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Abstract 
All aviation stakeholders require accurate estimated times of 
arrival in order to run flight operations as efficiently as possible. 
The time of arrival, however, is difficult to predict because it is 
affected by the uncertainties of the previous flight phases, with 
take-off time variability being the most significant contributor. At 
present, estimated time of arrival predictions are computed by the 
Enhanced Traffic Flow Management System, which collects data 
from a variety of sources to provide the best estimate throughout 
the entire duration of the flight. This paper introduces a novel 
approach that leverages existing machine learning models to 
enhance the accuracy of estimated time of arrival predictions, also 
during the pre-departure phase. More specifically, the first model 
(Knock-on) anticipates rotational reactionary delays arising from 
unrealistic available turn-around times; the second model (FADE) 
forecasts the evolution of air traffic flow management delays for 
regulated flights; and the third model, AirborneTime, was trained to 
identify systematic discrepancies between reported and actual 
airborne times. Using a dataset comprised of historical traffic and 
meteorological data collected during one year, this paper presents 
a comprehensive evaluation of this ensemble of models, referred to 
as PETA, against the current predictions across various time 
horizons, ranging from 6 hours before departure to the moment of 
take-off. The results indicate that the proposed solution surpasses 
the existing system in approximately two-thirds of the predictions. 
When the proposed solution performs better, the average and 
median improvements are 14 minutes and 7 minutes, respectively. 
However, when it underperforms, the average and median 
deteriorations are 7 minutes and 4 minutes, respectively. The 
optimal time frame appears to be between 2 and 6 hours before the 
departure time. This quantitative data is supported by feedback 
from European airlines, air navigation service providers and 
airports who used PETA in a live trial. 
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List of Abbreviations and Acronyms 
 
A-CDM: Airport Collaborative Decision Making 
ANSP: Air Navigation Service Provider 
AOBT: Actual Off-Block Time 
API: Application Programming Interface 
ATA: Actual Time of Arrival 
ATC: Air Traffic Control 
ATFM: Air Traffic Flow Management 
ATM: Air Traffic Management 
ATT: Available Turn-Around Time 
CASA: Computer-Assisted Slot Allocation System 
DLY: ATFM Delay 
DPI: Departure Planning Information 
EATIN: EUROCONTROL Air Transport Innovation Network 
ECAC: European Civil Aviation Conference 
EFD: ETFMS Flight Data Message 
EOBT: Estimated Off-Block Time 
ETA: Estimated Time of Arrival 
ETFMS: Enhanced Tactical Flow Management System 
E/TMA: Extended/Terminal Manoeuvring Area 
FADE: Forecast of ATFM Delay 
FS: Filed Slot Allocated 
FSA: First System Activation 
IFP: Initial Flight Plan 
MAE: Mean Absolute Error 
METAR: Meteorological Aerodrome Report 
NM: Network Manager 
PDLY: Predicted Departure Delay 
PETA: Predicted ETA 
POBT: Predicted Off-Block Time 
PTOT: Predicted Take-Off Time 
SI: Slot Issued 
TAF: Terminal Area Forecast 
TOBT: Target Off-Block Time 
TSAT: Target Start-Up Approval Time 
TXOT: Taxi-Out Time 

1 Introduction 
In air traffic management (ATM) terminology, the time of arrival refers to the landing (or 
touchdown) time, whereas the in-block time refers to the event when the aircraft arrives at the 
parking position and the parking brakes are activated.  
 
Accurate estimated time of arrival (ETA) is crucial for all aviation stakeholders, serving as a key 
input for numerous processes throughout a flight. From the airline’s perspective, both the flight 
operations centre and the airline operations centre rely on accurate ETAs for efficient ground 
operations. These operations include gate and stand utilisation, ground handling, and staff 
planning. Accurate ETA predictions also enhance passenger connections and improve customer 
satisfaction. From an airport's perspective, inbound ETAs trigger the airport collaborative decision-
making (A-CDM) process, optimising the flow of passengers and luggage, and the use of airport 
resources such as runways, taxiways, and gates, as well as ground services like transportation. 
Lastly, for air navigation service providers (ANSPs), accurate ETA predictions significantly 
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enhance arrival traffic management. By preventing congestion in the extended/terminal 
manoeuvring area (ETMA/TMA), these precise predictions allow for a more streamlined flow of 
incoming flights. This reduces the need for holding patterns, which in turn minimises delays and 
lowers fuel consumption.  
 
At present, ETA predictions are offered to all stakeholders through the Enhanced Tactical Flow 
Management System (ETFMS). These predictions, however, remain subject to various uncertainties 
throughout different flight states due to factors such as air traffic flow management (ATFM) 
measures, weather conditions, air traffic control (ATC) practices, ATFM delay changes stemming 
from the Computer-Assisted Slot Allocation System (CASA) algorithm, as well as runway usage, 
for instance.  
 
Figure 1 illustrates the main factors affecting ETA predictions. It should be noted that this figure is 
not exhaustive, but it nevertheless demonstrates the wide range of uncertainties that ETA 
predictions face. Furthermore, it is presupposed that the prediction of ETA becomes increasingly 
uncertain the farther the flight is from its actual time of arrival (ATA). Therefore, the development 
and availability of enhanced ETA predictions, in comparison to ETFMS estimations, across various 
look ahead times, would assist stakeholders in operating more efficiently, improving planning, 
enhancing predictability, and increasing punctuality. 
 

 
Figure 1. Flight states (green), events (orange), processes (grey) and sources of uncertainty within a 

process (italic). 

To gain insight into the current situation, a comprehensive analysis of the ETFMS ETA predictive 
accuracy was conducted. This analysis encompassed 6 months of flight data from and to the 50 
busiest airports in the European Civil Aviation Conference (ECAC) area, spanning from January 
to March and June to August 2022. The dataset comprised approximately 2M intra-ECAC flights 
monitored by the ETFMS. The ETA prediction error of each flight was computed as the difference 
between the ATA and the ETA as reported by the ETFMS. Therefore, positive values indicate that 
the ETFMS prediction was overly optimistic, i.e., the flight arrived later than the predicted ETA. 
The computation was made at two specific and representative events of the flight: 

• at the submission of the initial flight plan (IFP), typically between 3 and 9 h before take-off, 
and 

• at first system activation (FSA), i.e., when the first ATC message is received, typically right 
after take-off. 

Figure 2(a) shows that the ETA prediction is more accurate and with less dispersion at FSA than at 
IFP. These results highlight that the prediction of the airborne time, which is equivalent to the ETA 
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prediction at FSA, is relatively accurate and that most of the current ETA prediction error is 
attributable to the take-off time uncertainty. 
 

 
(a) Current ETA prediction error at IFP and FSA events. 

 
(b) Correlation between current ETA prediction error and maximum ATFM delay. 

Figure 2. Current difference between ATA and ETA (i.e., ETA prediction error) at IFP and FSA events, 
considering the ETA predicted by ETFMS. Positive values indicate flights arrived later than 
predicted, while negative values indicate they arrived earlier. 

To further assess the possible cause of ETA uncertainties before take-off, Fig. 2(b) shows the ETA 
prediction error values as a function of the maximum ATFM delay assigned to the flight (if 
applicable, otherwise set to 0) from IFP to FSA. It should be noted that the ATFM delay for a flight 
can vary over time as CASA optimises slots to reduce ATFM delays. Therefore, the “maximum 
ATFM delay” here refers to the highest ATFM delay recorded for that flight from IFP to FSA. The 
results shown in Fig. 2(b) indicate that, as expected, the ETA prediction error at FSA (i.e., the 
airborne time prediction error) is independent of the maximum ATFM delay. Figure 2(b) also 
shows that the maximum ATFM delay impacts the ETA prediction error at IFP: As the maximum 
ATFM delay increases, the ETA error becomes negative (i.e., the error decreases, but not in absolute 
terms), indicating that flights arrive earlier than expected by the ETFMS. This behaviour occurs 
because the ETFMS initially predicts a significant delay and, consequently, a later ETA. However, 
as CASA improves the ATFM slots, the actual departure time is earlier than initially anticipated, 
resulting in an earlier arrival. These findings align with expectations, as the ATFM delay typically 
decreases due to the true revision process of the CASA algorithm. 
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Significant efforts have been made in recent years to improve ETA predictions, particularly within 
the academic and research communities. A multitude of models have been developed, with the 
majority relying on machine learning techniques and encompassing diverse types of data (e.g., 
flight information, weather, surveillance data for trajectory clustering), as well as various designs 
(e.g., artificial neural networks and gradient-boosted decision trees) (Strottmann, 2015; Ayhan, 
2018; Wang, 2020a; Wang, 2020b; Christien, 2021). In this regard, the performance of several 
machine learning models has also been assessed and compared (Silvestre, 2021; Zhang, 2022). 
Recently, researchers proposed novel methods for accurately predicting ETAs in Beijing TMA (Ma, 
2023) and for a multi-airport system (Wang, 2023). Specifically, the authors exploited spatio-
temporal features based on clustering analysis of trajectory patterns, drawing on methodologies 
proposed in the previous research. 
 
While demonstrating outstanding predictive capabilities, these studies primarily focused on 
addressing the ETA prediction challenge in the context of airborne time, that is, without 
considering uncertainties related to take-off times. Filling this gap, two machine learning models 
to improve ground delay predictions were developed under the EUROCONTROL Air Transport 
Innovation Network (EATIN) framework: (1) the so-called Knock-on model (Dalmau, 2024), which 
predicts the reactionary rotational delay for non-regulated flights, and (2) FADE (forecast of ATFM 
delay), which predicts the evolution of the ATFM delay for regulated flights (Dalmau, 2021).These 
models have made significant advances in predicting off-block and, as a result, take-off times. 
When combined with the AirborneTime model, which corrects residual errors in airborne time 
predictions, they could form the foundation of an advanced, data-driven ETA prediction system, 
effective from flight plan submission several hours before take-off. 

 
This research paper offers two primary contributions. The first is the introduction of the prediction 
of ETA (PETA) algorithm, a novel approach that enhances ETA predictions, even before take-off, 
by utilising established machine learning models. Summarising the three machine learning models 
used by the PETA algorithm (Knock-on, FADE, and AirborneTime) is an integral part of this initial 
contribution. The benefits of employing existing and independent models are manifold. Firstly, it 
allows users greater control in determining which ETA contributors should be predicted using 
machine learning and which should rely on real-time information from ETFMS. Secondly, it 
circumvents the need for maintaining a large, complex model. Lastly, the performance of PETA 
inherently improves whenever any of its constituent models are retrained, eliminating the need for 
additional adjustments.  
 
Regarding the second contribution, this paper provides a detailed performance evaluation of 
PETA's predictions by comparing them to the predictions of the current system (i.e., the ETFMS) 
over the course of a year, encompassing all intra-ECAC flights. This year includes three months of 
testing and eight months of live trial, during which several stakeholders requested PETA 
predictions via a dedicated application programming interface (API). The evaluation focuses 
primarily on ETA predictions made prior to take-off, as early as 6 hours in advance, when ETA 
uncertainty is at its highest level. 

2 Methodology 
The PETA system comprises the integration of several machine learning models, each specialising 
in predicting the duration of a specific process, as illustrated in Figure 3. At the time of writing this 
document, however, the model specialised in predicting the taxi-out time was not yet available, 
and ETFMS predictions were used instead. 
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Figure 3. PETA: combination of models to predict the ETA. 

The decision to utilise machine learning over traditional methods, such as conventional linear 
regression, in this study is motivated by the complexity of the problem and the extensive amount 
of data collected by the Network Manager (NM). This data was instrumental in training effective 
models. 

2.1 Individual models:  
The three models that constitute PETA are based on gradient-boosted decision trees, specifically 
the LightGBM implementation by Microsoft. Several factors influenced the choice of this type of 
model: (1) they are simple to train, (2) they can handle high-cardinality variables like airports, 
airlines or aircraft types, (3) they are robust to missing values, and (4) they consistently perform 
well with tabular datasets. 

First, the Knock-on model predicts the rotational reactionary delay by taking various factors into 
account. These include the available turn-around time (ATT), specific flight attributes such as 
departure and destination airports, and the aircraft operator, as well as essential calendar features 
such as hour of the day, day of the week, and month of the year. Among all the features, the ATT 
is particularly important as it captures the inbound delay. Additionally, the model incorporates 
weather variables at the departure airport around the estimated off-block time (EOBT). It utilises 
variables such as wind speed, wind direction, visibility, cloud ceiling, and the presence of 
thunderstorms or snow, sourced from terminal area forecasts (TAFs) during inference and 
meteorological aerodrome reports (METARs) during training. The reasoning for using 
observations during training will be explained in more detail later. However, weather features are 
generally not the most significant factors on average, as weather conditions are often favourable. 
The main goal of this model is to improve off-block time predictions for non-regulated flights (i.e., 
flights not subject to ATFM regulations).   

Second, the primary goal of FADE is to predict the final ATFM delay (DLY), right before departure, 
of a regulated flight. It should be noted that FADE does not predict which flights are going to be 
regulated, but just the expected delay of already regulated flights. In other words, a flight needs to 
be regulated to benefit from FADE predictions. Furthermore, FADE does not capture the scenario 
where a change in ATFM delay leads to missing a slot due to reactionary delay. Similar to the 
Knock-on model, its predictions are conditioned on several flight attributes, including the departure 
and destination airports. FADE also considers the current ATFM delay and the parameters of the 
ATFM regulation that determines the delay (i.e., the most penalising regulation), including the 
reference location, its reason (e.g., ATC capacity, weather, or industrial action) and the duration. 
 
Third, the AirborneTime model was developed from scratch with the goal of improving airborne 
time predictions. This entails estimating the time it will take from take-off to landing. The 
AirborneTime model considers a variety of flight attributes, such as origin and destination airports, 
aircraft operator, and tactical flight data, as well as factors such as departure delay and ATT for the 
subsequent rotation operated by the same aircraft registration. Analogously to the Knock-on model, 
it includes calendar-related features and considers the expected weather conditions at the 
destination airport around the ETA predicted by the ETFMS. The underlying hypothesis here is 
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that these various features can collectively contribute to identifying systematic shortcuts along the 
route, airline-specific time buffers and speed adjustments to compensate for delays or save fuel, 
and additional airborne time required in the destination airport's TMA due to traffic congestion 
and/or adverse weather. It is important to note that the most crucial feature of this model is the 
airborne time as predicted by the ETFMS at that time; in other words, the ETFMS prediction itself 
is a key feature of the model. Consequently, this model heavily relies on ETFMS predictions and 
aims primarily to correct them. 
 
Table 1 provides an overview of the top 10 most important features identified by Shapley analysis 
for the three models that compose the PETA ensemble. This table details each feature's type 
(numerical or categorical) and its variability — whether it changes over time for a flight from IFP 
to FSA or remains static. For instance, the ATT feature may change if the inbound flight updates 
the ETA and/or if the outbound flight changes the EOBT. A brief discussion of the Shapley analysis 
results will follow in Section 3.1.1. Note that none of the weather variables are not among the top 
10 most important features in the Knock-on model, but wind speed is among the top features in the 
AirborneTime model. 

Table 1. Overview of the top 10 most important features identified by Shapley analysis for 
the different models within PETA. 

Model Feature Description Type Variability 
Knock-on Available turn around time Numerical Dynamic 
 Aerodrome of departure Categorical Static 
 Aircraft operator callsign Categorical Static 
 Aircraft type Categorical Static 
 Current taxi time Numerical Dynamic 
 Month Categorical Static 
 Hour Categorical Static 
 Aerodrome of destination Categorical Static 
 Day of week Categorical Static 
FADE (Current ATFM) Delay Numerical Dynamic 
 Number of regulations Numerical Dynamic 
 Time to estimated off-block time Numerical Dynamic 
 Late update Categorical Dynamic 
 Protected location type Categorical Dynamic 
 Protected location ID Categorical Dynamic 
 Aerodrome of departure Categorical Static 
 Aircraft operator callsign Categorical Static 
 Flight state Categorical Dynamic 
AirborneTime ETFMS predicted fly time Numerical Dynamic 
 Route distance Numerical Static 
 Aerodrome of destination Categorical Static 
 Aerodrome of departure Categorical Static 
 Aircraft type Categorical Static 
 Aircraft operator callsign Categorical Static 
 Wind speed Numerical Dynamic 
 Hour Categorical Static 
 Available turn around time Numerical Dynamic 
 Month Categorical Static 

2.2 PETA: combined models: 
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The idea behind the PETA system is illustrated in Algorithm 1. In this algorithm representation, 
each model is treated as a non-linear function of several parameters, 𝑦 = 𝑓(𝑥!, 𝑥", … ), where the 
ellipsis (…) indicates ”and other features”, like those listed in Table 1. For instance, Knock-on 
predicts the rotational reactionary delay as a function of the ATT and other (…) features, thus 
Knock-on(ATT, ...) represents the reactionary rotational delay predicted by this model for a given 
set of input feature values. Lines 13-15 show how Knock-on and FADE are combined to predict the 
departure delay (PDLY). This doublet of models is expected to provide more accurate off-block 
time predictions (POBT) for both regulated and non-regulated flights.  

Subsequently, in the absence of a model to predict the taxi-out time, the predicted take-off time 
(PTOT) is obtained by adding the taxi-out time (TXOT) as reported by the ETFMS. Finally, the 
airborne time as predicted by the AirborneTime model is added to the PTOT, resulting in the 
predicted time of arrival (PETA). The PETA is used to estimate the ATT of the next flight in the 
sequence, and the process is repeated until all flights have been processed. It is worth noting that, 
in contrast to standard ATM notation, and due to the absence of readily available taxi-in 
information, the ATT used by the Knock-on was defined as the difference between EOBT and the 
time of arrival of the previous flight, not the in-block time. This implies that Knock-on implicitly 
predicts the taxi-in time from the information provided in the inputs. 

Algorithm 1. PETA: Propagates predictions along flights operated by the same aircraft 
registration 𝒓 to improve ETAs. The models are highlighted in blue. 

ℳ	← Latest message of all flights operated by 𝑟 
ℳ ← Remove cancelled flights from ℳ 
𝒇 ← Sequence of flights operated by 𝑟, sorted by EOBT 
For 𝑖 = 1,… , |𝒇| do:  

If 𝒇(𝑖) is a terminated flight:  
PETA(𝑖) ← ATA(𝑖) 

Else:  
If 𝒇(𝑖) has departed:  

POBT(𝑖)	← AOBT(𝑖) 
PDLY ← AOBT(𝑖) −	EOBT(𝑖) 

Else:  
ATT ← EOBT(𝑖) −	PETA(𝑖 − 1) 

PDLY ← Knock−on(ATT, …) 
If 𝒇(𝑖) is regulated:  

PDLY ← max(PDLY, FADE(DLY(𝑖),...))  
POBT(𝑖)	← EOBT(𝑖)	+ PDLY 

PTOT(𝑖)	← POBT(𝑖)	+ TXOT(𝑖) 
PETA(𝑖)	← PTOT + AirborneTime(PDLY, …)  

End For 

2.3 Data and training: 
The three datasets used to train the three machine learning models that compose PETA, 
respectively, were constructed using ETFMS flight data messages (EFDs) and weather observations 
from METARs. Each training dataset covers the period from January 1st, 2022, to February 28th, 
2023, spanning slightly more than one year. 
 
The EFDs are triggered, for example, when the CASA-assigned ATFM delay changes, when the 
airspace user updates the flight's route, and when a departure planning information (DPI) message 
is sent when departing from a CDM airport. Each EFD includes the most up-to-date information 
for the emitting flight, such as the EOBT, ETA, aircraft type and registration, current taxi time, as 
well as the current ATFM delay and the ATFM regulations affecting the flight (if any). 
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Concerning the weather data, when deciding whether observations (i.e., METARs) or forecasts (i.e., 
TAFs) are more suitable for training a model, it is crucial to understand the context and goals of 
the model. Both approaches have their merits, and the choice depends on the specific question the 
model aims to answer. 
 
If the goal is to learn the true cause-and-effect relationship between ETA variability and weather, 
training the model with weather variables extracted from METARs is preferable. For instance, if a 
flight was delayed due to a thunderstorm reported in the METAR, the model would learn to 
associate such conditions with delays. Ultimately, it was the thunderstorm itself, not the prediction 
of it (from a TAF), that caused the delay. One could argue that thunderstorm forecasts might 
influence the behaviour of agents within the system, potentially causing delays even if the 
thunderstorm does not occur. However, this philosophical discussion is beyond the scope of this 
paper. 
 
On the other hand, if the objective is to learn the relationship between ETA variability and weather 
as predicted at a given look-ahead time, the model should be trained using TAFs. Although this 
method aligns with the common data science practice of “train the model with the data available 
at inference time”, it has some drawbacks. First, it introduces a dependency on the accuracy of the 
forecasts. For example, if a TAF predicts clear skies but a storm causing delays occurs instead, the 
model trained on TAFs would be misled, attempting to identify a correlation between (predicted) 
clear skies and delays, which does not make sense. Second, the model would implicitly learn the 
errors inherent in the forecasting system. If the forecast accuracy improves over time, the model 
might still compensate for errors that no longer apply, reducing its performance unless it is 
retrained with updated forecasts. Third, the model will be valid for only one look-ahead time, as it 
will essentially learn the ETA variability given a predicted weather at a specific look-ahead time, 
since the predicted weather changes with the look-ahead time. 
 
Training with METARs has the advantage of allowing the model to make predictions at any time, 
as long as a reliable weather forecast of the expected observations is available. This flexibility is 
particularly valuable because it ensures that as weather forecasting systems improve, the model's 
performance can also improve without needing retraining. For example, if new forecasting 
technology reduces errors in TAFs so that TAFs and METARs become more closely aligned, a 
model trained on METARs will automatically benefit from the more accurate forecasts during 
inference. 
 
This consideration has been carefully addressed in the proposed models, which utilise METARs 
for training to capture the actual impact of weather on flight delays, while using TAFs during 
inference to make forward-looking predictions. This approach ensures that the errors within the 
models that we can control are kept separate from the weather forecast errors that are beyond our 
control. The raw METARs (for training) and TAFs (for inference) were processed to extract the 
weather variables with the open-source library metafora1. 

3 Results 
This section presents the outcomes of an evaluation conducted using historical flight and 
meteorological data. Two distinct datasets were utilised to assess performance. The first dataset 
encompasses the four-month period designated as the test set, while the second dataset spans the 
eight-month period when the model was provided to some airlines, airports and ANSPs during a 
live trial. Both datasets include all intra-ECAC flights operated by aircraft listed in the Base of 
Aircraft Data, which accounts for 95% of all aircraft types.  

 
 
1 https://github.com/ramondalmau/metafora  
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Each observation within these datasets corresponds to an EFD transmitted by a flight.  
Consequently, the reader should keep in mind that the dataset contains more observations than 
flights, and a flight may contribute to the performance metrics multiple times. Furthermore, each 
observation (i.e., EFD) contains the most up-to-date flight information available at the moment of 
its emission. This information serves as input for the three sequential machine learning models. 
Additionally, it is important to emphasise that the Knock-on model used in the experiment 
incorporates weather information at the departure airport around the EOBT. Similarly, the 
AirborneTime is dependent on weather data at the destination, which is based on the current ETA 
as predicted by the ETFMS. As discussed in the previous section, METARs at EOBT/ETA were 
used for training, while the latest TAFs before the submission of the EFD, covering the EOBT/ETA, 
were used for inference. 
 
The performance of the individual models that compose PETA, as well as the entire ensemble, on 
the test and live trial sets is consistently compared against the predictions of the ETFMS at the exact 
same time. The ETFMS predictions are extracted from the EFD used to populate the input features 
for the models. For clarity, the ETFMS predictions will be referred to as “Current” throughout the 
remainder of this paper. 

3.1 Test set (from March 1st to June 30th, 2023): 
Section 3.1.1 provides an overview of the performance metrics for the individual models in the test 
set, each predicting its respective target independently. Specifically, for flights that were not 
regulated from submission of the IFP to termination, it entails comparing the predicted departure 
delay according to the Knock-on model with the actual departure delay value. Similarly, this section 
compares the predicted ATFM delay by FADE in each observation of a regulated flight with the 
actual ATFM delay just prior to departure. It also includes a comparison of the predicted airborne 
time, as generated by the AirborneTime model, with the actual airborne time for all flights, 
regardless of whether they were regulated or not. 

Section 3.1.2, on the other hand, delves into the collective performance of the PETA system in the 
test set. In this evaluation, predictions are still generated on an observation-by-observation basis, 
but the ensemble's inputs are based on predictions made for the previous flight operated by the 
same aircraft recursively. As a result, the distinction between regulated and non-regulated flights 
may be obscured, as predictions are made on an aircraft registration basis rather than for each 
individual flight. 

To clarify, when a flight is subject to one or more ATFM regulations, the FADE model predicts the 
ATFM delay specifically for that flight. This predicted ATFM delay, along with the predicted 
reactionary rotational delay, contributes to a ground delay that can propagate to subsequent flights 
operated by the same aircraft, as outlined in Algorithm 1. Consequently, even flights not directly 
subject to any ATFM regulation may experience delays due to the cascading effect of ATFM 
regulations affecting previous flights of the same aircraft. The propagation of predictions is 
illustrated in Figure 4. 
 

 
 

Figure 4. Illustrative example showing how flight legs not directly affected by ATFM delays could still 
be predicted to experience ground delays due to the anticipated ATFM delay of preceding legs. 
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The blue boxes represent the block time from off-block to in-block; the red box indicates the 
ATFM delay; and the orange box denotes the reactionary rotational delay. Flight legs are shown 
in chronological order, from the left to the right. The first flight is regulated and FADE predicts 
an increase of ATFM delay, which propagates to the subsequent legs as rotational reactionary 
delay. 

 
Thus, to avoid the introduction of arbitrary classification rules for predictions, no distinction was 
made between regulated and non-regulated flights. As a result, the ensemble's performance 
metrics shown in Section 3.1.2 apply to all flights, regardless of their ATFM status, when predicting 
the ETA. 

3.1.1 Individual models 

This section thoroughly examines the performance of each of the three models in predicting their 
respective targets. To streamline the presentation and maintain conciseness, performance metrics 
are aggregated for the entire test set without differentiating between various look-ahead times. 
Nevertheless, it is important to note that the performance of the models may vary with the look-
ahead horizon due to the dynamic nature of some features. For instance, one of the most important 
features of FADE is the time to EOBT, which means its performance is likely to change with 
different prediction horizons. Similarly, the ATT of the Knock-on model depends on the ETA and 
EOBT of the inbound and outbound flights, which may change with time. An analysis of how 
performance degrades with look-ahead time for the entire PETA ensemble, due to the quality of 
the input data, will be presented in subsequent sections. 
 
Figure 5 shows the (signed) cumulative prediction error distribution of both current and machine 
learning models. Complementing this figure, Table 2 presents the key metrics of the absolute 
prediction error distribution for the machine learning models in comparison to the current 
predictions.  
 

   
(a) Reactionary delay (b) ATFM delay (c) Airborne time 

 
Figure 5. Empirical cumulative distribution function of the various prediction errors in the test set. 

Table 2. Absolute prediction error distribution metrics (min) in the test set. 

Output Reactionary delay ATFM delay Airborne time 
Model Current Knock-on Current FADE Current AirborneTime 
Mean 10.3 6.6 15.2 9.7 5.0 3.4 
Std. 15.0 8.8 23.2 10.7 4.5 3.4 
5th Perc. 6.0 4.4 0.0 0.0 4.0 2.6 
25th Perc. 0.9 0.4 0.0 2.5 0.3 0.2 
Median 3.0 2.0 8.0 6.7 1.9 1.2 
75th Perc. 12.0 8.1 19.0 13.2 7.0 4.6 
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Output Reactionary delay ATFM delay Airborne time 
95th Perc. 34.0 18.6 56.0 30.6 13.6 9.3 
 
Figure 6 displays the Shapley value distribution for the different models. In short, the Shapley 
values represent the average marginal contribution of each feature in the model across all possible 
combinations of features. This means that the Shapley value for a given feature is the average 
difference in the model’s prediction when that feature is included versus when it is not, considering 
all possible subsets of the other features. This provides a measure of the importance of each feature 
in the model’s predictions. For more information on Shapley values, please see (Lundberg, 2020) 
and the references therein. In this kind of figure, the y-axis indicates the name of the features, in 
order of mean absolute Shapley value from the top to the bottom. Each dot in the x-axis shows the 
Shapley value of the associated feature on the prediction for one observation, and the colour 
indicates the magnitude of that feature: red indicates high, while blue indicates low. By definition, 
positive (resp. negative) Shapley values increase (resp. decrease) the prediction with respect to the 
expected value of the target in the train set. The specific results will be discussed in their respective 
sections. 
 

   
(a) Reactionary delay (b) ATFM delay (c) Airborne time 

 
Figure 6. Distribution of Shapley values for PETA in the test set. For the (c) Airborne time, the ETFMS 

predicted airborne time is the most important feature. This key feature has been omitted in this 
figure because its Shapley values are an order of magnitude higher than those of the other 
features, which would overshadow their importance. 

 
Knock-on 
 
The prediction error of this model is computed as the difference between the actual off-block time 
(AOBT) and the POBT. Positive values indicate that the model is overly optimistic, predicting less 
reactionary delay than what actually occurred, whereas negative values indicate that the flight 
departed earlier than expected.  
 
The Knock-on predictions are compared against the off-block time as reported in the EFD. It is 
important to note that the off-block time may undergo updates during the flight's course, often 
prompted by delay messages from the aircraft operator. Similarly, for CDM airports, more precise 
off-block time estimations can be provided in the form of target off-block time (TOBT) or target 
start-up approval time (TSAT). The current model (i.e., the ETFMS) effectively takes in to account 
these updates. 
 
In terms of absolute off-block time prediction error, Table 2 shows that the Knock-on model reduces 
the mean value by roughly 30% (from 10.3 to 6.6 min). This reduction is also visible in the remaining 
distribution metrics, albeit with slightly different absolute and relative figures. While a 30% 
improvement is certainly significant, it raises an important question: What is the operational 
impact of a 30% enhancement in off-block time prediction? This crucial question, which also 
applies to the other models and thus PETA, will be further explored in the conclusion of this paper. 
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Figure 5(a) shows that, when compared to the current model, the Knock-on model consistently 
improves off-block time predictions for non-regulated flights. This improvement is mostly visible 
on the positive side of the distribution, indicating the Knock-on model's ability to anticipate 
reactionary delays well before the aircraft operator updates the off-block time information in the 
system with more precise values.  
 
The significant improvement observed can be attributed to a critical distinction: the current model 
does not include the minimum turn-around time when identifying overlapping consecutive flight 
plans operated by the same aircraft registration. In practical terms, this could result in scenarios 
where the arrival time of a flight aligns unrealistically closely with the off-block time of the 
subsequent flight, operated by the same aircraft registration, until the aircraft operator provides 
more accurate timing information. The Knock-on model, on the other hand, excels at identifying 
these scenarios by leveraging historical observations to learn about the minimum turn-around 
time, which effectively becomes a latent variable of the model. This figure also shows that, albeit 
to a lesser extent, the Knock-on model demonstrates the ability to identify flights that systematically 
depart earlier than expected. This, in turn, helps to mitigate the negative tail of the cumulative 
prediction error distribution, diminishing overly pessimistic predictions.  
 
Figure 6(a) reveals, unsurprisingly, that the most significant feature of the Knock-on model, in terms 
of mean absolute Shapley values, is the ATT. Because the ATT is computed based on the ETA of 
the inbound flight, this consequently implies that the performance of the Knock-on is highly 
sensitive to the quality of the previous ETA prediction. Lower values of this feature are associated 
with a high rotational reactionary delay. Other notable features include the aerodrome of 
departure, the aircraft operator, and the aircraft type. Weather-related features also play a role, 
although their significance is considerably less. 
 
FADE 
 
The prediction error of this model is computed as the difference between the actual ATFM delay 
right before departure and the predicted one. Like the Knock-on model, positive values indicate that 
the model was overly optimistic, predicting too much ATFM delay improvement, whereas 
negative values indicate that the flight departed with less ATFM delay than that assigned by CASA 
at the prediction time. In this case, the current model, in absence of a more elaborated baseline, 
consists of using the current ATFM delay assigned by CASA (reported in the EFD) as the best 
prediction. 
 
The performance of FADE depends significantly on the look-ahead time, with the time to EOBT 
being a crucial feature. FADE was trained using various ATFM delay updates for each flight, 
meaning each training observation corresponds to a specific message about the flight rather than 
the flight itself. These messages can vary greatly, with some sent 5 hours before EOBT and others 
just 30 minutes prior. The same methodology applies to the evaluation process. During FADE 
evaluation, aggregated metrics are computed based on these individual messages rather than 
entire flights, disregarding the look-ahead time to ensure consistency with the evaluation of the 
other two models. For a detailed assessment of performance relative to the prediction time horizon, 
please refer to the evaluation of the PETA ensemble. 
 
In terms of the absolute ATFM delay prediction error distribution, as shown in Table 2, FADE 
manages to reduce the mean error by approximately 5.5 min (36%). It is worth noting that a large 
portion of this reduction is due to observations on the negative side of the signed ATFM delay 
prediction error distribution, as discussed in the previous paragraph. Furthermore, other key 
distribution metrics show significant improvements, with a particular emphasis on the 95th 
percentile, which is reduced by 25.4 min (45%). These findings suggest that the evolution of ATFM 
delay can be predicted to a certain extent using historical observations. 
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Figure 5(b) shows that FADE outperforms the current model in the negative tail of the cumulative 
prediction error distribution. This fact is consistent with expectations, given that the ATFM delay 
assigned to flights is frequently reduced due to the CASA algorithm's optimisation efforts. CASA 
attempts to improve the ATFM slots of regulated flights, ensuring that they depart as close to their 
EOBT as possible, through the so-called true revision process. As a result, current model’s 
predictions of ATFM delay are generally pessimistic, particularly when made well ahead of the 
EOBT.  
 
Figure 5(b) also highlights an important point: FADE faces difficulties in determining whether the 
ATFM delay will remain stable or increase. In these scenarios, the current model outperforms 
FADE. This gap can be attributed to FADE's lack of network awareness, as it generates predictions 
based solely on flight-specific information, without taking into account other ATFM regulations 
present in the network even if not directly affecting the flight. These unaccounted-for regulations 
could potentially have a greater impact on the flight, causing drastic changes in its delay. To 
effectively address this issue, future work should focus on developing a network-aware model for 
FADE. Such a model should be capable of identifying situations in which the ATFM delay remains 
unchanged or increases due to the complex interaction between regulations, allowing for more 
accurate predictions. The authors believe that expanding the training dataset laterally (i.e., to 
include more features) would bring more performance benefits than expanding it vertically (i.e., to 
add more observations). 
 
Figure 6(b) demonstrates that the most significant feature of the FADE model, in terms of mean 
absolute Shapley values, is the current ATFM delay. This is followed by the number of regulations 
affecting the flight and the look-ahead time of the prediction relative to EOBT. The protected 
location (be it airspace, airport, group of airports, or point) where the most penalising regulation 
affecting the flight is implemented also plays a non-negligible role. 
 
AirborneTime 
 
The prediction error of this model is computed as the difference between the actual airborne time 
and the predicted value. Notably, unlike the previous models, positive values in this context 
indicate that the model was overly optimistic, predicting a shorter duration than the actual flight 
time, whereas negative values indicate that the flight completed its journey in less time than 
anticipated. In the case of the current model, the prediction is based on the difference between the 
EFD’s ETA and estimated take-off time (ETOT) at prediction time. 
 
The metrics presented in Table 2, particularly the absolute airborne time prediction error 
distribution, clearly show that the improvement with respect to current values remains somewhat 
modest in absolute terms (measured in min). However, it is important to note that the relative 
improvement is not insignificant, amounting to approximately 30% when the MAE is considered. 
Unlike FADE and the Knock-on models, which achieve significant reductions in MAE by several 
min, the gains achieved by the airborne model are expected to be more limited.  Notably, ETA 
predictions made by the current system when the flight is already in flight or very close to take-off 
are very accurate. As a result, there is little room for improvement in such scenarios, and the 
majority of research efforts aimed at improving ETA predictions should be directed towards 
improving take-off time predictions. 
 
Figure 5(c) shows that the AirborneTime model is effective at improving current predictions at both 
ends of the distribution, with the most notable improvements occurring on the negative side. This 
finding indicates that the AirborneTime model succeeds at identifying flights that consistently 
complete the journey in less time than current estimates. Such deviations can occur as a result of a 
variety of factors such as time buffers, speed adjustments, or ATC shortcuts, among others. 
Furthermore, the minor improvement observed on the positive side suggests that the airborne 
model has a greater ability to identify flights that will spend more time in the air than the current 
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model originally predicted. This could be attributed to factors such as bad weather or recurrent 
traffic congestion at the destination airport. 
 
Figure 6(c) indicates that, based on mean absolute Shapley values, the distance of the planned route 
appears as the most significant feature of this model. However, it is crucial to highlight that the 
model also considers the predicted airborne time according to ETFMS, which is actually the most 
important feature. This key feature has been omitted from Fig. 6(c) because its Shapley values are 
an order of magnitude higher than those of the other features, which would overshadow their 
importance. Following this, the city-pair (origin and destination airports), aircraft operator, and 
aircraft type are also important features. Similar to the Knock-on model, features related to the 
weather conditions at the destination are utilised by the model, but they do not significantly 
contribute to the prediction. This is again in terms of mean absolute values. 

3.1.2 PETA: combined models: 

This section presents the quantitative results of PETA predictions (i.e., the amalgamation of the 
three models) on the test set. The ETA predictions generated by PETA will be compared to those 
of the current system under identical conditions. It is important to note that, as in the previous 
section, the term “Current” refers to the ETFMS. 
 
To begin, Fig. 7 shows the distribution of (signed) ETA prediction errors in the test set, allowing 
for a comparison with the results presented for the individual models (see Fig. 5). These errors are 
computed as the actual time of arrival (ATA) minus the predicted ETA, consistent with previous 
evaluations. Consequently, positive values denote unexpected delays, whereas negative values 
indicate that the flight arrived at the destination airport earlier than predicted. 
 

 
Figure 7. Empirical cumulative distribution function of the ETA prediction error in the test set. 

Remember that ”Current” refers to ETFMS predictions. 

Figure 7 closely aligns with the cumulative distributions previously shown for the individual 
models. The reader should keep in mind that accurate predictions have a cascading effect, 
positively influencing predictions for subsequent flights in the sequence, thereby amplifying the 
overall improvement in ETA predictions. Additionally, the shortcomings observed in FADE's 
performance on the positive side of the ATFM delay prediction error distribution are partially 
offset by the advantages offered by the Knock-on model in that region. Specifically, the Knock-on 
model excels in predicting flights with delayed departures resulting from rotational reactionary 
delays, thereby contributing to a more balanced performance. 
 
Complementing these results, Fig. 8 presents a histogram illustrating the differences in absolute 
ETA prediction errors between the current system and PETA within the test set. Each bar in this 
histogram represents the frequency of a particular difference in error values. Specifically, each 
observation corresponds to a single prediction, and the value for each observation was determined 
by first calculating the absolute difference between the actual time of arrival (ATA) and the current 
system's estimated time of arrival (ETA), and then subtracting the absolute difference between the 
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ATA and PETA's ETA. As a result, the positive side of the distribution shows the number of 
instances where PETA's predictions were more accurate than those of the current system, in terms 
of absolute error. Conversely, the negative side indicates the number of instances where the current 
system outperformed PETA in predicting the ETA. 
 

 
Figure 8. Histogram of the differences between the current and PETA absolute ETA prediction errors in 

the test set. For completeness, the mean and median absolute values of both the blue and red 
distributions are also included. 

Figure 9 presents the same values (absolute ETA prediction error difference between the current 
system and PETA) but shows the average error for the top 50 airports with most intra-ECAC 
arrivals. 
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Figure 9. Differences between the current and PETA absolute ETA prediction errors per airport in the 

test set. (Each circle is an airport with its size proportional to the number of arrivals 
considered.) 

Figure 9 shows that, on average, PETA provided more accurate ETA predictions than the current 
system for all considered airports, ranging from 2 min better for Catania airport (LICC) to 13 min 
better for Alicante airport (LEAL). More detailed analysis is required to understand the large 
differences between airports. As an example, a relatively high percentage of regulated flights for a 
given destination airport might positively impact the PETA predictions, allowing FADE to 
improve upon the current system's predictions. 

3.2 Live trial set (from July 1st, 2023, to February 29th, 2024): 
This section goes beyond hypothetical performance on the test set and discloses the results of 
comparing PETA predictions to those of the current system over an eight-month period of real-
world operation. Throughout this period, PETA was frequently utilised by a variety of 
stakeholders via a dedicated API. The subsequent qualitative feedback from users reinforces the 
quantitative results. 

3.2.1 Quantitative results: 

Figure 10 shows the mean absolute error (MAE) of the ETA predicted by PETA and the current 
system, grouped by month, as a function of the time to EOBT. This figure also shows the relative 
improvement (expressed as a percentage) of PETA with respect to the current system. It should be 
noted that, despite the primary goal of this section is to present the results from the live trial, the 
authors believed it was important to include equivalent figures from the test set for comparative 
analysis. The reader will quickly notice that this comparison aids comprehension of the observed 
evidence. 

 

(a) Test set 
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(b) Live trial set 

Figure 10. Mean absolute error and relative improvement as a function of the time to EOBT. Being 
consistent with the notation, blue represents PETA, red means current, and grey indicates the 
relative improvement. 

Figure 10 demonstrates that an ensemble of machine learning models working collaboratively to 
improve ETA predictions consistently outperforms current predictions across different look-ahead 
times. This observation holds particular significance within the look-ahead times ranging from 2 
to 6 h before the EOBT. As one approaches EOBT, existing predictions tend to be already quite 
accurate, leaving limited room for improvement. Conversely, when further away from EOBT, the 
information feeding into the machine learning models becomes more uncertain, consequently 
affecting the predictions made by the ensemble. It is crucial to bear in mind that, just as accurate 
predictions have a cascading positive effect on performance, any inaccuracies (e.g., stemming from 
unreliable input data far from EOBT) can have a detrimental impact on overall performance. These 
findings suggest that the proposed ensemble could provide the most significant operational 
benefits between 2 and 6 h before EOBT, and that its usage outside of this time frame may not be 
as beneficial.  

An intriguing observation stemming from Fig. 10 is that the relative improvement during the test 
set and the initial months of the live trial was notably higher than in the later months of the trial. 
One might initially attribute this trend to a data drift issue necessitating re-training of the 
constituent models within PETA. However, upon closer examination, it became evident that the 
relative improvement of PETA is intricately linked to the severity and volatility of ATFM delays 
within the network: in the absence of severe and dynamic ATFM delays, FADE offers no significant 
benefits. Furthermore, the reduction in rotational reactionary delays, triggered by primary delays 
such as ATFM delays, makes the Knock-on model less essential in the ensemble. In such optimistic 
scenarios for flight operations, the current system performs admirably, and any potential relative 
improvement looks small in comparison. 

The assertion made earlier gains support from Fig. 11, which depicts the distribution of flight states 
precisely at the moment of prediction, independently of the look-ahead time. In simpler terms, for 
every individual prediction (i.e., EFD), the flight’s specific state was captured to create this visual 
representation. 
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(a) Test set 

 

(b) Live trial set 

Figure 11. Distribution of flight states. FI: Filed, FS: Filed slot allocated, SI: Slot issued. 

To clarify, a flight is in the state ”Filed” (FI) after ETFMS received its flight plan. A flight is in the 
state ”Filed, Slot Allocated” (FS) after slot allocation was applied to it due to an ATFM regulation. 
A flight is in the state “Filed, Slot Issued” (SI) after slot allocation was applied to it and the 
corresponding slot allocation message was sent. The Slot Allocation Message is sent two hours 
before the EOBT of each pre-allocated flight, known as Slot Issue Time 1. An allocated slot cannot 
be taken by another flight, unless the regulation is deep rectified, and the calculated take-off time 
has not been forced. Moreover, the slot allocated to a flight may be improved by the true revision 
process of CASA. Thus, flights in FS and SI state are subject to ATFM regulations, while flights in 
FI state are not.   

Figure 11 provides valuable insights. Notably, during months marked by a greater relative 
improvement (as observed in Fig. 10), like March and April 2023, a substantial proportion of 
predictions were made for flights in the FS and SI states. Conversely, in months with lower 
reported relative improvement, like February 2024, most predictions corresponded to flights in FI 
state (i.e., not regulated). This intriguing pattern suggests that PETA delivers its most significant 
benefits during challenging network conditions. 

It should be noted that the performance of the PETA ensemble, presented in this section, is a 
cumulative result of the contributions from three distinct models. An initial analysis, which 
involved selectively deactivating individual models within the ensemble to assess their marginal 
contribution on the overall performance, revealed that Knock-on and FADE are the primary 
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contributors to PETA’s performance. Interestingly, their relative contributions are situation-
dependent: on days with a high volume of ATFM regulations, FADE takes precedence, while on 
regular days, Knock-on proves to be more important. In contrast, the AirborneTime model 
contributes little to overall performance. 

Finally, it is important to note that the three PETA models operate in a cascading fashion and along 
a flight sequence. This means that any incorrect prediction of one model may have negative 
consequences for subsequent predictions (for the same or next flights). For example, as illustrated 
in Fig. 4, if the ATFM delay of the first flight leg had remained unchanged at a relatively low value 
and assuming no other operational disruptions, not only would the predicted ETA for the first 
flight leg be incorrect, but the predicted ETAs for subsequent flight legs would also be wrong due 
to the predicted propagation of ground delays -- an outcome that did not actually occur. The 
sensitivity of each model to errors in their inputs, which should not be confounded with the 
marginal contribution discussed in the previous paragraph, remains unquantified. This will be the 
focus of future research. 

3.2.2 Qualitative results: 

As mentioned in Section 3.2, the PETA stakeholders have been provided with PETA predictions 
all along the live trial period (from July 2023 to February 2024) either through offline data (monthly 
predictions) or via dedicated API internally developed. The motivation was to assess how the 
PETA predictions could be used in current and live situations and what benefit it could bring to 
stakeholders in their daily duties. This section describes stakeholders’ subjective feedback collected 
via an online survey and based on six answers: three from airlines, two from ANSPs and one from 
airport. 

Over the four of participants who used PETA, the level of usage was reported from low (3 ratings) 
to medium (1 rating) with half of the users who reported to send more than 500 API request per 
week. The main usage was to get PETA predictions for operational use or for post operation 
analysis. However, no one made operational decisions based on PETA predictions.  

Subjective feedback on PETA performance is consistent with quantitative results previously 
reported: The absolute performance of PETA was found overall high (4 ratings out of 6 in and all 
the participants found that PETA predictions are better than the ones provided by NM or by their 
internal tool). Finally, considering the valuable PETA predictions, some of the stakeholders express 
the need to be incorporated into the NM systems to feed their internal tools (e.g. airport Demand 
and Capacity Balancing tool). 

4 Conclusions 
Results have shown that PETA’s ETA predictions are better (have a smaller absolute error) than 
the current system’s ETA predictions for about two thirds of the flights in the test set. The current 
system is better for the remaining third of flights. In the test set, when PETA performs better, the 
average and median improvements are 14 minutes and 7 minutes respectively. However, when it 
under-performs, the average and median deterioration is 7 minutes and 4 minutes respectively. 
The optimal time frame in terms of relative improvement, with respect to the current system, 
appears to be between 2 and 6 hours before the departure time.  

As of now, we are conducting an investigation to understand why the current system occasionally 
produces superior predictions. The insights gained from this study may contribute to future 
enhancements in PETA. Our approach involves a detailed examination of extreme discrepancies, 
both positive and negative, to deepen our understanding and refine the model. Still, PETA gives 
more accurate predictions on average at different lookahead times in the six time-bins we 
considered prior to departure. Additionally, PETA’s improvements over the current system are 
generally more substantial (as evidenced by the longer tail for PETA’s improvements in Fig. 8). 
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The current version of PETA takes predicted taxi times from ETFMS. If these predictions could be 
improved with a dedicated model, PETA’s ETA predictions could be improved further. The TITOP 
project within the EUROCONTROL EATIN framework has, in fact, started to develop models for 
taxi times for a selection of the busiest ECAC airports. A future development could be to 
incorporate TITOP into PETA. The potential performance improvement, however, is still 
unknown. 

Looking at individual model results, the absolute prediction error of the current system (according 
to its target) is largest for ATFM delay, then for reactionary delay then for airborne time (see Table 
2). Given that the Knock-on, FADE and AirborneTime models each show an approximate 
improvement over the current system of 30%, this suggests that the most beneficial component of 
PETA could be FADE, then Knock-on, then finally the AirborneTime model. In principle, we would 
expect PETA’s performance to be best when it uses all three models. However, because the three 
models are not independent, a comprehensive analysis of the marginal contributions of each model 
to overall PETA predictions is required to confirm this.  

Although our paper does not provide a detailed analysis of how prediction errors vary with the 
number of flight legs in the rotation, we hypothesise based on preliminary observations that 
prediction errors may increase as the number of flight legs increases. This potential degradation in 
performance could be attributed to the accumulation of error at each flight leg, compounding over 
time. A comprehensive evaluation of these dynamics is warranted, and we recommend that future 
work focus on conducting such analyses to better understand and mitigate these effects. 

Regarding the qualitative results of the live trial, the authors acknowledge that the sample size is 
relatively small. Conducting live trials and securing participant involvement present numerous 
logistical challenges. However, despite the limited sample size, the insights gained are valuable 
and provide a foundation for future studies. We plan to expand these trials in subsequent research 
to gather more extensive data and further validate our findings. 

An issue that has not yet been addressed is how to assess the operational benefit of PETA in the 
live trial and beyond. This paper shows significant average performance improvement over the 
current system, yet how does this translate into operational benefit? Given there will be a financial 
cost to users to implement PETA in their operational systems, will the implementation costs for 
users be sufficiently outweighed by the cost-savings delivered by PETA? One possible approach 
would be to monetise the error (accuracy) of ETA predictions, but this is a large project and falls 
outside of the scope of the current work.  
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