 1 : 2 with
reference to the results of wave channel investigations. A compari-
son of results of both linear theories refers to a full-size pile offshore
structure.

Keywords:

Vibration interference in water waves, phase jump, complex reflection
coefficient, partial Clapotis, orbital kinematics of water waves, seabed
slope, design of pile structures, Morison formula, wave theory, offshore
structures.

1 Introduction

The present paper is a concise revision and supplement of the publication of Büsching (2019), in which the author
primarily refers to former work on phenomena of reflection and wave resonance in the nearshore region.

Exponentially Reduced Reflection (ERR) is a term by the author representing the author’s opinion, that wave
shoaling at decreasing water depth is due to a reflection process. To the author’s knowledge, Schulejkin (1960) was the
one and only to apply a certain type of reflection to water particle kinematics above a shallow seabed as a substitute
for the analytically determined kinematics of Airy/Laplace. However, he limited himself only to the description of the
elliptical orbital orbits. The author extended this kind of application to the range of floor slopes 0◦ ≤ α ≤ 90◦ and at
the same time fulfilled the law of preservation of mass, which is missing in the case with linear wave theory.

Since ERR is so far only insufficiently known, the theory is presented here regarding the results of model studies
of the author on a slope of 1 : 2, in which the new insights were gained for reflection. On the other hand, a
practical application for determining the parameters required for the design of offshore structures (orbital velocities
and accelerations) is presented. Of particular importance is the definition of the reflection coefficient as a complex
quantity (Büsching, 2012b,a).
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Γ = Cr · ei∆φ (1)

This corresponds to the knowledge that in the case of reflection, in addition to the wave height ratio Cr = Hr

Hi
≤ 1,

the phase difference ∆φ (phase jump) between incident and reflected wave occurs.

Starting from the condition that no path movements perpendicular to the boundary are possible at fixed boundaries
of the flow field (continuity condition), the theoretical phase shift as a function of the angle of inclination α can be
specified in relation to the general case of the inclined plane as follows, see Figure 1.

∆φ = π − 2α (2)

Figure 1: Theoretical phase jump ∆φ[◦] between incident and reflected wave as linear function of slope angle α[◦].

At the limits of the range of interest of the inclinations 0◦ ≤ α ≤ 90◦ thus the phase shifts represent:

� ∆φ = 180◦ the linearly horizontally polarized orbital vibration at the plane horizontal ground and

� ∆φ = 0◦ the linearly vertically polarized orbital vibration at the plane vertical wall.

Thus, the CRC can be considered not only for the inclination of locally present reflection objects, but also globally
in relation to the local seafloor slope α:

Γ = Cre
i∆φ = Cre

i(180◦−2α) (3)

For ideally smooth slope inclinations, theoretical complex reflection coefficients result which depend only on the
preselected slope inclination α.

From the pointer diagram of Figure 2 for slopes 0◦ ≤ α ≤ 90◦ the amounts Cr = 1 cos∆φ for slope angles
0◦ ≤ α < 45◦ are negative and for 45◦ ≤ α ≤ 90◦ positive. Accordingly, the reflection changes sign at an ideally
smooth surface inclined α = 45◦ with a phase shift ∆φ = 90◦ between incident and reflected wave. This means that
the reflection is manifested only in the relevant phase shift ∆φ, and the proportions of longitudinal and transverse
vibration components are equal.

With increasing phase shift ∆φ > 90◦ or decreasing slope inclination α < 45◦ the expression of the negative reflection
changes until the value Γ = Cre

i∆φ = −1 is reached for the parameter pair ∆φ = 180◦|α = 0◦. The latter had been
named by the author as a theoretical limit for the case of total negative reflection, where a pure longitudinal oscillation
is present as a horizontal linearly polarized oscillation of the water particles.

On the other hand, for the parameter pair ∆φ = 0◦|α = 90◦, the theoretical limit value of positive total reflection
is present, where pure transverse oscillation exists as vertical linearly polarized oscillation of the water particles.

The slope inclination α = 26.57◦ previously investigated by the author in a physical model, corresponding to the
phase jump ∆φ = 126.86◦, occurs together with the magnitude Cr = 1 · cos∆φ = 1 · cos 126.86◦ = −0.60. The
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Figure 2: Pointer diagram showing CRC Γ = Cre
i∆φ for phase jumps 0◦ ≤ ∆φ ≤ 180◦ (left value) corresponding to

slope angles 90◦ ≥ α ≥ 0◦ (right value) with respect to the exponentially reduced reflection at the intersection IP of
the still water level (d0.IV ) with the slope inclination in question, cf. further below.

significance of such a value, for instance, with respect to its contribution to the longitudinally dominated elliptical
orbital motion cannot be shown here for the time being.

The remainder of this work is structured as follows. In Section 2 the Exponentially Reduced Reflection (ERR) –
which was previously published in Büsching (2019) – is explained. Next, Section 3 describes the phase jump in the
physical model which was discovered in previous works and published e.g. in Büsching (2010a). Section 4 illustrates
the orbital motions in the flow field with horizontal and inclined boundary streamlines. Section 5 gives an example
application on the design wave of an offshore pile structures and Section 6 concludes the presented work.

2 Exponentially Reduced Reflection (ERR)

Concerning the consideration of the continuity condition (theorem of conservation of mass) it is known very well that
especially during the establishment of the linear wave theory according to Airy/Laplace (and the higher order theories
based on it) simplifications have been made which contradict this important theorem. To avoid such inconsistency and
to capture more accurately the physical sense of bottom influence in limited water depth, Schulejkin (1960) assigned
a mirroring effect to the horizontal bottom. Here, the orbital circle diameters obtained in deepwater are calculated
with the well-known exponential function.

D = D0 · e−2πd/L (4)

In the case of d ≤ L/2 with D0 at the water surface, the circle diameters decreasing with depth are mirrored at the
plane bottom in such a way that the circular orbital motions with equal positive and negative distance from the bottom
are superimposed above the bottom, cf. Figures 3 and 5. This results in closed elliptical orbital paths, comparable to
those which are also obtained according to the theory of Airy/Laplace.

Going beyond the analytical formulation of elliptical orbital trajectories, which in Schulejkin (1960) encompass
only the region of limited water depth above flat ground, the author has produced the extension of this reflection
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Figure 3: Orbital circle diameter D for water depths d in the wave channel above (or below) the channel bottom
related to a nominal wave height H = D0 = 0.3m and the wavelength L = 3.8m, which are taken from the results of
the respective model investigations, cf. Figure 5.

method, considering the above-mentioned phase shift ∆φ, to inclination angles 0◦ ≤ α ≤ 90◦ and has chosen the term
”Exponentially Reduced Reflection (ERR)” for this purpose.

Included are graphical and / or computational determinations of the water level deflections ζ, the resulting orbital
velocity vectors W on the resulting elliptical orbital trajectories as well as the corresponding orbital accelerations a.

In the following, the mentioned parameters of the initial waves (from the deep water) are denoted by the index i (Wi

or ai, respectively) and the corresponding (associated) exponentially reduced reflected ones are additionally marked
by an apostrophe or by the index number of the associated fictitious water depth, compare Figure 5.

Knowing that reflections (and resonance phenomena) also play a role in electromagnetic waves, especially in lasers,
the exponentially increasing damping of oscillatory motions in a liquid with increasing water depth can be an acceptable
hypothesis for the concept of exponentially reduced reflection. Therefore, it implies that wave motions occurring in
nature in the region of limited water depth always appear as interferences. In this sense the term partial reflection
often used by the author in the past would have to be reconsidered if necessary.

With the mathematically exact addition of the circular circumferential velocity vectors Wi and W ′
i assigned to each

other, it must be considered that both have an opposite sense of rotation.

As a result of the graphical or exact mathematical additions of the circular circumferential velocity vectors offset
from each other by the phase difference ∆φ, it is confirmed that the resulting elliptical orbital paths are adequately
represented in the vertical plane in shape and position relative to the given boundary conditions by a respective
preselected number of tangent vectors:

The dimensions of the long main axes of the ellipses thus result in the respective water depth from the sum of the
diameters Di +D′

i of the associated orbital circles with the orientation in each case parallel to the angle of inclination
α of the boundary streamline of the flow field. The short ellipse main axes perpendicular to the long axes have a
length which results from the difference of the diameters Di −D′

i assigned to each other.

The resulting orbital velocity vectors W are obtained at the ends of the short axes from the addition of the involved
circular circumferential velocities and at the ends of the long axes from their difference.

The maximum of the acceleration amounts due to the determined orbital velocities result to ±ares = ai + a′i
inclination parallel to the long axes, and the minimum acceleration inclination perpendicular to ±ares = ai − a′i.

Since the vectors of the orbital acceleration are always directed to the center of the circle during circular motion
independent of the direction of rotation, this is also the case for all elliptic points. Their decomposition into the
tangential orbital acceleration at on the one hand and the normal acceleration an perpendicular to it on the other
hand means the execution of harmonic oscillations for the former as well as for the paths s and the velocities W .
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Generally, at the case at hand the path acceleration at is proportional to the arc length s. Accordingly, with
ω = 2π/T , the complete system of functions dependent on the time t is as follows

s̈ = −s0ω
2 cosωt (5)

ṡ = −s0ω cosωt (6)

s = s0 cosωt (7)

Arc length s, velocity W and path acceleration at oscillate back and forth between 2 fixed values. After the period
T has elapsed, the same state of motion returns, since s, ṡ and s̈ assume their old values. The path-acceleration-
displacement diagram is the piece of a straight line. Velocity-displacement and trajectory-acceleration-velocity dia-
grams are ellipses passing perpendicularly through the s and ṡ axes, respectively.

In principle, considering equation 2, the analytical formulation using polar coordinates can also be chosen for the
motion on the rotated ellipse both for the orbital velocities and for the orbital accelerations. For the ellipse rotated
by the angle α, the parameter representation for the orbital curve is as follows.(

x = a cos t cosα− b sin t sinα
y = a cos t sinα+ b sin t cosα

)
with 0◦ ≤ t ≤ 2π (8)

However, since in practice only the extreme values of the above-mentioned load parameters are usually required for
the design and the dynamic-static calculation of structures subjected to wave loads, the more descriptive and simpler
graphical-mathematical method is used here, especially since it represents the physical relationships more clearly.

3 Phase jump in the physical model

In accordance with the findings presented above during many years of physical slope investigations in the wave
channel of Bielefeld University of Applied Sciences in the years 1990 – 1999, it was obvious to verify and link these
findings with the presented theoretical approach. For this purpose, the smooth comparative slope structure with an
inclination of 1 : 2 had been selected specifically, which had previously been used as a reference for investigating the
effectiveness of hollow revetments Büsching (1995).

Based on a relatively complex method of spectral analysis, developed by the author for the analysis of irregular
waves Büsching (2010a), energy values could be given for delimited spectral ranges above the inclined slope structure
and seaward from it, with reference to the Intersection Point (IP) of the stillwater level and the reflection structure,
see Figure 4.

In the present case, it was a matter of plotting the integral values of the energy at 31 measuring positions (gauge-
stations) seaward of the Intersection Point (IP). It was based on 10 subrange frequency bands, whose different borders
were defined according to the appearance of the respective overall spectrum. Since both the seaward development of
the total energy and its sub-ranges indicate the presence of Partially Standing Partial Waves (PSP) with imperfect
loops and imperfect nodes, the PSP with the frequency range 0.488Hz ≤ f ≤ 0.519Hz and maximum energy content
was considered representative for further analysis. For this purpose, on the one hand, the length L ≈ 3.80m and, on
the other hand, the distances closest to the building ηmin of the imperfect vibration node and ηmax of the imperfect
vibration loop related to the IP, can be taken from the relevant representation. The approximate phase difference ∆φ
is then obtained from the average value of the following formulas.

∆φ [◦] = 360

(
1− 2ηmax

L

)
(9)

∆φ [◦] = 180

(
1− 4ηmin

L

)
(10)

For the quality of the agreement of the theoretical approach with the model measurements the fact is of special
importance that the phase shift ∆φ = 127.9◦ ≈ 126.86◦ agrees almost exactly with the result of equation 2, compare
Figure 1.
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Figure 4: To determine the length L and the phase difference ∆φ between incident and reflected wave using the
example of the partial standing partial wave (PSP) of the frequency range 0.4875Hz ≤ f ≤ 0.518 75Hz at a plane
slope of the inclination 1 : 2. As a result of the horizontal wave asymmetry of the nearly breaking waves
(characterized by ηmax − ηmin < L/4), the formulas 9 and 10 give two different results for the phase shift
∆φ = 132.6◦ > 123.2◦. More detailed explanation in Büsching (2010a,b).

4 Orbital motions in the flow field with horizontal and inclined bound-
ary streamlines

Based on the boundary conditions specified by the physical model in the wave channel, 10 positions have been
chosen for the description of the orbital velocities near the slope in the vertical plane, marked in Figure 5. On the
one hand, 4 reflection axes (I to IV) were defined for this purpose, each of which is characterized by their orientation
perpendicular to the inclination of the ground edge streamline. On the other hand, their geometrical locations are
given by equidistant depth lines, which result from dividing the maximum depth d0 = 0.626m by the preselected
number of their distances (here approximately 3). The grid given in this way continues beyond the ground edge
streamline as far as it is required for the reflection of the circular deep-water orbital movements along the relevant
reflection axis.

Figure 5 refers to the representation of the resulting elliptical path lines corresponding to the above indications
for the determination of the resulting ellipse principal axes parallel or perpendicular to the respective reflection axis.
Since during the motion on the orbital circles of the incident wave decreasing with depth the circumferential velocities
Wi behave like the circle diameters Di, similar simple relations can be given with respect to the axis lengths of the
resulting orbital ellipses. The later also concerns to the orbital velocities and accelerations:

Wi

Wn
=

π ·Di

T
· T

π ·Dn
=

Di

Dn
(11)

Deviating from the reference article in the present paper, the transformation of the orbital motion is considered only
at the water surface with respect to the 4 intersections of the Stillwater Level (SWL) with the reflection axes I to IV.

For this purpose, the circular parameters of the orbital motions (diameter, circumferential velocity, and orbital
acceleration) related to the mentioned intersection points are superimposed with those of the reduced parameters of
the orbital motions mirrored. At reflection axis I - according to formula 4, (Figure 3) - these are

� at the water surface (d0) the nominal wave height H0 = D0 = 0.3m as selected reference value for determined
unit wave heights and

� in the fictitious water depth d6 = 1.252m the diameter D6 = 0.0375m.
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Figure 5: Construction of the elliptical orbital motions in the region of limited water depth on the example of a
smooth slope inclined 1 : 2, investigated in the wave channel. There are shown the results for investigations at the
reflection axes I to IV. Explanations of the superposition procedure for the exponentially reduced mirroring of the
orbital kinematics are given below.

Figure 6: Graphical determination of elliptical trajectories for a shallow sea with a flat bottom. Reflection axis I.
Vector addition for the ratio D0.I/D6.I = 0.3m/0.0375m = 8/1, which is obtained for the stillwater level
corresponding to the coordinate ξ = d0.I = 0.626m and the reflection of the orbital motion at ξ = −0.626m (below
the bottom at d6 = 1.252m), compare Figure 5. Thus, for the circumferential velocities the relation W0 = 8W6 is
valid.

Figure 6 shows the results of the graphical calculation of the elliptical orbital paths for a shallow sea with the flat
bottom. With the inclination angle α = 0◦, the phase shift results in∆φ = 180◦ according to formula 2. The ratio of
the orbital diameters to be superimposed

D0,I

D6,I
= 0.3m

0.0375m = 8
1 .
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This ratio also holds for the magnitudes of the orbital velocities and accelerations. Accordingly

� the amplitudes of vibration horizontally are ± 1.125D0

2 and vertically ± 0.875D0

2 .

� the velocity magnitudes at the ends of the ellipse principal axes are horizontally ±1.125W0 and vertically
±0.875W0.

� With respect to a given angle on the initial circle (shown here for 45◦), further tangential velocity vectors of the
ellipse can be found by superposition with the exponentially reduced reflected orbital velocity vector.

� The acceleration magnitudes due to the mentioned orbital velocities horizontally with respect to the wave phases
of the passage through the SWL are ±amax = a0+a6 = 1.66m s−2 and vertically with respect to the wave phases
of the wave crest and the wave trough ±amin = a0 − a6 = 1.29m s−2, cf. Figure 7

Figure 7: Graphical determination of the resulting orbital accelerations ares within the 4 ellipse quadrants, based on
their maxima a0 + a6 at the horizontal and their minima a0 − a6 at the vertical ellipse axis.

At arbitrary ellipse points the orbital accelerations are directed to the center of the ellipse. Their magnitude results
from the respective distance to the inner ellipse. Their components orbital acceleration (tangential) at and normal
acceleration an are variable.

The orbital (tangential) acceleration (not entered here) is directed in each case with an extremum in the first and
third quadrant against and in the second and fourth likewise with extrema in the clockwise direction.

At the ends of the principal axes the extreme values of the orbital velocities occur together with the sign change
of the orbital accelerations at. Thus, for the wave period T = 2π/ω harmonic oscillations result with respect to the
parameters arc length, orbital velocity, and orbital acceleration.

For the remaining 3 mirroring axes II, III, IV, according to formula 2, the angle of rotation (phase jump) ∆φ =
180◦ − 2α = 126.86◦ between the initial kinematics and that of the phase-shifted ERR kinematics must be considered
in each case. Figure 8 shows for the intersection d0.II of the SWL with the reflection axis II exemplarily the graphical
addition of the circumferential velocity vectors rotated against each other by the angle ∆φ◦, shown in black color
(top right). Such are obviously sufficient in their totality of 8 tangent vectors each to frame an ellipse with sufficient
accuracy with the help of a drawing program. Using the ellipse symmetry, a total of up to 20 ellipse points could be
marked.

In the present case the inclination β ≈ 25.54◦ of the main axis of the ellipse was found graphically, which is almost
equal to the slope inclination α = 26.57◦. The minimal difference corresponds to the accuracy of the drawing program
with the difference of about ±1◦. The parameter values found are:

� the maximum inclination-parallel vibration amplitudes ±1.25D0/2 and inclination-perpendicular ±0.75D0/2,
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� the velocity magnitudes at the ends of the ellipse principal axes: inclination-parallel ±1.25W0 and inclination
perpendicularly ±0.75W0 and the

� acceleration magnitudes due to the determined orbital velocities inclination-parallel maximum ±ares = a0+a4 =
1.84m s−2 to the long axes and inclination-perpendicular minimum ±ares = a0 − a4 = 1.10m s−2, compare
Figure 9.

� Within the 4 ellipse quadrants the resulting acceleration changes successively both the magnitude and the
direction. Since at the axes the normal acceleration assumes the value of the resulting acceleration ares, the orbital
acceleration at (not shown here) changes its sign. Starting from the long main axis the resulting acceleration
decreases counter- clockwise with the consequence that in the 1st and in the 3rd quadrant the orbital acceleration
is directed with an extremum counterclockwise. In quadrants 2 and 4, the kinematics are mirrored to the axes
of the ellipse, i.e., the orbital acceleration at at one extremum is clockwise.

Figure 8: Computational graphical determination of the elliptical orbital path over a slope inclination 1 : n = 1 : 2,
corresponding to α = 26.57◦. Mirror axis of configuration II. Vector addition for the ratio
D0.II/D4.II = 0.300m/0.075m = 4, which is obtained for the water level (d0.II = 0.0m) corresponding to the
coordinate ξ = 0.412m and the reflection of the orbital motion at ξ = −0.412m (below the inclined ground), cf.
Figure 5. Thus, for the circumferential velocities the relation W0 = 4W4 is valid.

Figure 9 shows the rotated ellipse with the amounts of the circular centripetal acceleration vectors a0 of the initial
orbital motion at the stillwater level (d0.II) and that a4 in the (fictitious) water depth d4.II = 0.840m with the
diameter D4 = 0.075m. Since the addition of the two vectors takes place under consideration of the phase shift
∆φ = 180◦ − 2α = 126.86◦ at the center of the ellipse, the resulting acceleration ares, is directed to the center of the
ellipse as in the case of the rotation on the circle. Thus, such vectors can also be assigned to the already determined
8 tangent points on the ellipse circumference. What has already been said above accordingly applies to the tangential
and normal accelerations not shown here.

At the intersection of reflection axis III with the stillwater level, the procedure is basically the same as at reflection
axis II. However, because of the approximately equal depth contour distances 0.212m ≈ 0.200m (Figure 5), the ratio
of similar parameters is not, as desired, an integer 2 : 1, but 1 : 0.508 = 1.97. This is, however, only slightly noticeable
in the representation. Accordingly, these are: D2 = 0.508D0, W2 = 0.508W0 and a2 = 0.508 a0.

In this case, the addition of the orbital velocity vectors W and W ′ involved in the exponentially reduced reflection
has been verified here, by way of example, in Table 1 and 2 for two successive pairs of reference point positions on the
orbital circles of Figure 10 by exact calculation.

For both tables applies:

� Resulting orbital velocities on rotated elliptical orbital paths above water depth d0.III.
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Figure 9: Graphical determination of the resulting orbital accelerations ares within the 4 ellipse quadrants, based on
the maxima a0 + a4 at the inclination parallel and the minima a0 − a4 at the inclination perpendicular ellipse axis.

� Vector addition for phase jump ∆φ = 126.86◦ corresponding to the slope inclination α = 26.57◦.

� Datum = Coordinate origin (0) = Circle center.

� Phase point angle distances: 45◦.

Table 1 concerns the reference points with the position vector angles 450◦ and 323.14◦. Table 2 concerns the
reference points with the position vector angles 495◦ and 278.14◦.

Table 1: Exact calculation of tangent equations for 8 ellipse points uniformly distributed on the ellipse perimeter.
Scheme of the computational vector addition. Vector angles 450◦ and 323.14◦.

Phase Points Phase Circumferential velocity Phase point
1+1’ (d0.III) angle Magnitude πD/T Components coordinates
Velocities [◦] [m s−1] Xi Yi xi yi Xiyi Yixi Xiyi − Yixi

i=1, inc. wave 450 W0,III = 1 1.000 0.000 0.000 1.000 1.000 0.000 1.000
i=2, mir. wave 323.14 W2,III′ = W0,III/1.97 0.304 0.406 0.406 -0.304 -0.092 0.165 -0.257
Components or moment sums 1.304 0.406 0.908 0.165 0.743
Quadrates 1.701 0.165
Squared sums QS 1.865
Root QS = resulting magnitude 1.366

Thus, Momentum M(0) for 450◦ and 323.14◦ can be calculated

Momentum M(0)1 =
∑

(Xiyi − Yixi) = 0.743 (12)

Lever1 = M/R = 0.544 (13)

The resultant can be calculated by the following formulas

0 = M(0) + xRy − yRx (14)

y = (Ry/Rx)x+M(0)/Rx = x tanβ +M(0)/Rx (15)
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So, in case of 450◦ and 323.14◦, tanβ1 = Rx/Ry = 0.311, arctanβ1 = 0.302, β1 = 17.28◦, which again leads to the
normal form

y = 0.311x+ 0.570 (16)

and the axis segment shape

1 =
x

−1.831
+

y

0.570
(17)

Table 2: Exact calculation of tangent equations for 8 ellipse points uniformly distributed on the ellipse perimeter.
Scheme of the computational vector addition. Vector angles 495◦ and 278.14◦.

Phase Points Phase Circumferential velocity Phase point
1+1’ (d0.III) angle Magnitude πD/T Components coordinates
Velocities [◦] [m s−1] Xi Yi xi yi Xiyi Yixi Xiyi − Yixi

i=1, inc. wave 495 W0,III = 1 0.707 0.707 -0.707 0.707 0.500 -0.500 1.000
i=2, mir. wave 278.14 W2,III′ = W0,III/1.97 0.502 0.072 0.072 -0.502 -0.252 0.005 -0.257
Components or moment sums 1.209 0.779 0.248 -0.495 0.743
Quadrates 1.462 0.607
Squared sums QS 2.068
Root QS = resulting magnitude 1.438

Thus, Momentum M(0) for 495◦ and 278.14◦ can be calculated

Momentum M(0)2 =
∑

(Xiyi − Yixi) = 0.743 (18)

Lever2 = M/R = 0.517 (19)

Using formuals 14 and 15 in case of 495◦ and 278.14◦, tanβ2 = Rx/Ry = 0.644, arctanβ2 = 0.572, β2 = 32.79◦,
which again leads to the normal form

y = 0.644x+ 0.615 (20)

and the axis segment shape

1 =
x

−0.954
+

y

0.615
(21)

Accordingly, for the complete wave cycle in the 8 similar successive table calculations, the input angle for the
reference points of the incident orbital velocities is to be increased by the positive amount of the selected reference
point angular distance (here 45◦) and for the mirrored orbital velocity to be decreased by the same amount. The
tabular calculation is based on the decomposition of the orbital velocity vectors into their horizontal and vertical
components. The condition applies that the velocity torque consisting of velocity vector and perpendicular distance
(lever) from the coordinate origin is the same for all positions on the ellipse (here: 0.743).

The comparison of the results obtained graphically on the one hand and exactly by calculation on the other hand
shows that the accuracy of the former seems to be quite sufficient. This may be indicated by the fact that the
slope angles β1 = 17.28◦ and β2 = 32.79◦ of the resulting orbital velocity vectors tabulated with respect to Figure 10
deviate by a corresponding amount from the graphically determined slope inclination β ≈ 26.5◦ downward and upward,
respectively.

The parameter values found are:

� the amplitudes of vibration parallel to the inclination±1.51D0/2 and perpendicular to the inclination±0.49D0/2,

� the velocity magnitudes at the ends of the ellipse principal axes: inclination parallel ±1.51W0 and inclination
perpendicular ±0.49W0 and
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Figure 10: Reflection axis of configuration III. Computational-graphical determination of the elliptical orbital paths
over a slope inclination 1 : n = 1 : 2 (α = 26.57◦). Vector addition for the ratio D0/D2 = 0.300m/0.152m = 1.97,
which is obtained for the water level (d0.III = 0.0m) corresponding to the coordinate ξ = 0.212m and the reflection
of the orbital motion at ξ′ = −0.200m (below the inclined ground approximately), cf. Figure 5. Thus, here the
relation W0 = 1.97W2 is valid for the circumferential velocities.

� the acceleration magnitudes due to the determined orbital velocities inclination parallel to the long axes ±ares =
a0 + a2 = 2.22m s−2 and inclination perpendicular to the short axes ±ares = a0 − a2 = 0.75m s−2.

A corresponding representation is given in Figure 11.

Figure 11: Graphical determination of the resulting orbital accelerations ares within the 4 ellipse quadrants, based on
the maxima a0 + a2 at the inclination-parallel and the minima a0 − a2 at the inclination-perpendicular ellipse axis.
In addition, the orbital velocity Wc = 0.904W0 as well as the orbital acceleration ac and its rectangular components
at and an are entered to scale in the first ellipse quadrant for the phase of the wave crest.

From the latter figure, in comparison with Figures 7 and 9, especially the behavior of the orbital acceleration ares
as centripetal acceleration becomes most striking, since its decomposition into its rectangular components, orbital
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acceleration at and normal acceleration an within the 4 ellipse quadrants gives the clearest results.

Thus, the orbital acceleration in the first quadrant, starting from the point of maximum orbital velocity (Wmax =
1.51W0; ares = a0−a2), increases from at = 0 in a counterclockwise direction such that the orbital velocity reaches its
minimum (Wmin = 0.49W0) at the ellipse main vertex together with the maximum of the normal acceleration an,max.
Here, the absolute maximum at,max is likely to be near the crest of the wave, where the orbital velocity is horizontal
and the normal acceleration an is vertical.

The fact that the velocity moment M [m2/s] formed from velocity vector and perpendicular distance (lever) from the
coordinate origin is the same for all positions on the ellipse is also helpful for the determination of unknown amounts
of the orbital velocity, if the perpendicular distance of the line of action of the respective velocity vector from the
center of the ellipse is known, see also chapter 3.

In case of the missing amount of the horizontal velocity vector Wc at the wave crest:

M = (1/2 short axis)(Wmax) = 0.5 · (D0 −D2) · 1.51W0 = 0.074 · 1.51W0 = 0.111W0 (22)

Using the lever of half the wave height H/2 = 0.245/2 = 0.1225m, it follows:

Wc =
0.111W0

0.1225
= 0.904W0 (23)

Figure 11 shows the orbital accelerations of the whole ellipse and additionally in the first ellipse quadrant for the
phase of the wave crest the orbital velocity Wc = 0.904W0 as well as the orbital acceleration ac and its right-angled
components at and an to scale. The orbital acceleration vector was measured with the help of the used drawing program
from the representation to ac = 1.84m s−2 and decomposed into the right-angled components ac,t = 1.43m s−2 and
ac,n = 1.15m s−2.

Figure 12: Graphical representation of the linearly polarized particle oscillation at the IP of the stillwater level
(SWL = d0.IV) with the slope inclination.

At the reflection axis IV, with respect to the intersection IP of the slope inclination with the stillwater level, the
reflection is to be carried out using H0 = H ′

0 = 0.3m.

There, the circular orbital velocities Wi are superimposed on the respective equally colored (dashed) oppositely
rotating equally sized velocities W ′

i mirrored at the slope surface. The result is the linearly polarized particle oscillation
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at the tilt surface with maximum deflections ±D0 and maximum velocity magnitudes ±2W0 when oscillating through
point IP.

It can also be seen from the plot that in the case of a mirror surface tilted by α, the location vector of the mirrored
point on the orbital path is found offset from the vertical output location vector of the velocity vector W01 by the
angle of the phase jump ∆φ = 180◦ − 2α (2).

At the intersection IP of the stillwater level and the slope of the embankment, the short main axis of the elliptical
motion disappears, so that the parameters oscillation amplitude s, orbital velocity W and orbital acceleration a assume
a doubling or cancellation of their initial amounts in different oscillation phases in this limiting case.

In the oscillation phases of the maximum resulting velocities Wres = W02 +W ′
02 = 2W0 or W05 +W ′

05 = 2W0, the
associated accelerations formally cancel each other.

Conversely, in the phases W03 +W ′
03 = 0 and W06 +W ′

06 = 0, in which the orbital velocities cancel each other, the
resulting acceleration ares = ±a0 and the maximum amplitudes sres of the oscillations parallel to the slope assume the
double amounts of the initial half-diameter D0/2, see Figure 12.

Table 3: Calculated sres, Wres and ares for phases 1..8.

Phase 1 2 3 4 5 6 7 8
sres +0.894D0/2 0D0/2 −1.789D0/2 −2D0/2 −0.894D0/2 0D0/2 +1.789D0/2 +2D0/2
Wres 1.789W0 2W0 0.894W0 0W0 −1.789W0 2W0 0.894W0 0W0

ares −0.894a0 0a0 1.789a0 2a0 0.894a0 0a0 −1.789a0 −2a0

The oscillation phases of the path s, the orbital velocities W and the accelerations a parallel to the inclination are
90◦ and 180◦ offset from each other. The amounts of the resulting vibration paths s, the velocity vectors Wres and
the accelerations ares with the same ordinal numbers of the vibration phases can be taken from Table 3.

Figure 13: Orbital acceleration vectors in the linearly polarized oscillatory motion about the point IP in the
boundary streamline.

Figure 13 contains the corresponding graphical representation of the instantaneous orbital acceleration vectors
during the linearly polarized oscillatory motion about IP.

At this point, it should be emphasized that at a very low relative water depth d/L, the longitudinal oscillations
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(orbital velocity and acceleration components parallel to the inclined bottom) dominate the transversal oscillations to
such an extent that the ERR theory can also be helpful with the analysis of wave breaking and/or Tsunami kinematics.

5 Example application on the design wave of an offshore pile structure

To document the differences between the known linear theory according to Airy/Laplace and the author’s linear
theory ERR discussed here, a simple comparative calculation is presented below, which was based on the design
wave for a research platform in the North Sea. For this purpose, the following data had been determined within the
framework of the expert report Führböter and Büsching (1973).

� Wave height Hmax = 25.0m

� Wavelength L = 250m

� Wave period T = 15.1 s

� Water depth d = 35.0m

At the time of the above-mentioned expert opinion, no other specifications were known for the sea bottom at the
planned location except for the water depth d < L/2. Accordingly, the wave prediction method of Bretschneider (1957)
was used for the estimation of the design wave height Hmax. Based on numerous wave measurements for shallow water,
Bretschneider had established an empirical formula, the application of which had also been confirmed for the southern
North Sea.

Hmax = Hs(145 ·
gd

U2
)0.1 ± 10% (24)

The parameters included were, among others, the water depth of d = 80m, to which a significant wave height of
HS = 15.1m is assigned, as well as the mean storm speed U = 45m s−1 in the area of formation of the design storm
with the relative water depth d/L = 35/250 = 0.14.

The given data had been applied at the designated location according to the simplifications of the 1st order
Airy/Laplace theory to a regular cosine wave whose water level deflections were ±Hmax/2 from the stillwater level.
In the following comparison with the ERR, the 1st order theory is abbreviated with the string Ai/La.

Figure 14: Principal comparison of the orbital velocity profiles at a vertical bearing pile element with respect to the
wave phases of the wave crest and the wave trough according to Linear Wave Theory (Airy/Laplace) (Ai/La)
contradicting elliptic orbital movements shown top right.

The striking inconsistency of the Ai/La becomes clear by the example of Figure 14, from which the significant
violation of the theorem of conservation of mass (continuity condition) emerges: Since the amounts of the orbital
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velocities at the wave crest and at the wave trough are unequal, a considerably larger water mass would move through
the wave crest than through the wave trough.

For the following comparative calculation, the theory ERR presented in detail above is used. Here, deviating from
the approach of the classical theory Ai/La, the above-mentioned data are assigned to a deep-water wave, which is
incident into the region of limited water depth (d = 35m < L/2) and is exponentially reduced reflected there by the
sea bottom.

The special feature of the reflection method used is that the sea ground is regarded as a reducing mirror – partly to
compare with light waves at a camber mirror – in such a way that the circular water particle kinematics of a deepwater
wave, which decreases with the water depth according to the known exponential law, is used not only above the mirror
as initial orbital motion, but also its vertical continuation below it as reflected kinematics, conf. Figure 5.

As known very well from the total reflection of water waves at a vertical wall, also here opposite directions of rotation
must be considered for the superposition of both orbital fields. As a result, harmonic elliptic water particle oscillations
are obtained, which are compared with those of the Ai/La theory in this article.

The new theory is not only characterized by the fulfillment of the continuity condition. It rather describes the
physics of the ground influence more accurately and is moreover applicable on sea-bottom slopes 0◦ < α ≤ 90◦ and/or
to arbitrarily inclined slender structures in the sense of a more accurate verifying of the dynamic wave loads.

With reference to the so-called Morison formula (Morison et al. (1950)), which contains the drag force approach of
the dynamic pressure and the mass acceleration, the maximum orbital velocities and orbital accelerations determined
according to the two theories are compared here.

A direct comparison is not possible, because on the one hand for the determination of the local input wave height
approximately the above mentioned Brettschneider wave prediction method is needed, before the theory Ai/La is
applied to the input wave height H = 25m.

In contrast, ERR represents a homogeneous theory whose scope extends from the depth d = L/2 to the total zone
of relative water depths 0 ≤ d/L ≤ 0.5. Superimposed effects such as constant or accelerated currents would have
to be captured separately, if necessary, as in the Ai/La. The Ai/La approach with the wave height H = 25m at the
location has the disadvantage that it uses the load capture according to Figure 14, which according to the available
calculations provides considerable over dimensioning. As expected, the alternative use of the wave height H = 25m
as a Deepwater input parameter of the ERR does not yet lead to a satisfactory result. For information only, both
calculations mentioned are shown comparatively in Figure 15.

The difference H0 −Hres = 4.30m of the wave heights 25.00m in deep water and 20.70m to be attributed to the
water depth d0 = 35m, which can be taken from Figure 15, only gives an indication of how much the input wave must
be increased as a design wave using the ERR to correspond to the Ai/La input value. In the present case, the height
of the input wave H = 30m > 25m was used to create Figure 16. The latter results in the wave height 24.83m ≈ 25m
at the intended location of the structure according to ERR and is therefore usable for the comparison.

For the description of the water particle kinematics of the flow field located between the stillwater level and the
sea bottom, the subdivision of the local water depth d = 35m into 4 equal parts is to be regarded as sufficient.
Accordingly, 9 layer-depths d0 ≤ d ≤ d8 result for the range up to 70m water depth, for which the orbital circle
diameters D8 ≤ D ≤ D0, which depend on the design wave height H0 = 30m, are to be determined according to the
relevant exponential function.

The mirroring thus results in parameter values for the elliptical orbital trajectories, for the orbital velocities and
for the orbital accelerations, related to the water depths d0 ≤ d ≤ d4 with height values above ground 35m, 26.25m,
17.5m, 8.75m and 0.0m. The latter are not included in Figure 16 for clarity.

Analogous to Figures 6 and 7, the results for the elliptical orbit parameters, orbital velocities, and orbital accelera-
tions relative to the stillwater level are given in Figures 18 and 19.

Analogous to the ellipse dimensions, the latter are again calculated as sums of the respective circular orbital accel-
erations a0 + a8, a1 + a7, a2 + a6, ... etc. In contrast to the horizontal orbital velocities shown above (Figure 16),
with respect to the wave phases of the passes through the SWL, both theories provide equal horizontal magnitudes
for the maximum orbital accelerations. Since, according to the Morison formula, only these are relevant for the design
of vertical tubular structures, the vertical orbital accelerations for the wave phases of the wave crest and the wave
trough, which are already included in Figures 17 and 18, do not appear in Figure 19.

For the sake of completeness, however, these are also reported (if necessary, for the design of horizontally oriented
structural elements) for the above-mentioned elevation levels in Table 4.
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Figure 15: Comparison of horizontal components of orbital velocities of nominally equal design waves of height
H = 25m. Representation of the profiles of horizontal orbital velocity components with respect to the theory Ai/La
(marking black) and the theory ERR (marking red).

Figure 16: Horizontal components of the design wave with adjusted height H = 30m with respect to ERR (red)
compared to those according to Ai/La for H = 25m (black).
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Figure 17: Graphical determination of elliptical orbital paths over flat ground. Vector addition for the ratio
D0/D8 = 30m/5.17m = 5.8/1, which is obtained for the stillwater level corresponding to the coordinate ξ = 35m
and the reflection of the Orbital motion at ξ = −35m (below the bottom) is obtained. For the circumferential
velocities, the relation W0 = 5.8W8 is valid.

Figure 18: Graphical determination of the resulting orbital accelerations ares within the 4 ellipse quadrants, based on
their maxima a0 + a8 at the horizontal and their minima a0 − a8 at the vertical ellipse axis.

Table 4: Vertical acceleration at different elevation levels.

Distance from bottom 35m 26.25m 17.5m 8.75m 0.0m

Vertical acceleration
a0 − a8 = a1 − a7 = a2 − a6 = a3 − a5 = a4 − a4 =
±2.15m s−2 ±1.53m s−2 ±0.98m s−2 ±0.48m s−2 ±0.0m s−2
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Figure 19: Scaled dimensions of the elliptical orbits as well as the profile of the horizontal orbital accelerations at the
level of the elliptical centers for which both theories provide approximately equal numerical values: ERR blue and
Ai/La black.

The determination of the acceleration magnitudes of arbitrary ellipse points is based on the condition that the
resulting accelerations are always directed to the center of the ellipse and their magnitude a must be positioned
between amax and amin. Accordingly, the geometric location of their vector peaks is a similar ellipse to that of the
orbital path, cf. also Figure 7. At the water surface, for components whose orientation deviates both from the
horizontal and from the vertical, the acceleration amounts for the relevant tilt angle must be measured with sufficient
accuracy from Figure 18.

6 Results and conclusions

The use of the ERR at the water surface for the wave phases of the wave crest and the wave trough results in the
maximum orbital velocity amounts ±7.32m s−1 according to Figure 16. In contrast, according to Ai/La, the values
+9.39m s−1 at the wave crest and −6.07m s−1 at the wave trough.

The peak value of the maximum orbital velocities at the crest of the wave, which according to Ai/La is about
2m s−1 higher, and the orbital velocities below that approach the values of the ERR over about 3/4 of the water
depth are quite noteworthy. This is because the orbital velocities are included with the power of 2 in the dynamic
pressure component of the Morison formula and thus increase the overturning moment of the building structure (pile
structure), which is important for the design.

For a pipe diameter D = 1m of a vertical support tube with a resistance coefficient cD = 1.0, the overturning
moment of a single pile would increase by about 12% according to an approximate calculation, which does play a role
in the structural design. On the other hand, for the wave phases of the sign change of the water level deflections there
are no differences from the acceleration forces to the corresponding values of the Ai/La.

In contrast to higher-order wave theories, which focus on the quality of the simulation of asymmetric deflections
at the water level and the consideration of the irrotational water particle motion, ERR focuses on the importance
of the solid flow boundary (liquid-solid boundary). The change in water particle kinematics occurs as a continuous
transition from the circular orbital motion in deep water via the rotated elliptical motion in limited water depth to
the approximately linearly polarized (tangential) oscillating motion at the fixed flow boundary, which does not allow
normal to this directional motion.
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With the ERR, a wave theory is available for the first time, which takes into account the boundary condition of
the inclined seabed a priori, as an important cause of wave deformation over limited water depth and includes the
theorem of the conservation of mass.

According to the author, the main benefit of ERR (advantage over other wave theories) lies in the plausibility of
the physical and mathematical relationships and the simplicity of their application. In addition, it offers the prospect
of a paradigm shift regarding the acquisition of new insights into the topic of water wave kinematics.

Notations

Ai/La Linear Wave Theory (Airy/Laplace)

CRC Complex Reflection Coefficient

ERR Exponentially Reduced Reflection

IP Intersection Point

PSP Partially Standing Partial Waves

SWL Stillwater Level
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