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Abstract 
Although long-distance international travel contributes 
significantly to global emissions from the transport sector, 
disaggregated travel demand forecasting models on long-distance 
international travel are scarce. Large infrastructure investments 
such as high-speed rail may have a profound impact on long-
distance international travel demand and thus need to be evaluated 
using such models. In this study, a disaggregated travel demand 
forecasting model is estimated using Swedish national travel 
survey data from 2011-2016 along with detailed supply data from 
European road, train, and ferry networks and a World-wide air 
network, aiming at forecasting Swedes’ long-distance travel 
abroad. Mode choice, destination choice and trip generation are 
modelled by traditional Nested Logit models and Multinomial 
Logit models. The model is segmented by purpose (private or 
business) and for private trips also by number of nights away. The 
model estimation results reveal effects of individual socio-
economic attributes, level-of-service attributes, and destination 
characteristics. Marginal effect estimates of level-of-service 
attributes for train suggest that infrastructure investments in high-
speed rail network may have a profound effect on demand for 
long-distance international travel, especially for business trips.  
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1 Introduction 
Long-distance international travel differs from regional and national travel in many respects, such 
as what determines traveller trip generation, mode, and destination choice. Because of the long 
distances of these trips, they usually contribute significantly to a country’s total passenger 
kilometres travelled, even though the number of long-distance international trips is generally 
lower than the number of regional and national trips. Passenger kilometres travelled by mode is 
important, especially because it is related to CO2 emissions from transport, for which ambitious 
reduction targets have been set both at the EU level (European Environment Agency, 2021) and 
national levels (Swedish Ministry of the Environment, 2021). Furthermore, there has for several 
years been an increased focus in Europe on a Single European Railway Area and long-distance 
cross-border passenger rail travel (European Commission, 2021). Travel demand forecast models 
are an important part of large-scale modelling to provide accurate inputs for cost-benefit analyses 
(CBA) of large infrastructure investments or policy measures. The major advantage of these 
forecast models is that planned but not implemented investments and policies can be tested in the 
models and effects analysed. Most operational travel demand forecast models, such as national 
travel demand models (Beser and Algers, 2002; Daly, 2007; Rohr et al., 2013), include components 
for trip generation, destination choice, and mode choice at the individual or population segment 
level. Despite the above, literature on travel demand models that estimate the key determinants of 
long-distance international travel is still scarce. The definition of long-distance international in the 
literature also varies, but in many cases, it refers to cross-border trips that are longer than 100 km.  

One of the few existing demand models of long-distance international travel is Trans-Tools, which 
is a transport model for both passenger and freight transport in 42 European countries. Rich and 
Mabit (2012) described the demand model for passenger transport. In Trans-tools, there are 
separate demand models for business trips, vacation trips, and other private trips. The model 
includes five modes: car as driver, car as passenger, bus, train, and air. It is based on data from the 
DATELINE travel survey conducted in 2000. The networks (car, train, and air) and their level of 
service attributes are described in Rich et al. (2009). A model called Trust (TRT Trasporti e 
Territorio, 2018) was developed as a follow-up to the Trans-tools model; however, in Trust, there 
is no demand model; instead, demand is treated as a fixed origin-destination (OD) matrix. Pieters 
et al. (2012) describe an effort to develop sub-models for cross-border traffic in the Dutch national 
model. Somewhat more common than large-scale demand models of international travel are the 
so-called direct-demand models, especially concerning tourist travel. These models typically 
calculate the total number of tourists travelling to/from a destination zone as a function of e.g., 
GDP and population. Owing to the aggregate nature of these models, it is not possible to calculate 
the cross-elasticities between the modes. Examples of direct demand models include Divisekera 
(2010) for Australia, Santana-Jiménez and Hernández (2011) for the Canary Islands, and Li et al. 
(2017) for China. Some direct-demand models focus on a certain mode, especially air travel, and 
predict the number of air trips to certain airports (Gelhausen et al., 2018; Kim and Shin, 2016; Suh 
and Ryerson, 2019). Dargay and Clark (2012), on the other hand, modeled total travel distance per 
individual for long-distance trips independent of mode, and Janzen et al. (2018) utilized mobile 
phone data to validate the number of long-distance trips, showing that the number of long-distance 
trips is often underestimated in travel surveys. There are also studies that focus on coach as a mode 
for long-distance travel and investigate which factors increase its competitiveness relative to other 
modes (Van Acker et al., 2020) and how to adapt the coach service to make it attractive specifically 
for business travellers (Lannoo et al., 2018).     

The lack of travel demand models for long-distance international travel can be a problem in 
practice when certain investments or policy measures have a substantial impact on international 
travel demand. One such example is high-speed rail that connects large cities across countries. 
Witlox et al. (2022) determined a number of existing bottlenecks for European rail, such as train 
travel time not being fast enough and too many interchanges. An analysis of the ability of policy 
measures and investments to eliminate these bottlenecks would benefit from travel demand 
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models for long-distance international travel. For Sweden, the plans of high-speed rail linking 
Stockholm, Gothenburg, and Malmö (with easy access to Copenhagen) have the potential to alter 
the current picture of domestic travel as well as international travel. To systematically quantify the 
impact of investments such as high-speed rail on travel demand in CBA, national demand models 
need to be expanded to include demand for long-distance international travel.   

An effort is made in this study by estimating demand models for Swedes’ long-distance travel (trip 
distance of 100 km or longer). The current national model for passenger transport in Sweden, 
Sampers, previously included a module for international trips (Beser and Algers, 2002) but that 
module is no longer in use. In this study, models were estimated for private and business trips, 
where private trips include work trips1, study trips, shopping trips, vacation trips (the largest 
category), visit friends/relatives, recreational trips, and trips for religious purposes. Three models 
for private trips are estimated depending on nights away, showing the importance of the 
behavioural difference in mode and destination choice depending on how many nights the 
traveller is away. The estimated demand models include i) socio-economic variables such as 
income, age, sex, and children in the household; ii) level-of-service variables such as travel time, 
travel cost, and waiting time calculated from detailed European car, train, and ferry networks, as 
well as a worldwide network for air travel; and iii) destination attraction variables such as 
population, vacation zone, and GDP. The estimated demand models were further investigated by 
analysing the models’ value of travel time and by calculating model elasticities when changing 
cost, travel time, and waiting time for the train mode.   

The remainder of this paper is organized as follows. Section 2 describes the travel survey data and 
the European/Worldwide network used to generate the level of service attributes. Section 3 
presents details of the model formulation. Section 4 includes the model estimation results for mode 
and destination choices, trip generation, and high-speed rail scenario elasticities. In Section 5, the 
values of the travel time are discussed. Section 6 concludes. 

2 Data 

2.1 Travel demand data 
The travel demand data consists of 5174 observations of long-distance (one-way distance of 100 km 
or longer) international trips2 from the Swedish national travel survey for the years 2011-2016 
(Trafikanalys, 2017). The respondents in the Swedish national travel survey were asked which trips 
longer than 100 km they had made during the last month, and which trips longer than 300 km they 
had made during the last three months. There was one more national travel survey conducted in 
2019, but in the 2019 survey, only trips from the measurement day were asked, which resulted in 
very few long-distance international trips. Therefore, the 2019 survey was not included in this 
study. Of the 5174 observations, 194 observations had missing values in numbers of nights away, 
41 observations had missing values in travel mode, and 433 observations had missing values in 
trip origin and destination zone codes. Subtracting these observations leads to 4506 observations. 
Further analysis shows that 228 observations have possibly wrongly coded chosen travel choices, 
for example, one observation shows travel from Stockholm to Canary Island in Spain by car. This 
is checked by skimming the network described in Section 2.2. Finally, 4278 observations were used 
in the model estimation. 

 
 
1 Work trips are commute trips to work which are paid for by the traveller, unlike business trips which are trips 
paid for by the employer.  
2 The observations are tours from home to the destination and back home again, but we use the word trip in this 
paper for convenience. Trips that have start location within Sweden, while their destination is outside Sweden are 
categorised as international trips. We model the trip from Sweden to destinations abroad in the model estimation. 
In a possible future implementation of the model, it will be assumed that the homebound trip will be made by the 
same mode as the outbound trip.  
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After the data cleaning process described above, the trip data consists of 3561 (83%) private trips 
and 717 (17%) business trips. Out of the private trips, 324 (9%) are daytrips, 1348 (38%) are trips 
with 1-5 nights away, and 1889 (53%) are trips with six or more nights away.  Figure 1 shows the 
modal shares observed for private and business trips, where private trips are divided by the 
number of nights away. The modal shares for private trips differ significantly depending on the 
number of nights away, which is the motivation for testing model segmentation across this 
variable. Figure 1 shows that car trips dominate for private day trips, car and air trips are of 
approximately equal size for private trips 1-5 nights away, and air is the dominant mode for private 
trips 6+ nights away and for business trips. 

 
Figure 1. Modal shares for Swedes’ long-distance international trips in the travel behaviour survey 

from 2011-2016.  

Regarding the chosen destinations in the data material, travellers choose destinations further from 
Sweden for trips with more nights away. Figure 2 shows the share of trips with a destination within 
Nordic countries3, a destination within Europe outside Nordic countries4, and a destination outside 
Europe, for private daytrips, private 1-5 nights, private 6+ nights, and business trips. For day trips, 
destinations within Nordic countries dominate. For to 1-5 nights number of trips to Nordic 
countries and other EU countries is similar. For 6+ nights, destinations to other EU countries 
constitute the majority, while destinations outside the EU account for a significant share. For 
business trips, destinations to Nordic countries and other EU countries are the majority, while a 
considerable number of trips still have destinations outside the EU. 

 
Figure 2. Destination shares for Swedes’ long-distance international trips in the travel behaviour 

survey from 2011-2016. 

To estimate trip generation, the choice not to make a long-distance international trip must also be 
included. Individuals who do not make any long-distance international trips (they have made 
domestic trips as they are registered in the travel survey data) are therefore added to the data to 
estimate trip generation. We use this larger trip dataset to model the choice between no trip (only 
domestic travel), daytrip, 1-5 nights, and 6+ nights for private international travel, and the choice 
between no trip (only domestic travel) and trip for international business travel. No further 

 
 
3 The Nordic countries in this study refer to Denmark, Norway, Finland, and Iceland. 
4 Switzerland is included in the category of ”non-Nordic EU” even though Switzerland is not part of 
European Union. The non-EU Balkan countries such as Serbia are included in the category “Outside 
EU”. 
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segmentation of the number of nights away for international business travel was made because of 
the lack of data in some segments. 

Table 1. Socio-economic characteristics of the estimation sample.  
 Private 

Business  daytrip 1-5 nights 6+ nights 
Socio-
demographics N % N % N % N % 

Age 
Age <18 34 10% 106 8% 265 14% 0 0% 
Age 19-30 42 13% 185 14% 267 14% 46 6% 
Age 31-64 148 46% 756 56% 937 50% 644 90% 
Age >64 100 31% 300 22% 420 22% 27 4% 
Gender 
Male 188 58% 696 52% 919 49% 558 78% 
Female 136 42% 651 48% 970 51% 159 22% 
Household income 
HHInc<=25 TEUR 25 8% 77 6% 123 7% 8 1% 

HHInc<=70 TEUR 153 47% 545 40% 745 39% 167 23% 

HHInc>70 TEUR 91 28% 415 31% 532 28% 463 65% 

HHInc missing 55 17% 310 23% 489 26% 79 11% 

Car ownership 
No car 16 5% 154 11% 185 10% 48 7% 
One car 173 53% 643 48% 937 50% 258 36% 
Two cars 107 33% 463 34% 637 34% 352 49% 
More than two 28 9% 87% 7% 130 6% 59 8% 
Housing 
Living in Villa 236 73% 930 69% 1270 67% 538 75% 

Not in Villa 88 27% 417 31% 619 33% 179 25% 
Children in household 
Have 0-6 years old 

41 13% 168 12% 205 11% 164 23% 

Have 6+ years old 63 19% 304 23% 554 29% 142 34% 

The travel survey data used in this study were collected between 2011-2016. International travel 
during 2020-2021 has of course, in absolute numbers, been largely affected by the Covid-19 
pandemic and the restrictions that have been introduced. However, this does not necessarily mean 
that the underlying travel preferences of travellers have changed. In contrast, it is likely that people 
would like to travel if their circumstances were different. It is difficult to say today if there will be 
long-lasting travel behavioural changes caused by the pandemic, such as changes to travel time 
and travel cost sensitivities, which could make the demand model estimations conducted in this 
study less representative. Similarly, using survey data from to 2011-2016 also implies that 
preferences are assumed to be unaffected by flight shame and generational effects and that any 
self-selection effect is constant. Previous studies have shown that travel preferences are relatively 
stable over time and that the main sources of errors in travel forecasts are not related to changes in 
preferences; rather, they are related to incorrect assumptions about input data for the forecast year, 
such as assumptions on population income and fuel prices (Andersson et al., 2017). Furthermore, 
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Eliasson (2022) showed that the average daily travel time per person has been surprisingly stable 
over time, although communication technology and transport network speed have increased 
significantly. This implies that travellers today travel longer distances to access more opportunities; 
that is, travel time savings have been exchanged for increased access. Thus, improvements in 
digital communication during the pandemic are unlikely to lead to a reduction in the time spent 
travelling in the long term. 

2.2 Level of service and destination attraction data 
One of the major tasks of this work is to develop digital European-wide/worldwide networks for 
major travel modes so that level-of-service data can be generated from these networks. Level-of-
service data were generated at the zone level using the transport modelling software TransCad 
(https://www.caliper.com/tcovu.htm). The zonal system in the long-distance model component 
of the Swedish national travel demand model is used for zones within Sweden, whereas the NUTS5 
zone system is used to represent Europe. Outside Europe, nations are represented by zones. In 
total, four networks were developed: car/bus, train, air, and ferry. Networks for car/bus, train, 
and ferry are European-wide while the network for air is worldwide. These networks are described 
in detail below. 

The road network in the Swedish national travel demand model is used as the base network and 
constitutes the network for the Swedish territory. Road network data for the rest of Europe were 
extracted from OpenStreetMap (www.openstreetmap.org) in 2020 and were then added to the road 
network in Sweden. Only motorways and primary roads extracted from OpenStreetMap were 
added to keep the network at a feasible size. The complete network is illustrated in Figure 3. For 
each link, the free-flow speed, number of lanes, and indicator of one-way roads are available 
attributes. Note that there are two free-flow speeds: one for the car and the other for the bus. In this 
study, a bus is treated as a car at a lower speed. This simplification is mainly owing to the 
difficulties in collecting long-distance bus line schedule data. Thus, the long-distance bus 
alternative modelled is more similar to a charter bus. The shortest travel time path is skimmed in 
TransCad to generate level-of-service zone matrices for car and buses using the free-flow speed. 
The procedure generates travel time and cost matrices for car and bus respectively. It is assumed 
that cost per kilometre is 0.18 Euro per km for private car, and 0.088 Euro per km for bus. The 
kilometre cost for car is divided by the party size, which we know from travel survey data. The 
kilometre cost for bus is calculated by assuming that the kilometre cost of bus is similar to the 
kilometre cost of train in the low season. 

 
 
5 https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-20-092 
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Figure 3. European wide road network used for generating level-of-service attributes. 

Similar to the road network, the train network within Sweden was taken from the Swedish national 
travel demand model. The train network for the rest of Europe was then manually coded in 
TransCad, as shown in Figure 4. The travel time, travel cost, and frequency of some lines were 
obtained from the DB trip-planning tool (www.bahn.de) in 2020. For lines in which no ticket price 
data are available, a regression model is developed to impute the missing values, where the travel 
cost is modelled as a function of distance. To route on the train network, the road network is 
connected to the train network as a network for access/egress to train stations. This implicitly 
assumes that access and egress to train stations are carried out by car or taxi rather than by local 
public transport. However, this limitation is difficult to overcome because of the difficulties in 
collecting local public transport network data at a European level. Skimming is performed by 
shortest path routing, which minimizes the following generalized cost (min): 

𝐺𝐶 = 𝐼𝑛𝑉𝑒ℎ𝑇𝑖𝑚𝑒 + 1.5 ×𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 + 3 × 𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝑔𝑟𝑒𝑠𝑠𝑇𝑖𝑚𝑒
+ 5 × 𝑁𝑢𝑚𝑏𝑒𝑟𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

(1) 

The skimmed level-of-service attributes for train include in-vehicle time, access/egress time, 
waiting time within and outside Sweden, and travel cost6.  

 
 
6 Travel cost includes travel cost of access/egress by car, using a kilometre cost of 0.18 Euro/km. 
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Figure 4. An overview of the European train network. 

The network for air traffic is shown in Figure 5. The network includes Swedish domestic airlines, 
international airlines from Sweden to abroad, and international airlines that connect to Swedish 
airlines. The travel time was calculated assuming an average flying speed of 850 km/h. Price data 
are extracted from www.travelmarket.se for airlines from major Swedish hubs as well as major 
hubs in Europe. For airlines for which price data are not available, a regression model is developed 
to impute the price using lines with price data. The road network was connected to the air network 
as a network for access and egress. Thus, we assume that trips to and from the airport are 
conducted by car. In Sweden, around 80% of access/egress travel to airports is conducted by 
car/taxi (Berglund and Kristoffersson, 2020). The skimmed level service attributes for air include 
in-vehicle time, access/egress time, and travel cost7. Because there are no data available on waiting 
time at airports, this is not included in the model.  

 
Figure 5. An overview of the world-wide air network. 

 
 
7 Travel cost includes travel cost of access/egress by private car, using the kilometre cost of 0.18 
Euro/km. 
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The ferry network was extracted from OpenStreetMap, see Figure 6. Given the limited number of 
boat lines, data on frequency, ticket price, and travel time were manually collected from online 
sources such as www.directferries.se. The ferry network is connected to the road network. In this 
study, a ferry trip is defined when the route shows that the travel time on the ferry network is no 
shorter than that on the road network. This is to prevent trips in which most of the trips are on the 
road network to be categorized as trips with ferry as the main mode. The skimmed level-service 
attributes for ferry then include in-vehicle time, access/egress time, and travel cost. Waiting time 
was initially considered and tested in the model estimation but was dropped because most ferry 
lines have a low frequency, and it is no longer valid to assume the average waiting time to be half 
of the headway, as most travellers plan their departure time according to the ferry timetable. 

 

 
Figure 6. An overview of the ferry lines included in the model. 

Apart from the level-of-service data, attributes at the destination zone level were also collected. 
These variables include GDP per capita, population, employment, and number of hotel beds. 

3 Model formulations 
Travel demand models are formulated using the classical discrete choice theory and logit 
formulations (McFadden, 1974). Note that the model formulation differs somewhat from 
McFadden in that there is a nested logit model for mode and destination choice and a multinomial 
logit model for trip generation, that is, not all three levels are estimated simultaneously. Figure 7 
illustrates the logit tree for private trips, whereas the model for business trips is not segmented by 
length of stay. It is thus assumed that travellers experience a (dis)utility of the trip, which includes 
both observable and unobservable parts. The unobservable part is captured by the error term, 
which is assumed to be Gumble distributed such that one arrives at a logit formulation.  
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Figure 7. Overview of the logit tree structure for private long-distance international trips from Sweden. 

For the mode and destination choice models, the utility equation for an alternative (mode i and 
destination j) is formulated as 

𝑈!,# = 𝐴𝑆𝐶! + 𝛾!𝐼 + 𝛽!𝐿!,# + 𝛿!𝐷# + 𝜙𝑙𝑜𝑔I𝐴#J + 𝜑! + 𝜀!,# (2) 

In the above equation, 𝐴𝑆𝐶! is the alternative specific constant for mode i. I is the vector of 
individual socioeconomic attributes. 𝐿!,# refers to the vector of level-of-service attributes for mode 
i to destination j. 𝐷𝑗 is the vector of destination variables per capita, such as GDP and number of 
hotel beds per resident. 𝐴# is a destination attraction variable (size variable) that represents the 
attractiveness in terms of the size and quantity of each destination zone, for which a non-linear log 
formulation is used (Daly, 1982), and 𝜑! refers to the error term at the mode level. Thus, alternatives 
with the same mode i will share the same error term 𝜑! and therefore, these alternatives are not 
independent of each other. 𝜀!,# refers to the error term, which is unique and independent of each 
alternative. 

The mode and destination choice models, with the utility function described in Eqs. (2) is a nested 
logit model, where the mode is on the upper level. The choice of model structure with mode ‘above’ 
destination or the other way around is an empirical question which is determined by the data. For 
consistency, the logsum parameter connecting the two levels in the model should be in the range 
of 0 to 1. However, in principle both mode ‘above’ destination and destination ‘above’ mode can 
have a logsum parameter in the range of 0 and 1.    

For the trip generation model, the utility function for an alternative k is formulated as follows, 
where k belongs to {no long-distance international trip; daytrip; 1-5 nights, and 6+ nights} for 
private international travel and {no trip and trip} for international business travel. However, this 
study does not consider multiple long-distance international travels from the same individual. This 
is considered to be a possible future improvement.  

𝑈% = 𝐴𝑆𝐶% + 𝜃%𝐼 + 𝜇%𝑇 + 𝜑%𝑙𝑜𝑔𝑠𝑢𝑚&'()*)+,-'(). + 𝜀% (3) 

In the above equation, 𝐼 is again a vector of socio-economic variables,  𝑇 is a vector of time-period 
variables such as Christmas, and 𝑙𝑜𝑔𝑠𝑢𝑚&'()*)+,-'(). is the logsum variable calculated from the 
estimated mode and destination choice model. 𝜃%, 𝜇% and 𝜑% are associated parameter vectors. The 
trip generation model is a Multinomial Logit model. 𝜀% is an error term that is unique and 
independent of each alternative.  
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Note that the separate estimation of the mode-destination choice model and trip generation model 
yields a lower estimate of the standard error of the logsum parameter when compared to a joint 
estimation of the mode-destination choice model and trip generation model. All variables were 
used in an initial model specification, and insignificant variables (at 5% significance level) were 
removed stepwise, except key level-of-service variables and alternative specific constants (ASC). 
Table 2 presents the variables used for the final estimation results. 

Table 2. Variable list in the final model. 
Variable name Description 
Individual socio-economic variables (𝐼) 
CarHH Number of cars in the household 
Female Dummy if the traveller is female 
Age<18 Dummy if the traveller’s age<18 
Age31_64 Dummy if the traveller’s age is between 31 and 64 
Age>64 Dummy if the traveller’s age>64 
Villa Dummy if the traveller’s home is a villa 
HHInc<=25 TEUR Dummy if the traveller’s household income <=25 000 EURO8 
HHInc<=70 TEUR Dummy if the traveller’s household income <=70 000 EURO 
HHInc>70 TEUR Dummy if the traveller’s household income >70 000 EURO 
HHIncMiss Dummy if the traveller’s household income is missing. 
INDInc<=30 TEUR Dummy if the traveller’s individual income <=30 000 EURO 
INDInc>30 TEUR Dummy if the traveller’s individual income >30 000 EURO 
IndIncMiss Dummy if the traveller’s household income is missing 
SmaChild Number of small children (0-6 years old) in household 
BigChild Number of big children (7-18 years old) in household 
NoWork Dummy if the trip is not a work trip 
Time period variables (T) 
Summer Dummy if a trip takes place in July or August 
Chris Dummy if a trip takes place within the period 20th December and 10th January 
Level-of-service variables (L) 
C_air Travel cost for air including cost for access/egress. 
C_train_p, C_train_b Travel cost for train including cost for access/egress, for private trip and business trip 

respectively 
C_car Travel cost for car  
C_bus Travel cost for bus  
C_ferry Travel cost for ferry including cost for access/egress 
TT_air In-vehicle time for air 
TT_train In-vehicle time for train 
TT_car In-vehicle time for car 
TT_bus In-vehicle time for bus 
TT_ferry In-vehicle time for ferry 
AC_air Access and egress time for air 
AC_train Access and egress time for train 
AC_ferry Access and egress time for ferry 
TW_train Waiting time outside Sweden for train 
Destination variables (𝐷!) and destination attraction variables (𝐴!) 
Pop (𝐴!) Population in 10 000 
Emp (𝐴!) Number of jobs in 100 000 
Beds (𝐴!) Number of hotel beds in 1000 
GDPPerCapita (𝐷!) GDP per capita in 100 000 Euro 
BedPerArea (𝐷!) Number of hotel beds per 100 residents 
HolZone (𝐷!) Dummy if the zone is a popular holiday destination9 

 
 
8 Here 1 Euro= 10 SEK. 
9 A list of zones that are defined as popular destination zones according to the Swedish tourist destination ranking 
(https://www.momondo.se/c/year-in-travel/) has been used to define these holiday zones.  
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Variable name Description 
Baltic (𝐷!) Dummy if the zone is on Baltic Sea coast 

In the destination and mode choice model estimation, the parameters associated with the level-of-
service variables are initially estimated per mode, except for the cost parameters. For instance, one 
parameter is estimated for in-vehicle time for trains, whereas the other is estimated for in-vehicle 
time for air. However, the estimation yields poor (wrong sign and insignificant) results in some 
model segments because there are few train trips to central Europe in the travel survey material. 
Thus, a common parameter was estimated for in-vehicle time for all public transport modes (bus, 
train, air, and ferry) and a common parameter for access/egress time for air and ferry after testing 
various model specifications. A more detailed discussion and sensitivity analysis of this issue are 
presented in Section 4.4. 

Another challenge is that destinations far away, such as Thailand, are attractive for Swedish 
tourists who seek a warmer climate in the winter, implying that travellers can put up with a long 
air travel time to reach a warmer destination. These destinations are often only accessible by air 
because of their long distances. Thus, the parameters of the destination variables are estimated for 
air and separated from those of the other modes. 

4 Estimation results 

4.1 Mode and destination choice models 
Table 3 presents the estimation results for the mode and destination choice model. The models 
were estimated using tailored code written by the authors in MATLAB. Note that there are four 
mode-destination choice models estimated for private day trips, private 1-5 nights, private 6+ 
nights, and business trips. The table shows the final model. The initial model specifications were 
set to include all variables that are relevant and then insignificant variables (at 5% level of 
significance) have been removed gradually. Several model specifications were tested before the 
final version was selected. The t-values in the table indicate the statistical significance of the model 
parameters. A t-value (absolute value) larger than 1.96 means that we can say with 95% confidence 
that the parameter is different from zero, i.e., it has an effect in the model. A few parameters with 
lower levels of significance were retained in the model (shown in red in Table 3). These are either 
alternative specific constants that are used as calibration constants in the implementation of the 
model or important level-of-service variables.  Apart from addition, the variable “Villa” in the 
utility function of alternatives with Car is also maintained, which is significant at 10% level of 
significance. 

Table 3. Estimation results for mode and destination choice models for Swedes’ long-
distance international travel segmented based on trip purpose and number of nights 
away. 

Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

   Private daytrip Private 1-5 
nights 

Private 6+ 
nights 

Business 

Destination variables 

𝜙  Log(Pop) All     0.441 21.4
4   

𝜙  Log(Beds) All 1.000 12.8
8 0.428 14.7

7     

𝜙  Log(Emp) All       0.717 23.7
0 

𝛽"#$%#&'&#(.*+',&  BedPerArea Car, 
bus, 

    0.092 14.4
8 0.059 3.65 
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Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

train, 
ferry 

𝛽"#$%#&'&#(.(,&  BedPerArea Air     0.040 21.8
3 

  

𝛽-+..*+',&  HolZone 

Car, 
bus, 
train, 
ferry 

  

0.295 3.06 0.257 2.12 

  

𝛽-+..(,&  HolZone Air   1.705 16.7
6 2.645 40.3

8 
  

𝛽-+./+0+&1 HolZone*No
Work All 0.923 6.21       

𝛽23%.*+',&  GDPPerCapit
a 

Car, 
bus, 
train, 
ferry 

  

1.567 7.57 1.658 6.73 3.810 8.59 

𝛽23%.(,&  GDPPerCapit
a Air   2.017 10.3

5   3.196 18.6
5 

𝛽"(.4,5.6#&&7  Baltic Ferry   3.601 3.57     
Level of service variables 

𝛽88.5(&  TT_car Car -0.010 -8.29 -0.006 
-
20.3
6 

-0.003 
-
16.3
1 

-0.0080 
-
11.9
7 

𝛽88.%8  

TT_bus; 
TT_train; 
TT_air; 
TT_ferry 

Bus, 
train, 
air, 
ferry
10 

-0.0020 -1.55 -0.0015 -
6.44 

-
0.00048 

-
3.19 -0.0039 6.61 

𝛽'9.4&(,*  AC_train Train 3*
𝛽::_<: 

Fixe
d 

-0.0027 -
3.17 

3*𝛽88.%8 Fixe
d -0.0783 -

3.76 

𝛽'9.(,&=#&&7  AC_air; 
AC_ferry 

Air, 
ferry
11 

2*
𝛽::_<: 

Fixe
d 2*𝛽88.%8 Fixe

d -0.0093 -
6.75 

𝛽80.4&(,*  TW_train Train    -0.033 -
6.77 -0.011 -

3.75 
  

𝛽.+>9+?4  Log(C_XX) All -1.482 -4.12       

𝛽9+?4  C_XX All   -0.007 -
8.66   -0.0038 -

4.67 

𝛽.+>9+?4@+AB#$C*5  
Log(C_XX) * 
HHInc<=70T
EUR 

All   -0.369 -
2.60   

  

𝛽.+>9+?4D+E*>  Log(C_XX) * 
Age<18 All   -0.006 -

2.33     

𝛽9+?4@+AB#$C*5  
C_XX * 
HHInc<=70T
EUR 

All 
    

-0.0018 -
5.30 

  

𝛽9+?4-,>FC*5  
C_XX * 
HHInc>70TE
UR 

All 
    

-0.0015 -
4.21 

  

𝛽9+?4C*9B,??  
C_XX * 
HHIncMiss All     -0.0017 -

4.40 
  

 
 
10 Ferry is not available as mode for private daytrips and business trips.  
11 Ferry is not available as mode for private daytrips and business trips.  
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Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

𝛽@+>9+?4@+AB#$C*5  
Log(C_XX) * 
INDInc <=30 
TEUR 

All 
    

  -0.6302 -
1.70 

Socio-economic variables 
𝛽9(&--.5(&  CarHH Car 0.429 2.63 0.656 8.27 0.265 3.45 0.372 3.26 

𝛽=#G(.#.5(&  Female Car -0.794 -3.12 -0.451 -
3.68 -0.489 -

4.05 
  

𝛽H,..(.5(&  Villa Car     0.264 1.77   
𝛽'>#IJK.4&(,*  Age>64 Train 1.053 2.77       
𝛽'>#IJK.LE?  Age>64 Bus   0.469 2.33 1.102 5.04   

𝛽'>#IJK.(,&  Age>64 Air   -0.858 -
5.34     

Alternative specific constants 

ASCbus / Bus -1.776 -4.96 -1.726 -
9.12 -2.511 -

7.35 -1.767 -
5.74 

ASCtrain / Train -0.920 -2.21 -0.470 
-
2.52 -2.716 -

9.35 0.341 0.98 

ASCair / Air  -1.351 -3.93 -1.497 
-
6.24 -0.363 -

0.70 -0.007 -
0.02 

ASCferry / Ferry   
-0.937 

-
5.07 -1.314 -

2.56 
  

Logsum 
Logsumdestin
ation / All 0.441 8.16

12 0.779 3.34 0.674 2.05 0.786 1.71 

Model information 
Number of observations 324 1348 1889 717 
Number of observations choosing car 180 515 354 140 
Number of observations choosing bus 21 136 91 26 
Number of observations choosing train 36 86 16 30 
Number of observations choosing air 87 521 1419 521 
Number of observations choosing ferry  90 9  
Number of parameters 12 22 21 15 
Log-likelihood  -1224.5 -6469.3 -9813.1 -3454.2 
Log-likelihood all parameters=0 -1574.7 -9086.3 -13520.0 -4969.4 
McFadden rho 0.222 0.288 0.274 0.305 

The logsum parameters are all within the range of 0 and 1, indicating that the nested logit structure 
with mode at the upper level is valid. The models with the alternative nesting structure, that is, 
destination over mode in the nested logit model structure, are also tested, and the results with the 
same model parameter setting are presented in the appendix. When comparing the final log-
likelihood, the mode over destination nesting structure results in a higher log-likelihood in models 
of private 1-5 nights, private 6+ nights, and the model of business, thus confirming the validity of 
adopting the mode over destination nesting structure. For the private daytrip model, the 
destination over mode nesting structure results in a higher log-likelihood, but the logsum 
parameter turns out to be higher than 1, although it is not statistically different from 1.  

The number of hotel beds is the destination attraction variable in the models of private day trips 
and private 1-5 nights, while population and employment are used in the model of private 6+ 
nights and business trips, respectively. The parameters of destination attraction variables are 
positive, showing that the quantity in terms of the number of hotel beds, population, and 
employment has a positive effect on attracting travellers to given destination zones. The number 
of hotel beds per 100 residents was also included in the models of private 6+ nights and business 

 
 
12 T-values for logsum variables refer to test of parameter value being equal to 1. 
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trips in a linear form. If a destination zone is a popular holiday destination (often in warmer 
climates), it has a stronger effect on air travellers than on travellers using other modes. This 
captures the fact that Swedish tourists travel far away from warmer countries, such as Thailand, in 
winter. It also makes sense that this effect is only prominent in the models of private 1-5 nights and 
6+ nights, as these trips are most likely tourist trips. Popular holiday destination zones also have a 
positive effect on attracting private day trips if they are not work trips. GDP is also an important 
attraction factor for private to 1-5 nights, 6+ nights and business trips. The Baltic dummy is 
introduced to capture the fact that ferry trips from Sweden are likely to have destinations on the 
Baltic coast, but this is only found on private 1-5 nights since this is the only segment with sufficient 
observations of ferry trips. 

When it comes to level-of-service variables, all travel time and cost parameters are negative, as 
expected. The disutility of travel time for cars is generally higher than that of public transport, 
which is expected (except for air travel) because travel time on, for example, the train can be used 
for recreation or work activities. Parameters for access/egress time were fixed in relation to in-
vehicle time in the models of private day trips and private 1-5 nights, as model results when they 
were not fixed gave non-intuitive results (often the parameter values were too high compared to 
in-vehicle time). Waiting time outside Sweden by train has a strong negative effect. The disutility 
of waiting time outside Sweden is more than ten times larger than the disutility of in-vehicle time. 
This simply reflects the fact that train travellers are unwilling to transfer trains abroad. Different 
cost formulations are tested in the models. The cost parameters were differentiated by 
sociodemographic variables to represent the possible heterogeneity in cost sensitivity. The model 
for private six +nights identifies different cost parameters for travellers with household income 
>700tkr and <=700tkr, which shows that travellers with household income <=700tkr have a higher 
cost sensitivity. However, the likelihood ratio test shows that the difference between the income 
groups is not statistically significant. For private 1-5 nights, those with household income lower 
than 70 TEUR and age <18 have a higher cost sensitivity in the segment of private 1-5 nights. Those 
with individual incomes lower than 30 TEUR have a higher cost sensitivity in the segment of 
business trips. 

Looking into the effects of socioeconomic variables, the number of cars in a household is, as 
expected, a strong factor for choosing cars in all trip segments. Female travellers are less likely to 
travel abroad in all private segments. Those living in Villa are more likely to travel by car abroad, 
but only in the private six + nights segment. Pensioners are found to take trains more often for 
private day trips, while taking buses more often on private 1-5 nights and 6+ nights. Pensioners 
are less likely to take air on private to 1-5 nights. 

4.2 Trip generation 
Two trip generation models were estimated for private and business trips. These models take the 
form of Multinomial Logit models. For the model of private trips, the available alternatives are the 
segments of the number of nights used in mode and destination choice models: taking no trips, 
private daytrips, private 1-5 nights, or private 6+ nights. For the business trip model, the available 
alternatives take no trips or conduct business trips. Individuals who have made more than one trip 
during the survey period (last three months) are treated as different individuals in the trip-
generation model.  Owing to the limited sample size, the models do not consider the segmentation 
of the number of trips per traveller. Table 4 presents the estimation results. 

Table 4. Results of trip generation model estimation for private and business trips 
respectively. 

Parameter 
name Variable name Number of 

nights away  Parameter  t-value Parameter  t-value 

 Private trips Business trips 
Socio-economic variables and time/period variables   
𝛽@+AC*5.M  HHInc<=25TEUR No trip 0.671 9.29   
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Parameter 
name Variable name Number of 

nights away  Parameter  t-value Parameter  t-value 

 Private trips Business trips 
𝛽@+AB#$C*5.M  INDInc<=30TEUR No trip   1.207 5.34 
𝛽C*5B,??.N  HHIncMiss daytrip -0.885 -6.69   
𝛽'>#ONP.Q  Age<18 1-5 nights -5.026 -4.68   
𝛽-,>FC*5.Q  HHInc>70TEUR 1-5 nights 0.587 8.99   
𝛽C*5B,??.Q  HHIncMiss 1-5 nights -0.418 -5.97   
𝛽REGG#&.Q  Summer 1-5 nights 0.137 1.79   
𝛽9F&,?.Q  Chris 1-5 nights -0.298 -2.17   
𝛽RG(9F,.$.Q  SmaChild 1-5 nights -0.144 -2.96   
𝛽",>9F,.$.Q  BigChild 1-5 nights -0.119 -2.72   
𝛽=#G(.#.S  Female 6+ nights 0.162 2.97   
𝛽'>#IJK.S  Age>64 6+ nights -0.154 -2.44   
𝛽C*5B,??.S  HHIncMiss 6+ nights -0.422 -7.33   
𝛽REGG#&.S  Summer 6+ nights 0.687 11.85   
𝛽9F&,?.S  Chris 6+ nights 0.485 5.39   
𝛽RG(9F,.$.S  SmaChild 6+ nights -0.196 -4.31   
𝛽",>9F,.$.S  BigChild 6+ nights 0.060 1.72   
𝛽9(&--.K  CarHH Business trips   0.181 4.53 
𝛽=#G(.#.K  Female Business trips   -1.019 -11.21 
𝛽'>#SN_JK.K  Age31_64 Business trips   0.729 4.64 
𝛽'>#IJK.K  Age>64 Business trips   -1.127 -4.67 
𝛽-,>FC*5.K  INDInc>30 TEUR Business trips   1.156 8.01 
𝛽REGG#&.K  Summer Business trips   -0.837 -5.68 
𝛽9F&,?.K  Chris Business trips   -0.945 -4.01 
Alternative specific constant 
ASC1 / daytrip -5.09 -31.64   
ASC2 / 1-5 nights -3.22 -69.53   
ASC3 / 6+ nights -9.17 -5.70   
ASC4 / Business trips   -4.740 -23.81 
Logsum variables from mode-destination choice models   
Logsumdaytrip / daytrip 0.353 4.9413   
Logsum6+Night / 6+ nights 1.000 3.80   
Model information   
Number of observations 45559 39996 
Number of observations that choose no trip 41843 39267 
Number of observations that choose daytrip 397  
Number of observations that choose 1-5 nights 1425  
Number of observations that choose 6+ nights 1894  
Number of observations that choose business trips  729 
Number of estimated parameters 21 9 
Log-likelihood  -16082.1 -3066.4 
Log-likelihood when all parameters=0 -63158.2 -27723.1 
McFadden rho 0.745 0.889 
Adjusted McFadden rho 0.745 0.889 

 

The main explanatory variables considered in the trip generation models are socio-economic and 
time-period variables. The logsum variables from the mode and destination choice models were 
included to capture the effect of accessibility on the decision to conduct long-distance international 
trips. Household income is used in the model of private trips, whereas individual income is used 
for business trips. It was found that low income is an important explanatory factor that contributes 
to not conducting long-distance international trips, which is expected. High income is a positive 
factor for conducting private 1-5 nights trips and business trips. It is perhaps a bit surprising that 

 
 
13 T-values for logsum variables refer to test of parameter value being equal to 0. 
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no significant impact of high income on private 6+ nights trips was found. Private 6+ night trips 
are most likely holiday trips to destinations outside Europe, such as Thailand, where commodity 
prices are affordable, even for medium- and low-income households. Teenagers (age<18) are less 
likely to conduct private 1-5 nights trips, while pensioners (age>64) are less likely to conduct 
private 6+ nights trips and logically conduct business trips. Female travellers are more likely to 
conduct private 6+ nights trips and are less likely to conduct business trips. The number of cars in 
a household was positively correlated with the likelihood of conducting business trips. The number 
of children in a household is another important explanatory factor in trip generation models. 
Travellers with small children (0-6 years old) are less likely to conduct private 1-5 nights and 
private 6+ nights trips, while travellers with large children (>6 years old) are less likely to conduct 
private 1-5 nights trips, but more likely to conduct private 6+ nights trips. As expected, there are 
more private six + nights trips but fewer business trips in summer and Christmas, as these are the 
time periods when travellers from Sweden have long holidays or visit their homelands.  

The logsum variables calculated from the mode-destination choice models for private day trips 
and 6+ night trips were found to be significant, suggesting that better accessibility is associated 
with a higher likelihood of conducting these trips. However, accessibility was not found to 
contribute to the likelihood of conducting private 1-5 nights trips or business trips. In McFadden’s 
three-level nested logit model, which is estimated sequentially, the logsum variables act as the 
nesting coefficient that shows whether there is a nested structure between the trip generation and 
the lower-level (mode-destination choice), and a statistical difference of the logsum variable 
against 1 would suggest that such a nested structure exists. In this study, the logsum variable in 
the day trip model is significantly different from 1 (t-value is -9.05), whereas the logsum variable 
in the 6+ nights model is not significantly different from 1 (t-value is -0.04). 

4.3 Changes in level of service attributes for train and resulting elasticities 
The estimated models are planned to be implemented in the Sampers model, among other things, 
to evaluate the potential impacts of high-speed rail on the demand for long-distance international 
travel. Thus, the elasticities for the level-of-service attributes for trains are derived to provide a first 
look at the magnitudes of the impacts. The elasticity shows the unit percentage change of the 
likelihood for a given mode, given a unit percentage change of a level of service attribute for train. 
The following scenarios were adopted for the elasticity calculations: 10% increase in travel cost by 
train, 10% decrease in train in-vehicle time, and 10% decrease in waiting time outside Sweden. 
Elasticity is defined in (4) as the percentage difference in probability of each mode in the scenario 
case and baseline, divided by the percentage change in the attribute, i.e., /!"#$%&'(0/)%!#*'$#

/)%!#*'$#
= 10%. 

For each observation in the estimation data (number of observations in Table 3), the model was 
applied to calculate the choice probabilities for each observation. The average elasticity of each 
observation is reported. 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
R𝐿+1)234!' − 𝐿53+).!2)𝐿53+).!2)

T

R𝑣+1)234!' − 𝑣53+).!2)𝑣53+).!2)
T
 

(4) 

For private trips, the elasticities are calculated for each number of night segments, and then the 
aggregated elasticities are reported. The results are presented in Tables 5 and 6. 

Table 5. Elasticity estimates of level-of-service attributes for train for private trips. 
  Car Bus Train Air Ferry Total 

Baseline Likelihood 2.80% 0.60% 0.33% 4.45% 0.16% 8.34% 

10% increase travel cost by 
train 

Likelihood 2.80% 0.60% 0.32% 4.46% 0.16% 8.34% 
Elasticity 0.025 0.028 -0.479 0.012 0.033 -0.002 
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10% decrease in train in-
vehicle time 

Likelihood 2.79% 0.60% 0.34% 4.45% 0.16% 8.34% 
Elasticity -0.014 -0.017 0.291 -0.008 -0.025 0.001 

10% decrease in waiting 
time outside Sweden 

Likelihood 2.79% 0.60% 0.34% 4.45% 0.16% 8.34% 
Elasticity -0.012 -0.017 0.302 -0.007 -0.023 0.003 

 

Table 6. Elasticity estimates of level-of-service attributes for train for business trips. 
  Car Bus Train Air Total 

Baseline Likelihood 0.468% 0.076% 0.068% 1.210% 1.823% 
10% increase travel cost by 
train 

Likelihood 0.469% 0.076% 0.065% 1.213% 1.823% 
Elasticity 0.021 0.020 -0.475 0.017 0.000 

10% decrease in train in-
vehicle time 

Likelihood 0.466% 0.076% 0.075% 1.205% 1.823% 
Elasticity -0.038 -0.041 1.069 -0.043 0.000 

10% decrease in waiting 
time outside Sweden 

Likelihood 0.468% 0.076% 0.068% 1.210% 1.823% 
Elasticity 0.000 0.000 0.000 0.000 0.000 

In the baseline scenario, the overall likelihood of having a long-distance international private trip 
was 8.34%, where nearly half, 4.45%) by air. Only 0.33% is by train. A 10% increase in the travel 
cost by train reduces the likelihood of taking train to 0.32%, corresponding to an elasticity of -0.479, 
whereas the cross elasticity ranges from 0.025 to 0.033. The elasticity of the decreased train in-
vehicle time was 0.291, whereas that of the decreased train waiting time outside Sweden was 0.302. 
The overall elasticity of conducting a private trip was small, range between -0.002 and 0.003. This 
is plausible because many private trips are holiday trips to popular tourist resorts where the driver 
underlying the “decision to travel” is likely not an improvement in accessibility. 

When it comes to business trips, the elasticity of the increased train travel cost is -0.475, which is 
similar to that of private trips. The elasticity of the decreased train in-vehicle time is much higher 
than that of private trips (1.069), suggesting that business travellers are more inclined to use high-
speed trains because of travel time savings. Decreasing waiting time outside Sweden has no effect 
on business travellers because the corresponding variable is not significant and is not included in 
the mode-destination choice model for business trips. Because the logsum variable is not significant 
and is not included in the trip generation model for business trips, changes in the level-of-service 
variables will not result in a change in the overall likelihood of business trip generation. 

The elasticity value estimated in this study is in general comparable with what is found in Rich 
and Mabit (2012) which is one of few papers that estimated elasticity values for long-distance 
international travel. In that study, the elasticities of train travel cost were -1.000/-0.62314 for 
private15 trips, -0.459/-0.289 for holiday trips, and -0.511/-0.306 for business trips. The elasticities 
of train in-vehicle time in that study were -0.378/-0.453 for private trips, -0.186/-0.185 for holiday 
trips, and -0.293/-0.275 for business trips. Note that the scenario of increased travel time was tested 
in this study. The main difference from the results of this study is that the elasticities of train in-
vehicle time for business trips are remarkably higher in this study than in Rich and Mabit (2012). 
However, it is lower than the elasticity reported in the Swedish domestic long-distance demand 
model, 1.59 (WSP Analysis & Strategy, 2011). 

4.4 Sensitivity analysis of a generic parameter of travel time for all modes 

 
 
14 The values correspond to elasticities for trips with distance below and above 600 km. 
15 Private trips are here private trips other than holiday trips, which is a different segmentation of the model 
compared to the estimations presented in this paper.  
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In this section, a sensitivity analysis is included, which presents the results of having a generic 
parameter of travel time for all modes. One of the challenges in our mode-destination models is 
the difficulty in obtaining a negative parameter of travel time for air. The reason behind this is the 
fact that many Swedish people travel to other destinations such as Thailand for summer holidays, 
which makes it difficult for the model to distinguish destination attractions and travel time because 
they are correlated due to the geographical location of Sweden in the world. This leads to difficulty 
in obtaining a reasonable VOT for air. In the previous sections of this paper, the parameter of air 
travel time was set to the same as that of bus, train, and ferry. However, this significantly lowers 
the VOT of air compared with the VOT of a car, which makes the VOT estimations less comparable 
to other existing empirical investigations. Thus, a sensitivity analysis was conducted where only 
one generic parameter of travel time for all modes was considered; thus, only a generic VOT was 
obtained, which was not differentiated by modes. Table 7 shows the estimation results. Estimation 
results with one generic parameter of travel time for all modes. 

Table 7. Estimation results with one generic parameter of travel time for all modes. 

Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

   Private daytrip Private 1-5 
nights 

Private 6+ 
nights 

Business 

Destination variables 

𝜙  Log(Pop) All     0.434 21.3
3   

𝜙  Log(Beds) All 0.954 12.7
5 0.395 13.6

8     

𝜙  Log(Emp) All       0.751 24.8
5 

𝛽"#$%#&'&#(.*+',&  BedPerArea 

Car, 
bus, 
train, 
ferry 

    

0.096 15.0
8 0.060 3.68 

𝛽"#$%#&'&#(.(,&  BedPerArea Air     0.039 21.4
1 

  

𝛽-+..*+',&  HolZone 

Car, 
bus, 
train, 
ferry 

  

0.315 3.24 0.108 0.91 

  

𝛽-+..(,&  HolZone Air   1.801 17.7
5 2.640 21.4

4 
  

𝛽-+./+0+&1 HolZone*No
Work All 1.073 7.35       

𝛽23%.*+',&  GDPPerCapit
a 

Car, 
bus, 
train, 
ferry 

  

1.690 8.46 1.955 9.11 4.103 10.5
0 

𝛽23%.(,&  GDPPerCapit
a Air   2.016 10.5

4   3.281 19.0
3 

𝛽"(.4,5.6#&&7  Baltic Ferry   3.785 3.79     
Level of service variables 

𝛽88  

TT_car; 
TT_bus; 
TT_train; 
TT_air; 
TT_ferry 

All16 -0.0071 -6.66 -0.0039 
-
17.9
8 

-0.0017 
-
13.0
2 

-0.0066 
-
12.9
8 

 
 
16 Ferry is not available as mode for private daytrips and business trips.  
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Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

𝛽'9.4&(,*  AC_train Train 3*
𝛽::_<: 

Fixe
d 

-0.0022 -
2.47 

3*𝛽88.%8 Fixe
d -0.072 -

3.34 

𝛽'9.(,&=#&&7  AC_air; 
AC_ferry 

Air, 
ferry
17 

2*
𝛽::_<: 

Fixe
d 2*𝛽88.%8 Fixe

d -0.010 -
7.25 

𝛽80.4&(,*  TW_train Train    -0.029 -
5.73 -0.008 -

2.74 
  

𝛽.+>9+?4  Log(C_XX) All -0.958 -2.80       

𝛽9+?4  C_XX All   -0.005 -
6.35   -0.0014 -

1.74 

𝛽.+>9+?4@+AB#$C*5  
Log(C_XX) * 
HHInc<=70T
EUR 

All   -0.076 -
0.51   

  

𝛽.+>9+?4D+E*>  Log(C_XX) * 
Age<18 All   -0.004 -

1.70     

𝛽9+?4@+AB#$C*5  
C_XX * 
HHInc<=70T
EUR 

All 
    

-0.0002 -
0.66 

  

𝛽9+?4-,>FC*5  
C_XX * 
HHInc>70TE
UR 

All 
    

  
  

𝛽9+?4C*9B,??  
C_XX * 
HHIncMiss All         

𝛽@+>9+?4@+AB#$C*5  
Log(C_XX) * 
INDInc <=30 
TEUR 

All 
    

  -0.655 -
1.32 

Socio-economic variables 
𝛽9(&--.5(&  CarHH Car 0.417 2.54 0.562 7.35 0.265 3.46 0.372 3.29 

𝛽=#G(.#.5(&  Female Car -0.836 -3.25 -0.454 -
3.78 -0.488 -

4.05 
  

𝛽H,..(.5(&  Villa Car     0.274 1.84   
𝛽'>#IJK.4&(,*  Age>64 Train 0.862 2.22       
𝛽'>#IJK.LE?  Age>64 Bus   0.449 2.23 1.107 5.06   

𝛽'>#IJK.(,&  Age>64 Air   -0.971 -
6.06     

Alternative specific constants 

ASCbus / Bus -0.624 -1.63 -0.100 -
0.53 -0.954 -

4.19 -0.481 -
1.56 

ASCtrain / Train 0.670 1.35 0.895 3.51 -1.430 -
3.25 0.1.347 3.00 

ASCair / Air  -1.346 -4.00 -2.551 
-
7.67 0.225 0.53 0.342 1.06 

ASCferry / Ferry   0.343 1.94 0.775 0.84   
Logsum 
Logsumdestin
ation / All 0.702 3.23

18 1.234 -
2.10 0.811 0.90 0.857 1.06 

Model information 
Number of observations 324 1348 1889 717 
Number of observations choosing car 180 515 354 140 
Number of observations choosing bus 21 136 91 26 
Number of observations choosing train 36 86 16 30 
Number of observations choosing air 87 521 1419 521 
Number of observations choosing ferry  90 9  

 
 
17 Ferry is not available as mode for private daytrips and business trips.  
18 T-values for logsum variables refer to test of parameter value being equal to 1. 
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Parameter 
name 

Variable 
name 

Mod
e 

Parame
ter 
value 

t-
valu
e 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Parame
ter 
value 

t-
val
ue 

Number of parameters 11 21 18 15 
Log-likelihood  -1236.1 -6563.5 -9886.7 -3471.4 
Log-likelihood all parameters=0 -1574.7 -9086.3 -13520.0 -4969.4 
McFadden rho 0.215 0.278 0.269 0.301 
Adjusted McFadden rho 0.208 0.275 0.267 0.299 
P-value for Likelihood Ratio Test 
compared to Table 3 1.46e-6 0.00 0.00 4.49e-9 

 

The models presented above can be considered as reduced models compared to those in Table 3. 
Thus, the likelihood ratio test (LRT) was first investigated (the last row in Table 7). The LRT results 
indicate that separating the parameters for car and other modes yields a statistically better model 
fit for all segments tested because all the P-values are small. The estimated generic travel time 
parameter 𝛽66 lies between 𝛽66,134 and 𝛽66,76 in Table 3 for all the segments. Most parameters were 
relatively unchanged or changed only marginally. One parameter that changes more substantially 
is the travel cost, especially in the segment of private 6+ days, where no significant cost parameters 
can be obtained. The alternative specific constants (ASCs) have also changed substantially because 
fixing the travel time parameters for all modes would indicate different logsum values for different 
modes; thus, ASCs need to change accordingly. Another issue that arises from the model 
estimation in this sensitivity analysis is that the logsum parameter is larger than 1 for the segment 
of private to 1-5 nights. This indicates that the nested structure is no longer valid with the generic 
travel time parameter for that segment. 

5 Discussion 
In this section, value of time (VOT) estimates are derived from the estimated parameters of the in-
vehicle time and travel cost in each model (Table 3). However, it should be noted that there are 
issues when using revealed preference (RP) data for VOT estimation. A large European meta-
analysis showed that VOT estimates based on RP data were consistently higher than those based 
on stated preference (SP) data (Wardman et al., 2016). All reasons for this have not yet been 
established, but some contributors have been identified. For example, Varela et al. (2018) showed 
that in RP data, the measurement error is often larger in the cost variable than in the travel time 
variable, leading to attenuation bias in the cost parameter, and thus to a higher VOT.   

The VOT results are shown in Figure 8. It is important to note that we cannot derive separate VOT 
for buses, trains, air, and ferries; rather, we estimate a joint public transport VOT. This is because 
the in-vehicle time parameters are the same for these modes (β_(TT.PT) in Table 3). An attempt 
was made to estimate separate in-vehicle time parameters for different public transport modes, but 
the results showed that parameters of in-vehicle time for air turned out to be positive in models for 
private 1-5 nights, private 6+ nights, and business. A positive in-vehicle-time parameter is not 
consistent with the random utility theory and cannot be used. The estimation result could be a 
special case for Sweden because many Swedes travel to tropical countries for their holidays, and 
thus the chosen destination is far away, which drives the travel time parameters for air to be 
positive. Although a holiday zone dummy was introduced in the model to capture the popular 
destination attraction effect, the correlation of longer air travel time and popular holiday countries 
persists. The existing domestic long-distance model in the Swedish National Transport Model 
Sampers also adopted the same setting, that is, estimating a joint in-vehicle time parameter for bus, 
train, air, and ferry, which facilitates comparison.  

As discussed in Section 4.4, one problem associated with the unavailability of estimating a separate 
travel time parameter for air is that the model cannot reflect the fact that the VOT of air is higher 
than that of other public transport modes. This strongly affects how the VOT of public transport 
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should be interpreted in different trip segments; since then, it has also been related to the share of 
air travel in each segment. In Section 4.4, this issue is further investigated by testing a model in 
which only a generic parameter of travel time for air is estimated, that is, not differentiating modes. 
Thus, it is not recommended to compare the VOT of public transport with that of cars because of 
the unavailability of estimating a separate travel time parameter of air. However, a comparison 
between VOT in international travel and that in domestic travel for a given mode is still relevant. 
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Figure 8. Comparison of value of time between the Swedish domestic long-distance model Sampers 
and the models developed in this study. 

In some of the models (not private 6+ nights), cost has a non-linear (log) formulation, which means 
that a cost damping effect (Daly, 2010) has been captured, that is, the phenomenon where the 
sensitivity to cost decreases with distance, which leads to VOT increasing with travel cost.  

In the private daytrip segment, the VOT for car in long-distance international trips is higher than 
that derived from the domestic long-distance trip model when the travel cost is higher than 40 
EUR. However, it is difficult to draw the conclusion that VOT for car for long-distance international 
trips is higher than that for domestic long-distance trips because a linear cost parameter 
specification is used in Sampers. On the other hand, the VOT for public transport for long-distance 
international trips is lower than that for domestic long-distance trips, where the cost damping effect 
is captured in both. It should be noted that there are few observations in the private daytrip 
segment, especially for observations taking public transport; thus, the estimated VOT in this 
segment needs to be interpreted with caution. In the private 1-5 nights segment, VOT differs 
depending on the traveller’s household income and age. The VOT for long-distance international 
trips was higher than that for domestic long-distance trips for both car and public transport modes. 
For the private 6+ nights segment, VOT in long-distance international trips is also higher, and the 
discrepancy is larger than that found in the private 1-5 nights segment. The VOT of long-distance 
international trips for cars was much higher than that for domestic long-distance trips. The data 
show that the average distance of car for the observed trips is 448 km for private daytrips, 594 for 
private 1-5 nights and 1063 km for private 6+ nights. More than 30% of car trips in private 6+ nights 
category had a distance longer than 1500 km. Thus, it is relevant to consider why these trips are 
made by car rather than by more time-efficient modes, such as air. It is likely that other factors 
caused them to choose car, such as the need to carry heavy luggage or sightseeing along the 
journey. This is an issue when using RP data for VOT estimation, as there may be many unknown 
factors of the observed journey that we cannot control for, which may bias the travel time and cost 
parameters if unknown factors are correlated to travel time and cost.  

In the business trip segment, the VOT for cars for long-distance international trips is higher than 
that for domestic trips, whereas a reversed trend is found for public transport modes. Business 
travellers are more likely to travel frequently and thus have less burden travelling abroad. This 
means that there is no substantial difference between international travel and domestic travel for 
business travellers; thus, the differences in VOT between international and domestic long-distance 
travel are smaller compared with private travellers.  

Compared to the existing literature, Mabit et al. (2013) conducted a stated-preference survey to 
investigate the VOT of international travel over the Fehmarn Belt. In that study, estimated VOT for 
car for business travellers is 15.9 Euro/h and 9.5 Euro/h for non-business travellers. These 
estimates were lower than the values estimated in the present study. The VOT for cars for business 
travellers ranges between 45 and 130 Euro/h, and VOT for cars for private travellers ranges 
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between 10 and 120 Euro/h, depending on the cost. The estimated VOTs in the bus and rail are 
approximately 7.5 Euro/h and the VOT in air is 27.9 Euro/h with a rather large variation (1.2 -
119.4 Euro/h) in Mabit et al. (2013). However, the estimates are not differentiated by the trip 
purpose. This makes the comparison to this study difficult because it differentiates trip purpose 
and number of nights away, but not public transport modes. Furthermore, the model in Mabit et 
al. (2013) is a mode-choice model that does not include destination choice. This means that different 
choice contexts are used and the derived VOT can be sensitive to that; for instance, air travellers to 
destinations outside Europe cannot be evaluated in the mode choice model context because air is 
the only viable mode for them. In general, VOT estimates for public transport in this study ranged 
between 5 and 70 Euro/h. The US long-distance travel model (FHWA, 2018) derives the travel time 
and cost parameters from the California statewide model, which makes it difficult to compare with 
the VOT from this study. The UK long-distance model (Rohr et al., 2013), incorporated a combined 
SP-RP approach, in which the VOT for business trips was successfully identified using SP data (see 
Table 8). The VOT for car for business trips yields 36.9 and 73.8 Euro/h for low (<30 k£/pa) and 
medium/high income (30+ k£/pa) groups. These estimates are considerably lower than our 
estimates, 60-105 and 125 Euro/h for the low (<30+TEUR) and medium/high income (30+TEUR) 
groups. However, for public transport modes, the VOT from our study ranges between 20-45 
Euro/h for the low (<30+TEUR) and 60 Euro/h for the medium/high income (30+TEUR) groups, 
which is much closer to the estimates in Table 8. 

Table 8. VOT for business trips derived from UK long-distance model (Rohr et al., 2013). 
 Business (<30 k£/pa) Business (30-50 k£/pa and 50+k£/pa) 
VOT car (euro/h) -0.0104/-0.0002*0.71=36.9 -0.0104/-0.0001*0.71=73.8 
VOT rail (euro/h) -0.0077/-0.0002*0.71=24.7 -0.0077/-0.0001*0.71=54.7 
VOT air (euro/h) -0.0082/-0.0002*0.71=29.2 -0.0082/-0.0001*0.71=58.2 

 

6 Conclusions  
Long-distance international travel, although low in number of trips compared to regional travel, 
contributes significantly to the total distance travelled and thus externalities from the transport 
sector. Despite the abundant literature analysing tourist demand and long-distance travel, most 
developed models are direct demand models that focus on a specific mode or specific origin-
destination pair. Surprisingly few existing large-scale disaggregated travel demand models 
include model components for long-distance international trips. The absence of such disaggregated 
models indicates a lack of ability to calculate modal shift for long-distance international travel for 
large infrastructure investments, such as high-speed rail.  

In this study, a model component for long-distance international travel was developed for Swedish 
national travel demand model Sampers. Trip generation, mode, and destination choice are 
modelled using multinomial and Nested Logit models, respectively. Swedish national travel 
survey data were used to observe long-distance international travel. European networks for road, 
train, and ferry and a worldwide network for air, are developed at a reasonable level of detail. 
Models for private and business trips were developed, where those for private trips were further 
segmented by the number of nights away. 

The estimation results reveal the effects of individual socioeconomic variables, level-of-service 
attributes, and destination variables on Swedes’ long-distance international travel demand. To 
capture the effect of Swedish tourist travel to far-away warmer countries, such as Thailand, in the 
winter, a dummy for holiday zones is introduced. In contrast to common practice, where the 
parameters of destination variables are the same across travel modes, the holiday dummy is 
separately estimated for air and other modes. The estimation results show that the parameters of 
holiday zones for air are higher than their counterparts for the other modes. Income and number 
of children in households were found to be important explanatory factors in trip generation 
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models. The derived VOT indicates that the VOT for long-distance international travel may differ 
significantly from the VOT for domestic long-distance travel. However, the models could not 
obtain a negative travel time parameter for air; therefore, the interpretation of VOT results, 
especially for air, should be taken with caution. Therefore, a sensitivity analysis was included, 
which tested the effects of a generic time parameter for all modes.  The reason for the positive air-
time parameter is presumably because many Swedes travel to tropical countries for their holidays, 
and thus, the chosen destination is far away. The holiday zone dummy captures this effect to some 
extent but not fully. In the revealed preference data, it is difficult to separate the effect of popular 
destination attraction from that of distance given that most popular destinations are far away from 
the Swedish context. This could also be the case in other Nordic countries. 

Furthermore, the estimation results show that the VOT of cars is high for private 1-5 nights trips 
and private 6+ night trips. In fact, a considerable share, more than 30%) of observations that chose 
cars had a trip distance longer than 1500 km for private 6+ nights trips. These extremely long car 
trips are associated with a long travel time but not a proportionally high travel cost (compared to 
the travel cost by air at the same distance level). It is likely that car was chosen rather than other 
travel modes because of factors other than time and cost in private 6+ nights trips, which were not 
captured in the model. This could be related to the use of revealed preference data, where many 
factors related to mode choice are unknown and various factors are correlated and cannot be 
separated due to the geographical context, which is a limitation of this study.   

The own and cross elasticities of train travel were also derived to provide the first impression of 
high-speed rail scenarios. The elasticities are generally comparable to the estimates of Rich and 
Mabit (2012). The most elastic attribute for private long-distance international trips is travel cost, 
while for business long-distance international trips, it is in-vehicle time. The induced demand, that 
is, those who previously did not conduct a long-distance international trip and now travel by train 
owing to the improved train service, is found to be negligible. This can be considered reasonable 
because holiday trips to popular international tourist resorts are more likely motivated by the need 
to visit the destination itself rather than improved accessibility.  

The model estimation reflects several unique characteristics of Swedish international travellers due 
to Sweden’s geographical location in the world. One such characteristic is that popular holiday 
destinations are often in warmer climates far away from Sweden and are only accessible by air. 
Another example is Swedes’ travel by ferry to neighbouring Baltic Sea countries. Specific dummy 
variables are introduced to capture these characteristics, as they are otherwise captured in the level-
of-service attributes and lead to wrong/non-intuitive parameter estimates. It also indicates that the 
model estimations from this study are not directly transferrable to other countries where the 
geographical location is different. Although the elasticities are generally comparable with the 
European-wide TRANSTOOLS model (Rich and Mabit, 2012), no further studies have found that 
produce elasticity/cross-elasticity estimates for international travel and can be used for 
comparison. Thus, there is a need for further global research on forecasting models for 
international travel. 
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