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Abstract 
Advancements in Automatic Speech Recognition (ASR) 
technology is exemplified by ubiquitous voice assistants such as 
Siri and Alexa. Researchers have been exploring the application of 
ASR for Air Traffic Management (ATM) systems. Initial prototypes 
utilized ASR to pre-fill aircraft radar labels and achieved a 
technological readiness level before industrialization (TRL6). 
However, accurately recognizing infrequently used but highly 
informative domain-specific vocabulary is still an issue. This 
includes waypoint names specific to each airspace region and 
unique airline designators, e.g., “DEXON” or “POBEDA”. 
Traditionally, open-source ASR toolkits or large pre-trained 
models require substantial domain-specific transcribed speech 
data to adapt to specialized vocabularies. However, typically, a 
“universal” ASR engine capable of reliably recognizing a core 
dictionary of several hundreds of frequently used words suffices 
for ATM applications. The challenge lies in dynamically 
integrating the additional region-specific words used less 
frequently. These uncommon words are crucial for maintaining 
clear communication within the ATM environment. This paper 
proposes a novel approach that facilitates the dynamic integration 
of these new and specific word entities into the existing universal 
ASR system. This paves the way for “plug-and-play” 
customization with minimal expert intervention and eliminates the 
need for extensive fine-tuning of the universal ASR model. The 
proposed approach demonstrably improves the accuracy of these 
region-specific words by a factor of ≈7 (from 10% F1-score to 70%) 
for all rare words and ≈5 (from 13% F1-score to 64%) for waypoints. 
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1 Introduction 

A joint study by DLR and MITRE examined millions of words spoken by Air Traffic 
Controllers (ATCos) and pilots in radio telephony. It was observed that the ten digits (zero to nine) 
make up a whopping 40% of all spoken words [1]. In the US alone, 550 different words account for 
95% of the radio communication. However, the complete dictionary used by ATCos and pilots is 
significantly larger, reaching tens of thousands of words. This includes nearly 10,000 airline 
designators (such as “Speedbird”, “Air France”, or “Ocean”) and an even greater number of 
artificial waypoints, fixes, and navigation aid names (e.g., “DEXON”, “MOBSA”, “DOMUX”) used 
globally across airports and airspaces. Further issues are that these vast word lists require frequent 
updates (often monthly) to incorporate some new terms. This constant evolution can lead to 
performance degradation in speech recognition and related processing systems over time. 
Maintaining these extensive and dynamic vocabularies presents a significant lifecycle challenge, 
especially when scaling applications to encompass multiple Air Traffic Control (ATC) sectors and 
facilities. 

Early attempts at integrating Automatic Speech Recognition (ASR) into Air Traffic 
Management (ATM) focused on replacing simulation pilots with ASR systems [2]. These initial 
applications were used by Air Navigation Service Providers (ANSPs). These applications 
simulated a limited number of airspaces with static waypoint sets. However, the required 
waypoints change when simulating different airspaces (e.g., Frankfurt vs. Heathrow approach). 

1.1 Problem 
The DIAL1 project [3] aims to develop a digital assistant for ATCos. This assistant handles 

routine tasks for less complex aircraft, thereby freeing up ATCos' cognitive resources so they can 
focus on more demanding tasks. Additionally, DIAL utilizes a complex recognition and 
understanding solution to reduce the number of simulation pilots needed per training speech 
exercise. Originally, the ASR engine was developed by Idiap for the Vienna approach area. This 
ASR system relied on 260 waypoints such as “ABIRI” or “BALAD”. However, DIAL considers the 
Celle sector in upper airspace, usually controlled by Maastricht upper airspace center (UAC), as 
relevant airspace [4]. Therefore, 565 different waypoints were required to be well recognized by 
ASR for the new use-case in DIAL, e.g., “KOSEK”, “WYK”, or “DOR” (“DOR” is pronounced as 
“WICKEDE” being a village in western part of Germany and “WYK” is pronounced as “WIPPER”). 
Contrary to this, “KOSEK” for the Celle sector or “ABIRI” for the Vienna approach are artificial five-
letter words composed of vowels and consonants. Others like “OSNABRÜCK” (German) or “LIÈGE” 
(French) have pronunciation complexities due to non-English letters or regional accents. These 
waypoints are typically absent from the ASR's training data, leading to recognition issues. While 
some pronunciations can be inferred from spelling, others are highly context-dependent on the 
ATCos' regional dialect. Previous trials in DLR's labs using a universal ASR solution designed for 
the Vienna approach achieved a Word Error Rate (WER) of 3.1% on 120,000 words [5]. However, 
when applying this ASR solution to the DIAL project's initial trials, we have observed a more than 
four-fold increase in WER (refer to Table 3). This performance drop is directly linked to the 
presence of spoken waypoint names unseen during the ASR training [6]. From now on, this issue 
will be referred to as Out-Of-Training-Data (OOTD) words. The language modelling system that 
relies on context to generate transcripts struggles in such scenarios and makes additional errors. 
This means that poorly recognized waypoints also lead to errors in nearby words (i.e., 
contextualisation). With availability of data for model adaptation, previous works on adapting 
ASR systems to better recognize rare words have shown impressive results [7] [8]. The use of ASR 
to detect spoken terms has also been studied a lot in the past (e.g., in our work from 2010 [9], 
including multilingual data). However, the problem was typically solved by inserting rare words 

 
 
1 The project “Individual and Automated Air Transport” (Der Individuelle und Automatisierte Luftverkehr; DIAL), 
initiated by the DLR, bundles research to expand the automation of air traffic. 
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directly to training, lexicon extension, or indirectly through model adaptation, which were not 
feasible approaches for ATC (e.g., waypoints are unique for each airspace and thus the model 
would need to be re-trained/adapted for each new airspace). Hence, this paper proposes an 
appealing solution to address this specific issue of recognising OOTD words. 

The challenge addressed by this paper is related to the contextual mismatch of test data 
concerning training data, specifically for the incorporation of waypoint (word) entities. Waypoints 
are specialized terms in the field of ATC, corresponding to coordinates. ATCos and pilots use these 
terms to follow or adjust flight paths. Typically, these waypoint terms are specific to particular 
areas. For example, if we focus on a specific domain, like enroute navigation for Germany, the 
waypoints are tailored to that region. However, if the German ASR system were to be applied for 
enroute navigation in Switzerland, the waypoints used would be different. Consequently, the 
system might not readily recognize them. In this context, our current work empowers customers 
to easily incorporate these new waypoints into the system, even without specialized expertise. The 
OOTD issue differs from the known Out-Of-Vocabulary (OOV) problem addressed in the past [10]. 
OOV words are often artificial words not part of the ASR dictionary. Our OOTD words are 
typically pre-defined and exist in the ATC dictionary. However, they can have more pronunciation 
variants than those in the standard dictionary. Moreover, OOTDs are not seen during training the 
components of the conventional ASR system. A conventional ASR system is composed of a 
separate acoustic model that learns to map speech to distinct sound units (see subsection 2.2 and a 
language model that models the context in which different words can appear in an utterance (see 
subsection 2.6). 

1.2 Paper structure 
This paper presents the challenge of recognizing ATC-specific spoken words that are rarely 

found in training data. Section 2 reviews existing research addressing this issue. It also offers a 
concise overview of the current state of the art in ASR for ATC. Following this, Section 3 details the 
experimental setup used to evaluate the recognition performance of OOTD words after 
customization. Section 4 presents the core of the paper and describes various solutions 
implemented within the DIAL project to tackle the OOTD problem. Section 5 presents the results 
achieved, analysing performance at both the word and semantic levels. Finally, Section 6 concludes 
the paper by summarizing the key takeaways. 

2 Current State-of-the-art ASR Solution for ATC 

2.1 Automatic Speech Recognition (ASR) 
ASR, also often referred to as a speech-to-text system, automatically converts the input 

speech to a textual form, i.e., a sequence of words. In the case of ATC communication, we refer to 
the voice conversation captured by microphones on the side of ATCos or pilots with input speech. 
The most advanced ASR technology developed in the recent past for ASR for ATM applications 
comes from HAAWAII project [11] (HAAWAII = Highly Advanced Air Traffic Controller 
Workstation with Artificial Intelligence Integration2). The project needed to focus not only on 
developing innovative ASR approaches in ATM but also on reaching a certain level of maturity so 
that the developed ASR solution can provide sufficient recognition performance to be useful for 
subsequent downstream applications, e.g., callsign highlighting [12], pre-filling radar label entries 
[5], or readback error detection [13]. Furthermore, we have decided to re-use a conventional ASR 
solution trained on relatively large manually transcribed speech data available from the HAAWAII 
project and other past projects.  

 
 
2 HAAWAII Project: https://www.haawaii.de/wp/ 
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As shown in Figure 1 the ASR engine consists of a combination of independently trained 
Acoustic Models (AM) and Language Models (LM). This work trains the acoustic model as a 
classical Deep Neural Network instead of using new end-to-end architectures [14]. A conventional 
ASR system employs separate AM and LM. The AM is trained with speech recordings with a 
corresponding text transcript. On the other hand, LM is trained on text data only; for example, the 
text corresponding to the speech recordings available for training AM is typically used. However, 
much larger textual resources are generally available than speech data. The AM represents the 
relationship between a speech signal and phonemes or other linguistic units that make up the 
speech. The LM is usually represented by a probability distribution over sequences of words. The 
LM in the form of a Finite State Transducer (FST) provides context to distinguish between words 
and phrases that sound similar. Using the knowledge of AM and LM, a decoding graph is usually 
built as a Weighted Finite State Transducer (WFST) [15], [16] using the open-source library called 
OpenFST [17]. The WFST graph generates text output given an observation sequence as shown in 
Figure 1. A decoder module uses the decoding graph to predict the best probable transcript 
corresponding to an input speech signal. 

 
Figure 1. A conventional ASR system, where acoustic model combines hidden Markov models and 

modern deep neural network architectures. The language model is then used during the 
decoding phase. Here, VAD stands for the pre-processing step of Voice Activity Detection. 
MFCC stands for Mel-Frequency Cepstral Coefficients, a popular feature representation in 
speech processing. 

2.2 Acoustic Modelling (AM) 
The acoustic model in conventional ASR is built around Hidden Markov Models (HMMs) 

combined with Deep Neural Networks (DNNs) [18]. DNNs effectively estimate the posterior 
probability of a given set of phonemes called tri-phones, specifically, context-dependent 
phonemes. These posterior probabilities can be seen as pseudo-likelihoods or “scaled likelihoods”, 
which can be interfaced with HMM modules. HMMs provide a structure for mapping a temporal 
sequence of acoustic features extracted from the input speech, e.g., Mel Frequency Cepstral 
Coefficients (MFCC), to a sequence of states [19]. End-to-end models have become popular in 
recent years as they can be trained as non-autoregressive systems that can model the long future 
context during training. Nevertheless, conventional ASR systems remain one of the best 
approaches for building ASR engines, allowing them to reach high recognition accuracies. An 
HMM/DNN based ASR is still considered as the state-of-the-art solution for ATC domain. It was 
also used in the HAAWAII project [13] (and already partially tested in preceding MALORCA 
project) as well as in DIAL project.  

The acoustic model in those projects was typically trained in a supervised mode, i.e., 
manually transcribed data is required for the target ATC domain. Some of the recent works have 
shown further improvements with semi-supervised model training. Such training relies on 
exploiting automatically labelled speech, i.e., using some universal ASR engine or an ASR engine 
developed using a small amount of manually transcribed speech recordings. More details on 
leveraging non-transcribed ATC speech data by semi-supervised learning can be found in [20], [21] 
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where authors extract semantic knowledge and [22], which aimed to improve callsign recognition 
performance. An advantage of semi-supervised learning is that a large set of unlabelled speech 
data is easily available and can be employed for training. Large here means 10 or 100 times more 
than in the case of manually transcribed data. One of the sources of reliable large-scale collection 
of ATC speech data from different airports worldwide is available from the ATCO2 project [23]. 
Additionally, innovative research to improve word recognition belonging to spoken callsigns is 
possible by integrating surveillance data into the pipeline [22], [24]. As promising as this line of 
work may seem, self-supervised model training cannot solve the problem targeted in this work. 

In order to train the conventional ASR, additional knowledge is required for its 
development. In the case of a monolingual ASR system (English in this case), the minimum 
knowledge relevant for ATM is a set of phonemes and an input dictionary. Both play an important 
role in further model customization. The ATC dictionary consists of words that usually do not 
appear in English conversations but are specific to ATC. On the one hand, there are frequently 
used and static terms such as “QNH” and “WILCO”. On the other hand, there are seldom used and 
dynamically changing words (such as artificial waypoint names). Such words may have never been 
seen during the training of the ASR model but might occur in the field when the ASR system is 
deployed. This work proposes solutions to easily customize the running ASR system to better 
detect such words in the field. 

This work considers two types of AM for a rigorous analysis of the proposed boosting 
methods. The first model is known as Convolutional Neural Network (CNN) - Time-Delay Neural 
Network (TDNN) models [25]. The second type of AM used in this work is the Cross-lingual 
Representation Learning for Speech Recognition (XLSR) based model [26] (see subsection 2.4 for 
more details). The two acoustic models are described in detail below. 

2.3 CNN-TDNN model 
The CNN-TDNN model is relatively small compared to the current trends of using large 

deep-learning models. CNN-TDNN can be directly trained on the target data relatively quickly, 
thus allowing it to be used in diverse setups with limited computational resources. CNN-TDNN 
type architecture is deployed in Kaldi and uses the Lattice-Free Maximum Mutual Information 
(LF-MMI) training criterion. LF-MMI is implemented as a sequence discriminative training, 
wherein each sequence (typically an utterance of speech) is evaluated by two values: the 
numerator, which computes the probability of the observation given the ground truth and the 
denominator, which computes the probability over all possible sequences. LF-MMI is considered 
a state-of-the-art criterion for hybrid ASR. CNN-TDNN models [25] are a type of artificial neural 
network specifically designed to handle sequential data. By incorporating time delays in their 
architecture, TDNNs excel at capturing long-range dependencies within data, making them 
particularly effective for tasks like speech recognition. Unlike traditional feed-forward neural 
networks, CNN-TDNNs process input data in a variable order, allowing them to model complex 
temporal patterns. 

2.4 XLSR-based model 
The second AM considered in this work is the XLSR-based model [27]. XLSR is a large pre-

trained end-to-end model (i.e., encoder) trained on large amounts of multilingual data without 
supervision. The XLSR-based encoder is then extended with Factorized Time-Delay Neural 
Network (TDNNF) layers [26], and the whole architecture is further trained (or fine-tuned) on 
target domain data. The XLSR model [27] is a multilingual speech recognition model that leverages 
self-supervised learning to learn general-purpose speech representations. Built upon the wav2vec 
2.0 architecture [28], XLSR is trained on massive amounts (≈56k hours) of unlabelled speech data 
from 53 languages by using LF-MMI training criterion. Such a huge training corpus enables the 
model to capture shared acoustic patterns across linguistic contexts. This cross-lingual pre-training 
significantly boosts fine-tuned performance on specific speech recognition tasks, especially in low-
resource language settings like the ATC domain. 



EJTIR 24(4), 2024, pp.133-153  138 
Bhattacharjee, Motlicek, Madikeri, Helmke, Ohneiser, Kleinert, Ehr 
Minimum effort adaptation of automatic speech recognition system in air traffic management 
 
2.5 Streaming XLSR model 

Recently, the streaming solution for the XLSR model was developed to address real-time 
processing requirements (including those for ATC). Whereas the XLSR LF-MMI model operates in 
an offline fashion (i.e., the decoding process commences only when the entire audio is available), 
the streaming model waits only for a limited amount of audio (e.g., a few hundreds of milliseconds 
to 3 seconds) to produce transcripts. There is a significant loss when using models trained with full 
attention in streaming mode [29]. This loss in performance can be minimized by training the 
models with causal attention. 

More specifically, the online decoder outputs three types of transcripts: partial, endpoint, 
and final. Given the current decoding state, a partial output is the best scoring word sequence. An 
endpoint refers to one of several conditions of the state of the decoder (e.g., end of word, short 
silence, long silence, long utterance length, etc.). When one of such conditions is reached, the 
endpoint output is generated. The final output is available once the entire audio has been 
processed. In this work, the streaming model starts producing transcripts when it receives at least 
1.2s of audio. During the generation of each transcript (partial or otherwise), the full left context is 
used along with the current chunk. 

The XLSR LF-MMI model is compiled with PyTorch's torchscript to be loaded in Kaldi. 
PyTorch's C++ Application Programming Interface (API) was integrated with Kaldi. Special 
hardware known as Graphics Processing Units (GPU) are used in machine learning to significantly 
speed up the running time of models. However, standard implementations of the systems need to 
be modified to run them on GPUs. For our needs, the online GPU decoder for LF-MMI models was 
extended to support the XLSR LF-MMI models. The support for offline GPU decoding is available 
as an added benefit of the implementation. 

2.6 Language Modelling (LM), Dictionary 
As part of conventional ASR, LM still plays a crucial role [30]. The main advantage of 

deploying LM is its large power to bring the generic ASR technology to the target, i.e., the ATC 
domain. Standard conventional ASR approaches still rely on word-based dictionaries, as is the case 
of the ASR solution developed for HAAWAII and DIAL projects. This paper utilizes a word-based 
LM trained directly on transcripts from the ATC domain. We chose a trigram LM (n-gram with 
n=3). However, word-based LMs struggle with words the ASR engine has never encountered. The 
ASR needs a pre-defined dictionary containing known words. This dictionary can be quite large, 
ranging from thousands of words for ATC to hundreds of thousands for general English 
conversations. In subsequent sections, we discuss a customization step to tackle the issue of rarely 
seen words during LM training (see section 4). 

2.7 Recognition process 
The process of recognition, i.e., generating the recognition output from the input speech, is 

briefly described here. Trained AM and LM are combined with the conventional-ASR solution 
applied for HAAWAII3 and DIAL data. These models are combined using the concept of FST 
leveraging the Kaldi framework [31], one of the main toolkits researchers and companies use for 
ASR. Both the acoustic models as described previously (see section 2.3 and section 2.4) are used in 
the Kaldi framework along with a language model trained from the corresponding text data. It is 
to be noted that the XLSR model is not used in an end-to-end framework, as is done with the 
wav2vec 2.0 [28] model. Moreover, Kaldi solutions for decoding streaming speech data are also 
employed in this work4. The true power of the XLSR model is derived from the Transformer layers 
in its architecture. The Transformer layers use a mechanism called attention that helps them learn 

 
 
3 Project website: Check footnote on page 3 
4 Kaldi streaming decoding: https://kaldi-asr.org/doc/online_programs.html 
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the temporal dependencies of the data. The transformer layers in the standard XLSR model attend 
to both past and future content while training. However, in a streaming setup, future content will 
not be available. Hence, we employ a masking mechanism to hide future content from the model 
during training. Thereby, the model can work even as a true streaming model. 

The trained AM and LM are composed as FSTs together with a dictionary, and the final 
decoding graph is used through the process called “decoding”. During decoding, the input speech 
is first used to extract speech features (MFCC mentioned above), which are then inferred through 
the Deep Neural Network architecture. Using the decoding graph, the output set of phonemes 
represented by a set of posterior probabilities is passed to the decoder to map the phoneme 
sequence to the most likely word sequence. The output can then be seen as a set of word recognition 
hypotheses, i.e., word sequences represented by lattice data structures. The lattices carry not only 
information about word sequences but also information about confidence for each word. Decoding 
can be run in an offline mode, i.e., after detecting the endpoint in utterance, the speech is decoded, 
and the recognized word sequence is returned. Meanwhile, in online decoding mode, partial word 
recognition is available in real-time during decoding with a minimum latency of 200-300ms. 

3 Experimental setup 

3.1 Training data 
The data for training the AM for the DIAL project is partially leveraged from the past works. 

This dataset stems from an exploratory research initiative to investigate and create a dependable 
and flexible system for automatically transcribing voice commands provided by ATCos and pilots 
alike. The dialogues between ATCos and pilots were sourced from two ANSPs: (i) NATS for the 
London approach and (ii) ISAVIA for Icelandic enroute. For training the acoustic models, a total of 
195 hours of labelled ATC data have been used [14]. The training data is augmented with other 
internal ATC databases and also using speed perturbation during training. The corresponding 
reference text has been used to train the baseline language model. The language model is a tri-gram 
model trained using the SRILM toolkit in Kaldi [32]. 

3.2 Test data 
The testing data for evaluating the ASR system was collected through proof-of-concept 

exercises involving ATC utterances from ATCos to pilots. The data was collected at DLR, Germany. 
Despite the diverse English accents of the speakers, the recording conditions were generally clean. 
Furthermore, the exercises included spoken words not often encountered during training. 
Additionally, utterances that especially contain rare words, e.g., waypoints, in the correct context 
were recorded by different speakers, e.g., “AIR FRANCE TWO SIX ALFA PROCEED HAMM”. The test set 
consists of approximately 52 minutes of audio data with a total of 673 test utterances, comprising 
a total of 1157 commands like CONTACT, CONTACT_FREQUENCY, DIRECT_TO, etc., containing rare 
words. According to the annotation ontology [1], a “command” is a high-level concept that 
represents an ATC instruction. The number of waypoints considered for boosting in this work is 
discussed in the next subsection. 

Waypoints are names given to a latitude-longitude pair representing a geographic location. 
A waypoint is represented by an abbreviation consisting of a sequence of letters and numbers like 
“DL455” or “WYK”. These waypoint names may appear in ATCo-pilot communication spelled by 
the ICAO alphabet as “DELTA LIMA FOUR FIVE FIVE” for “DL455” or “WHISKEY YANKEE KILO” for 
“WYK”. “WYK” is not just an artificial geographic location but represents the river “WIPPER” in 
Germany. Therefore, “WYK” can be spoken as mentioned by the ICAO alphabet or just “WIPPER”. 
The waypoint point “MOBSA” is again a completely artificial name, which can be spoken as 
“MOBSA” or “MIKE OSCAR BRAVO SIERRA ALFA”. 

 When the waypoint is referred to by pronouncing its sequence of letters, the ASR system 
can easily detect it, as the ICAO phonetic alphabet is commonly encountered as part of the English 
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dictionary during training. However, challenges arise when ATCos or pilots use artificially created 
waypoint names like “WIPPER”, either newly introduced or infrequently encountered during model 
training. The discussion on waypoints cannot be complete without mentioning that the baseline 
ASR dictionary contains many waypoints from different sectors. However, only a specific set of 
waypoints is important when deploying an ASR system for a particular sector. The remaining 
“unimportant” waypoints in the dictionary are unwanted for this particular use case. Therefore, 
we define such waypoints as non-target or old waypoints. 

Table 1. Statistics related to the Word Boosting Task 

Test set size 673 utterances / 52 minutes audio 

Dictionary size 30,821 

Number of valid Waypoints in the sector 565 

Number of Waypoints in the test set 84 

Number of OOTD Waypoints in the test set 12 

Total occurrences of Waypoints 443 

Table 1 lists important statistics about the test data and the waypoints selected for boosting 
in the present case. The DIAL database consists of a list of 565 rare words that were required to be 
detected correctly by the ASR system. From this list of rare words, 84 unique word entities were 
present in the test set collected for evaluating the ASR system, and these occurred for a total of 443 
times. However, a fraction of the rare words was never seen during training the LM and can be 
referred to as OOTD words. Therefore, in order to correctly evaluate the performance of the 
proposed boosting methods in improving the detection of the 84 rare words in the test set, the set 
of OOTD words was manually added (see subsection 4.3) to the dictionary and the LM training 
data in the form of synthetic data created for augmentation. The synthetic data is generated by 
replicating utterances for the most frequent waypoint in the data by replacing the actual waypoint 
with the target waypoints, including OOTD. This step is important since the proposed 
customization methods assume the words to be boosted are in the dictionary. Nevertheless, this 
step is easily performed with the tools developed in this work. Once all the 84 words are known to 
the ASR engine, we use the boosting methods presented in this work to improve the weights of all 
the 84 words, including contact frequencies like “MAASTRICHT” and waypoints.  

It must be noted that tens of thousands of different waypoints are used across the ATC 
sectors worldwide. Only a specific set of waypoints is important for any airspace, while the others 
can be discarded. However, this is not as simple as it appears. The universal ASR system was 
trained using the ATC data that was available at that time. The training data was collected from 
diverse airspaces containing different sets of waypoints used in those sectors. Hence, the trained 
universal ASR system knows about a set of waypoints in the training data. Subsequently, such 
waypoints will be referred to as Old Waypoints (OW) until otherwise mentioned. With this training 
and testing data background, we will present the baseline performance in the following subsection. 

3.3 Baseline ASR performance 
In this subsection, the performance of the baseline ASR system is described. Originally, an 

ASR system trained for different airport/airspace scenarios was developed. However, when the 
same system was evaluated on the test data, it was observed that the important waypoints and 
other airport-dependent names were not properly recognized. The required customization of this 
ASR system forms the crux of this work. However, before presenting the results obtained from the 
model customization, it is necessary to discuss the results for the unmodified system that will serve 
as the baseline for this work. 
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We use four metrics to report the results. The WER measures the percentage of erroneous 
insertions, substitutions, and deletions caused by the ASR system concerning the total number of 
reference words in the test data. This metric covers all words and not only the performance of the 
rare words. A lower WER is preferred. Next, we report the precision, recall, and F1-score of 
detecting the rare words in the test data. These metrics are computed using standard recognition 
statistics in Table 2. For validating or falsifying the hypotheses of the last subsection, we use the 
metrics introduced in [33] resulting in a simple scheme for measuring performance on a semantic 
level. It is independent of semantic concept type or sub-components and treats all semantic 
components equally. 

Table 2. Definition of basic Metric elements 

Name Definition 

TP: True Positive Total number of True Positives: The concept (a sequence of words indicating a high-
level command) is present and correctly and completely detected (including all 
subcomponents). In the case of Waypoints, the target waypoint is correctly detected. 

FP: False Positive Total number of False Positives: The concept is incorrectly detected, i.e., either the 
concept is absent, or one or more subcomponents are incorrectly detected. In the case 
of Waypoints, a waypoint is detected in place of another. 

TN: True Negative Total number of True Negatives: The concept is not correctly detected because it is not 
present. In the case of Waypoints, none is detected if there aren't any. 

FN: False Negative Total number of False Negatives: A concept is not detected when it should have been. 
In the case of Waypoints, the target waypoint is not detected. 

TA: Total Total number of annotated concepts, i.e., ground truth concepts that are sometimes 
referred to as gold-standard concepts. 

The metric can be used to measure the performance of multiple tasks like command extraction, 
callsign extraction, waypoint extraction, etc. In this work, the metrics are used to report the 
performance of waypoint and command extraction. Table 2 lists definitions that are the building 
blocks for the performance metrics. From the five building blocks, viz. TP, FP, TN, FN, and TA (see 
Table 2), we can derive accuracy using equation (1). Additionally, in equation (3) the F1-Scores by 
defining Recall and Precision in equation (2). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
!%

         (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#&$

; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#&"

       (2) 

F1	𝑆𝑐𝑜𝑟𝑒 = '∗)*+,--∗".*+/0/12
)*+,--#".*+/0/12

        (3) 

This work considers the CNN-TDNN model as the baseline system. The XLSR and XLSR-
streaming models extend the baseline system that works in an End-to-End (E2E) fashion. The 
word-boosting methods proposed in this work are applied only to the baseline CNN-TDNN 
model. Exploring the effects of the boosting methods on the E2E systems will be considered in the 
future as an extension of this work. As observed from the F1-score in Table 3, the baseline ASR 
system fares quite poorly in detecting the rare words. Both performance values, WER and recall, 
which are most important for waypoint recognition, are poor. Recall of ≈5% roughly means that 95 
(of 100) waypoints are substituted or deleted. Similarly, a precision of ≈5% would mean that out of 
100 times a waypoint is predicted, only 5 is predicted at the correct position. The baseline system 
has good precision but extremely poor recall, leading to an overall F1-score of 13%. Also, WER 
above 10% is significantly higher than observed on data such as those from the HAAWAII project 
(3.1% from Table 1 in [5]). In section 4, we discuss the proposed customization algorithms applied 
to the baseline ASR system to improve the performance of the rare words. 
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Table 3. Performance of the Baseline ASR systems 

AM WER (%) 
Waypoint Detection 

Precision (%) Recall (%) F1-Score (%) 

CNN-TDNN 13.85 100 7 13 

XLSR 8.53 95 45 61 

XLSR-streaming 12.65 99 27 43 

3.4 Baseline performance on semantic level 
Measuring the accuracy of ASR (typically done on the word level) is not directly related to 

the problem of speech understanding (i.e., extraction of information on a semantic level). As a 
complementary evaluation to ASR, we measure performance on a semantic level (i.e., 
understanding part by processing ASR output) using the metrics presented above considering the 
commonalities of speech recognition and understanding for ATC applications on both sides of the 
Atlantic [1]. The above data set in total consists of 1157 commands with 85 commands of type 
CONTACT, as shown for command types DIRECT_TO, STATION, and CLIMB in Table 4. The test set is 
the same as the one described in subsection 3.2. We did not show all command types, like HEADING, 
SPEED, etc. 

Table 4. Semantic Performance of the Baseline system 

Baseline Number of 
commands Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

All Type 1157 58 91 61 73 

CONTACT 85 36 79 39 53 

DIRECT_TO 139 5 47 6 10 

STATION 170 13 85 13 23 

CLIMB 90 90 95 94 94 

According to annotation ontology [1], CONTACT results from the utterance “CONTACT 
BOERDE”. DIRECT_TO results from “PROCEED TO NIENBURG” and STATION is the semantic 
interpretation of “SPEED BIRD FOUR ONE MAASTRICHT GO AHEAD”. The airspace-dependent words 
are marked in boldface. The mixture of command types is not representative of real-life utterances. 
We added many more airspace-dependent names to our test set. We see the bad performance with 
accuracy far below 50% for the CONTACT, DIRECT_TO, and STATION commands, whereas CLIMB is 
much better. It consists of keywords, numbers, and units that are not airspace-dependent. 

4 Customization of ASR for new Domains 
This section describes the process of ASR adaptation or customization necessary to port the 

ASR engine to a new airport sector. The main concept targeted by our work is to minimize the 
requirements for expert knowledge, allowing target users to customize the ASR technology on 
their premises. Customization can be done in several ways, as described below. 

4.1 AM and LM retraining using target-domain data 
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The most obvious way of adapting the ASR is to use the concept of model adaptation by 
applying data-driven approaches leveraging a set of speech and/or text transcripts available from 
the target domain. More specifically, the AM can be efficiently adapted to a new domain, e.g., to a 
target use-case airport/airspace, by exploiting some target data (speech aligned with available 
transcripts) from the domain to fine-tuning the model parameters [22]. In the case of LM, the n-
gram interpolation of an original LM with transcripts available from the target domain can be used. 

AM and LM adaptation processes usually require expert knowledge, which is usually not 
part of an ATM personnel's skill set. Thus, collaboration with the ASR developers is required. This 
also includes collecting speech data sets from target domains, which could require a certain amount 
of time. Additionally, manual data transcription, typically done by humans, can take enormous 
time. Furthermore, this process requires certain unit testing to ensure the new models perform well 
and the target models are not over-trained. Also, when porting the ASR system to a new domain, 
such as the DIAL project for the Celle sector, the set of new waypoints is expected to be a priori 
available. 

4.2 Dynamic customization of existing LM 
The second method involves end-users customizing existing LM to enhance the recognition 

of new words. In contrast to the method above, this paper presents an approach that enables 
incorporating new words or word entities into the existing ASR framework without requiring 
additional manual transcriptions or retraining of existing models. Kocour et al. [34] discuss the use 
of contextual information to improve the accuracy of call sign recognition where a priori 
information about the list of callsigns from radar data was obtained to correlate ASR output. Other 
works on contextual biasing for online ASR [35] and improving waypoint recognition [36] [6] 
employ boosting the target entities (waypoints in this work) to improve their recognition. The 
original ASR models are typically trained on huge data sets, but data at similar scales are 
unavailable during customization. Hence, this work tackles the problem in a more user-centric 
manner. The proposed methods do not require ASR retraining, nor do they require expert 
knowledge. Therefore, we have not delved further into the adaptation approach. Instead, we have 
concentrated on strategies for customizing models to recognize new waypoints within the Celle 
Sector for “enroute” positions. Customizing the model in this study involves two distinct 
approaches: the first is called G-Boosting, and the second is termed Lattice-Rescoring. Both of these 
approaches will be explained in the following subsections. 

4.3 LM expansion using synthetic data 
The first step of performing the proposed modifications to the LM involves expanding the 

existing LM using synthetically generated text. For the present use case of waypoints, synthetic 
texts are generated that correspond to the usage of such words in ATCo-Pilot communication. In 
order to perform this expansion, let us consider WPfreq the most frequent waypoint in the original 
LM training text. Also, let T(WPfreq) be the text data containing WPfreq in the training data. Let WPboost 
be one of the waypoints to be boosted. To generate the synthetic text for WPboost, WPfreq in T(WPfreq) 
is replaced with WPboost. The text obtained by substituting WPboost instead of WPfreq is added to the 
LM training corpus. This process is repeated for the remaining 84 rare words considered in this 
work (see Table 1). Once the LM training data is augmented with the synthetic data, a new LM is 
trained on the augmented data. This LM trained using additional synthetic text data is considered 
the baseline LM in this work and is kept constant in all the experiments. 

4.4 G-Boosting 
The G-Boosting approach modifies the trained FST graph that represents the LM for the ASR 

task [35] [6]. The trained LM is also stored as an FST (as mentioned previously). The LM is trained 
to learn the most likely sequences or the context in which a word appears in the data. The acoustic 
model information predicts many possible word sequences for a given test utterance during 
decoding. The LM provides the likelihood score for a predicted word sequence to be present in the 
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current context. When there are many possible word sequences to select for a particular utterance, 
the one obtaining the highest LM score is generally selected. Although this is a very logical method 
to train and use the LM, it has disadvantages. The LM, being a statistical model, gets biased to the 
most frequent of the words seen during training data. In other words, a word seen many times 
during training will get a higher LM score than a similar but less frequent word. Thus, in cases 
where the acoustic model is not very confident about the predicted word in a particular context, 
the LM would select the most frequent among the probable options. Our approach tries to solve 
this problem for the waypoints we are concerned about. 

 
Figure 2. Word-boosting Operation in the Language Model. 

Since the words are never seen or rarely seen during training, the final ASR output rarely 
predicts these words. To customize the ASR system to recognize these words, we update the 
weights in a pre-trained LM in a certain way so that the likelihood of the new words being 
predicted increases. Figure 2 graphically illustrates a toy example of the weight update step. For 
instance, if the word “BALAD” is more frequently seen during LM training, it will be associated 
with a higher weight than a less frequent “BARMEN”. In such a scenario, to improve the detection 
of “BARMEN”, we update the LM FST so that the word “BARMEN” also has a decent weight. The 
boosting factor is empirically decided based on the performance of a validation set. The LM FST 
discussed previously is a graph where all the correct sequence of words is represented as arcs of 
the graph with their respective weights. Our approach searches the arcs in the FST corresponding 
to each new word and artificially boosts the weights of the words under consideration. The 
modified LM is then used to create a new decoding FST graph to replace the previous one. 
Subsequently, when the decoding is performed again using the new decoding FST graph, the new 
words are detected much better than earlier (see Table 5). The best part of this approach is that 
there is no need for expert intervention to perform this operation. An ATM personnel member has 
to perform very basic steps, like preparing a list of waypoints to be boosted and passing them to a 
program that automatically performs the required modifications to the FST graph. G-Boosting 
performed quite well during experiments in improving the detection of rare words. 

Table 5. Performance of the boosting techniques for conventional ASR 

Method WER (%) 
Waypoint Detection 

Precision (%) Recall (%) F1-Score (%) 

CNN-TDNN 13.85 100 7 13 

+G-Boosting 9.55 93 55 69 

+Lattice-Rescoring 14.04 93 9 17 
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+G-Boosting + Lattice-Rescoring 9.43 88 58 70 

4.5 Lattice-Rescoring 
As the name suggests, the second approach of Lattice-Rescoring is performed on the 

decoded word recognition lattices (mentioned previously). The lattices are a data structure that 
stores the most likely decoded paths or word sequences for a given test utterance, along with their 
scores from the AM and the LM. In a normal decoding setup, the transcript for a given test 
utterance is the path that obtains the overall best score among all the possible sentences present in 
the corresponding lattice. As with new and rare words discussed previously, even if they are 
present in one of the possible paths, they usually correspond to low LM scores and, hence, do not 
get selected as the best path. We observed that there is a scope to improve the recognition of rare 
words by modifying the decoded lattices and re-scoring them. Specifically, we first create a small 
biased FST comprising rare words with boosted weights. Subsequently, a first-pass decoding using 
the baseline LM is performed to obtain the initial lattices. These lattices are then composed with 
the biased FST so that wherever the rare words are present in the decoded lattices, we update their 
corresponding LM scores with the boosted weight. After this operation, the modified lattice is used 
to compute the best path. The boost provided to the rare words' LM scores improves the chance of 
selecting the path that consists of the rare words. As with G-Boosting, we also avoid needing expert 
intervention to perform Lattice-Rescoring. 

The main distinction between G-Boosting and Lattice-Rescoring is that G-Boosting can 
improve the recognition of OOTV words (when combined with language model expansion), while 
Lattice-Rescoring can only re-rank hypotheses but cannot add new words. Moreover, G-Boosting 
is a permanent modification of the LM, whereas Lattice-Rescoring runs without permanently 
modifying the LM. In our experiments, we found Lattice-Rescoring improved the detection of rare 
words (see Table 5). 

5 Results after Boosting the Waypoints 
This section discusses the results obtained using the proposed boosting methods. Subsection 

5.1 presents the word-level performance. Subsection 5.2 discusses the effect of the context size used 
for the boosting. The effect of tuning the G-Boosting factor is discussed in subsection 5.3. We also 
show the effect of de-boosting the old waypoints in subsection 5.4. Finally, the gain in the semantic 
performance resulting from improving waypoint recognition is detailed in subsection 5.5. 

5.1 Word level performance 
The performance of the word-boosting techniques is tabulated in Table 5. It can be observed 

that the G-Boosting technique reduces the overall WER of the system from 13.85% to 9.55%. 
Regarding rare word detection, the baseline system detects 24 out of 443 occurrences, whereas the 
detection improves to 256 out of 443 after performing G-Boosting. Moreover, G-Boosting improves 
the precision, recall and F1-scores of detecting the rare words from 92%, 5%, and 10% to 93%, 55%, 
and 69%, respectively. 

Lattice-Rescoring improves the precision, recall and F1-scores of detecting the rare words to 93%, 
9%, and 17% respectively. Also, combining G-Boosting and Lattice-Rescoring reduces the precision 
of detecting the waypoints. Another experiment worth trying is to apply Lattice-Rescoring on top 
of the G-Boosting method. Since the two methods are independent, the combination is pretty 
straightforward. The first-pass decoding required for Lattice-Rescoring can be performed using the 
G-Boosting method, followed by the second-pass re-scoring using the Lattice-Rescoring method. 
Combining the G-Boosting and Lattice-Rescoring methods reduces the overall WER to 9.43%, 
while the rare word detection recall and F1-scores improve to 58% and 70%, respectively. 
Interestingly, the overall WER increases to 14.04% with the Lattice-Rescoring approach, which is 
worse than the baseline. Such results indicate that the Lattice-Rescoring method introduces some 
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false negatives in the modified output. In other words, in rare cases, the combination of both 
methods causes over-boosting of the waypoints, so they may get detected in the wrong places in 
the speech. A possible reason for such over-boosting might be that this work applies the Lattice-
Rescoring approach using a three-word context match around the rare words with a fixed boosting 
factor. A longer context would lead to a stricter match, thereby minimizing over-boosting, but it 
could also cause poorer recognition in genuine cases. In the future, we will try to optimize the 
context length and the boosting factor for Lattice-Rescoring. Nevertheless, the improvements 
obtained using these two methods are far more significant. Such results indicate the effectiveness 
of the proposed method in improving the detection performance of rare words in ASR. 

Table 6. Performance of the boosting techniques for XLSR ASR 

Method WER (%) 
Waypoint Detection 

Precision (%) Recall (%) F1-Score (%) 

XLSR 8.53 95 45 61 

+G-Boosting 6.95 93 70 80 

+Lattice-Rescoring 8.16 97 63 76 

+G-Boosting + Lattice-Rescoring 7.17 93 73 82 

Table 6 presents the performance evaluation of different customization techniques applied 
to an XLSR AM-based ASR. The baseline model without customization achieved a WER of 8.53% 
and moderate waypoint detection performance with an F1-score of 61%. Applying the G-Boosting 
technique enabled a significant reduction in WER to 6.95% and improved waypoint detection F1-
score to 80%. While improving waypoint detection precision to 97%, Lattice-Rescoring had a less 
pronounced effect on WER (8.16%) and overall F1-score (76%). Combining both techniques yielded 
a WER slightly higher than G-Boosting alone (7.17%) but achieved the best overall waypoint 
detection performance with an F1-score of 82%. These results indicate that both G-Boosting and 
Lattice-Rescoring can enhance the performance of the speech recognition system in different ways. 
G-Boosting is particularly effective in improving overall accuracy (WER) and waypoint detection, 
while Lattice-Rescoring is better at refining the system's ability to pinpoint the exact locations of 
waypoints. Combining these techniques provides a balanced approach, leading to the best overall 
performance. In essence, these findings demonstrate that by carefully applying these 
customization techniques, we can significantly enhance the capabilities of speech recognition 
systems. Such improved results compared to the CNN-TDNN model demonstrate the effect of 
using a significantly more powerful AM at the core of the conventional ASR system. However, it 
is encouraging to note that the proposed word-boosting methods can improve Waypoint 
recognition even with the powerful XLSR model. Nevertheless, in the rest of the work, we continue 
presenting results and analysis with the CNN-TDNN model currently deployed at the client site 
since it requires comparatively less computational overhead and is easy to set up for production. 

Table 7. Semantic Level Performance 

Method 
ALL CONTACT DIRECT_TO STATION 

Acc F1 Acc F1 Acc F1 Acc F1 

Baseline 58 73 37 53 6 11 14 24 

+G-Boosting 77 86 94 96 11 20 88 93 

+Lattice-Rescoring 59 74 35 52 9 17 22 36 
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+G-Boosting + Lattice-Rescoring 77 86 95 97 12 21 89 94 

Table 7 shows the performance for all command types (Column “All”) and the airspace-
dependent command types CONTACT, DIRECT_TO, and STATION for the different boosting 
techniques. The improvement of G-Boosting and the combined technique is observed on both the 
word and semantic levels. A command is considered recognized if the callsign, the type, the value, 
the conditions, etc., are correctly extracted from the recognized sequence of words. We see a 
dramatic improvement from baseline to the combined technique for CONTACT by almost 60% 
absolute and STATION with more than 75% absolute. Both command types have an F1-score around 
95%. The location names uttered in connection with those two command types appear on a more 
regular basis and are of a low number, making it easier to extract the semantics. The accuracy of 
DIRECT_TO also improved by a factor of two but on a very low level. The list of potential waypoints 
that could be correct seems to be too big to choose the correct one. A potential solution to look into 
in the future would be to decide the target waypoint like “MOBSA” that only appears with 
DIRECT_TO and frequency names such as “MAASTRICHT”, “HOLSTEIN”, etc. that appear with 
CONTACT, on semantic level knowing the aircraft trajectory and the likelihood of mentioning one 
of the rare words from the N-best hypotheses. 

5.2 Effect of n-gram context while G-Boosting 
Rare words like “MAASTRICHT” are recognized comparatively better than the waypoints. 

Hence, this section reports experiments performed to improve the recognition of only the 
waypoints that follow the DIRECT_TO command as they are more critical. The G-Boosting approach 
discussed previously was performed using n-gram contexts automatically from the data. However, 
not all n-grams may be equally useful in waypoint boosting. Table 8 reports the performance of G-
Boosting with different n-gram contexts. The performances are reported as the precision, recall, 
and F1-scores of only the target waypoints. The first row reports the baseline ASR performance 
without any boosting performed. This result is similar to that reported in Table 3, but selecting 
only the waypoints during performance computation. The second row reports the performance 
obtained using all possible tri-gram combinations where waypoints can appear at any position of 
the tri-gram (position-independent n-grams). This is the same setup that is used to report results 
in Table 5. The only difference here is that the results reported in Table 8 {are computed only for 
the} target waypoints, whereas Table 5 reports results for other rare words as well. It may be 
observed that the performance obtained by boosting using position-independent n-grams is 
significantly better (33% F1-score) than the baseline. Next, various position-dependent n-grams 
were explored, and the best results were obtained using the tri-grams, where waypoints can appear 
only as the last word in the trigram (position-dependent n-grams). The third row in Table 8 
indicates that the position-dependent n-grams are even better than the position-independent n-
grams and improve the performance by ≈30% F1-score. Finally, a different set of n-grams was 
explored, which are tri-gram or bi-gram waypoint contexts selected with human supervision 
(human-supervised n-grams) based on the validity of the word sequence to appear in a 
conversation. The results with this set of n-grams are reported in the fourth row. The human 
supervised n-grams provide ≈20% improvement on F1-score than the position independent n-
grams but fall short of the performance of position-dependent n-grams. Therefore, it appears that 
the position of the waypoints in the selected n-grams used for boosting impacts their detection 
performance significantly. 

Table 8. Performance of boosting only waypoints with different context 

Method 
Waypoint Detection 

Precision (%) Recall (%) F1-Score (%) 

CNN-TDNN 100 7 13 



EJTIR 24(4), 2024, pp.133-153  148 
Bhattacharjee, Motlicek, Madikeri, Helmke, Ohneiser, Kleinert, Ehr 
Minimum effort adaptation of automatic speech recognition system in air traffic management 
 

+Boosting (position independent n-grams) 75 21 33 

+Boosting (position dependent n-grams) 80 50 62 

+Boosting (human supervised n-grams) 73 43 54 

 
Figure 3. Effect of tuning discount factor on G-Boosting performance [6]. 

5.3 Effect of tuning the G-Boosting factor 
As mentioned previously in subsection 4.4, the modification of the weights of a pre-trained 

LM is performed using a predetermined hyper-parameter known as the discount factor. The 
discount factor can be tuned to optimize the performance of the G-Boosting method. The impact 
of the discount factor used within the G-Boosting framework on overall word error rate (WER) and 
rare word recall [6] is illustrated in Figure 3. The x-axis quantifies discount factor values (p), while 
the y-axis displays scaled WER and rare word recall. The analysis reveals a nuanced relationship 
between the discount factor and model performance.  

Discount factors below 1.0 exert minimal influence on rare word recall. Conversely, as p 
surpasses this threshold, a discernible improvement in rare word recall is observed concurrently 
with an increase in WER. This trend persists until approximately p=1.3, where a critical inflection 
point is reached. Beyond this value, the model's performance deteriorates rapidly as over-boosting 
leads to a surge in false positive predictions for non-target words. 

These findings underscore the importance of meticulous tuning of the discount factor to 
achieve optimal model performance. While judicious application of boosting can enhance the 
recognition of rare words, excessive boosting can harm overall accuracy. The observed trade-off 
between rare word recall and WER highlights the need for a balanced approach to discount factor 
selection. 

5.4 Effect of non-target waypoints seen during ASR training 
Until now, the paper discusses the ways to improve the ASR performance of detecting a list of 

target waypoints. When the universal ASR system is deployed for a different sector that uses a list 
of waypoints different from those seen during training, the OW may hinder the performance of the 
system. Such hindrances can be observed in two forms: 

• Rare target waypoints substituted by more frequent OW: The target waypoints can either 
be OOVs or very rarely seen by the ASR system. Therefore, whenever there is confusion 
between a waypoint and an OW during the ASR inference, the language model will predict 
the OW if seen more frequently than the target waypoints. 
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• Homophonic waypoints substituted by OW: When an OW sounds very similar to a target 
waypoint, the acoustic model score for the OW may be higher than for the target waypoint. 
Thus, the target waypoint may be substituted with an OW. 

Considering such possibilities, exploring ways to remove the OW from the ASR predictions is 
logical. As it has already been discussed that retraining the ASR model is not feasible, the 
intervention to remove the OW words have to be done during the inference time. The approach 
proposed in this work is motivated by the previous experiment combining the G-Boosting and 
Lattice-Rescoring methods (see Table 5). Results indicate that applying Lattice-Rescoring on top of 
G-Boosting can further improve the detection of the target waypoints. We proposed to use Lattice-
Rescoring in a modified formulation to remove the OW. The basic premise of Lattice-Rescoring 
involves creating a biased FST with boosted weights for the target waypoints. The removal of OW 
can be viewed as a reverse process of boosting waypoints. In other words, similar to boosting target 
waypoints, the unwanted OW can be de-boosted so that the probability of their prediction reduces. 
Such a de-boosting can be done using the same procedure as boosting using Lattice-Rescoring. 
More specifically, a new biased FST (say Biased-FST-OW) is created using the list of OW that needs 
to be removed from the ASR predictions. The OW is selected from the training data of the universal 
ASR system. For example, waypoints like “SASAL” and “VADOV” are not required to be predicted 
in the current use case. While creating the Biased-FST-OW, the de-boosting weights are carefully 
chosen. Whenever the OWs appear in any of the probable hypotheses for a given utterance, its 
score gets reduced after the lattice is composed with the Biased-FST-OW. This results in a reduction 
in the prediction of the OW words. Therefore, previously, the cases where OW words were 
predicted in place of the target waypoints could have been reduced using the de-boosting 
approach. 

 The performance of the de-boosting approach using the Lattice-Rescoring method is 
provided in Table 9. The performances are again reported as the precision, recall, and F1-scores of 
only the target waypoints. The first row lists the performance of the baseline system without any 
boosting. The second row shows the performance of the de-boosting method on the baseline 
system. It can be observed that the F1-score of detecting the target waypoints improves by 2% by 
simply de-boosting the unwanted OWs. This indicates that the presence of OWs hamper the 
detection of the target waypoints. In the third row, the performance of the best G-Boosting scenario 
(row 3 in Table 8) is combined with the de-boosting based Lattice-Rescoring. It can be observed 
that the F1-score of this combination is further 2% better than the only G-Boosting results of 62% 
F1-score. Thus, it can be concluded along expected lines that removing unwanted OW from the 
ASR prediction can positively impact the performance. 

Table 9. Performance of target waypoints by de-boosting Old Waypoints (OW) 

Method 
Waypoint Detection 

Precision (%) Recall (%) F1-Score (%) 

No boosting 100 7 13 

De-Boosting (unwanted waypoint n-grams) 100 8 15 

Boosting (human supervised n-grams) + De-
Boosting (unwanted waypoint n-grams) 79 54 64 

5.5 Semantic evaluation results with modified ASR system 
A modified version of our ASR system was validated in a second, bigger human-in-the-loop 

simulation campaign of the DIAL project with eight ATCos in April 2024. The modification 
includes the boosting and de-boosting methods discussed above applied to the CNN-TDNN based 
ASR system. On the complete dataset of 52 human-in-the-loop simulation runs containing 27,576 
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words, the WER was 9.7% with a sentence error rate of 48.5%. Semantic-wise, the dataset consists 
of 1315 ATCo utterances, including 4645 commands. Only 152 of the uttered words (0.6%) belong 
to the group of rare waypoint names. One third of them (33.6%) go back to the waypoints OGBER, 
MOBSA, EKERN, and BATEL. The other 57 uttered waypoint names sum up to just 101 occurrences. 
The WER of the waypoint names was 67.8%. When looking at single waypoint names, it has to be 
noted that the WER was either 100% like for a row of waypoints that have only been uttered once 
or twice, but for all other waypoint names, the WER had a maximum of 30%.  

Table 10. Semantic Performance of the Modified system 

Baseline Number of 
commands Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

All Type 4645 73 95 76 84 

CONTACT 517 67 93 71 80 

DIRECT_TO 171 41 68 50 58 

STATION 205 43 89 45 60 

CLIMB 571 86 94 92 93 

The seven entity names for radio frequency stations, such as “MAASTRICHT”, “CELLE”, 
“LANGEN”, or “RHEIN”, were uttered 526 times (1.9% of all words). The WER of those entity names 
was 59.3%. The word “MAASTRICHT” accounts for 388 (73.8%) occurrences of those entity names. 
In 70% of the 141 cases when “MAASTRICHT” was misrecognized, it has been substituted by another 
word beginning with the letter “m” such as “miles”.  

When analysing the extracted commands in Table 10, we see roughly the same performance 
for the CLIMB command and a slight improvement for all types compared to the baseline runs in 
Table 4. However, there is a significant improvement, especially in accuracy, recall, and F1-score 
for CONTACT, DIRECT_TO, and STATION. Almost every second DIRECT_TO command, which contains 
the rare waypoint names, is correctly recognized. This performance can already help some 
applications. However, it has to be noted that there are several limitations. 

Depending on the familiarity with the airspace, ATCos may switch between DIRECT_TO and 
HEADING commands to different extents. The selection of waypoints for DIRECT_TO commands 
that ATCos chose also differs from the simulation done with the baseline system. Furthermore, 
waypoint names such as MOBSA might additionally be spelled as “MIKE OSCAR BRAVO SIERRA ALFA” 
in an utterance which tremendously helps to extract the intended waypoint name for a DIRECT_TO 
command even if the single-word name itself has not been recognized. 

6 Conclusions 
This paper introduces two methods, G-Boosting and Lattice-Rescoring, to improve how ASR 

systems handle unfamiliar terms in new airspaces. These terms, like waypoint names or specific 
radio station names, are rarely encountered during training and often lead to recognition errors. 
This ease of use makes them valuable tools for ANSPs who need to adapt simulation environments 
or transfer ASR functionality to new airports or airspaces. These methods can even be used for 
prototyping new applications. Our results show significant improvements in detecting rare words 
like waypoints. G-Boosting alone achieves a more than 500% increase in rare word detection F1-
score compared to the baseline system. By combining G-Boosting and Lattice-Rescoring, the 
improvement jumps to a factor of 7, raising the F1-score from 10% to 70%. Additionally, 
recognizing airspace-specific names within various ATC command types improves by a factor of 
2 to 3. We also show that the n-gram context in which the waypoints are boosted plays an important 
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role in performance improvement. Finally, a combination of boosting target words and de-boosting 
unwanted different sector waypoints results in a recognition F1-score of 64%, an improvement by 
a factor of ≈5 over the baseline. 
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