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1. Introduction 

Less than two decades ago, driving road vehicles was considered out of bounds for computers. But 
then, around 2010, combined breakthroughs in sensor technologies and artificial intelligence 
changed the rules of the game. While an ever-increasing number of new car models included 
partial automation, hand in hand with increased connectivity, some firms also started extensive 
field trials with self-driving cars.  
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Even if not all the hype has (yet) kept its promises, transport specialists still think that the potential 
implications of automation are huge. For instance, Fulton (2017, 2018) uses the concept of the “three 
revolutions in urban transportation” to refer to the combined emergence of vehicle electrification, 
automation, and shared (on-demand) mobility. The interaction between these three would cut 
global energy use from urban transportation by more than 70% and reduce CO2 emissions of urban 
transportation by more than 80% by 2050. However, the International Transport Forum (2015) has 
warned that, without a massive uptake of ridesharing, the use of autonomous taxis could well lead 
to important increases in traffic. Given those far-reaching potential implications, societies need to 
reflect on the likely consequences of full automation, and on the appropriate policy frameworks.   

In this paper, we take a first step towards an analysis at the country level for Belgium. To do so, 
we use the PLANET model. PLANET has been developed by the Belgian Federal PLANning 
Bureau (FPB) in collaboration with the Belgian Federal Public Service Mobility and Transport. 
Since 2008, the model has been used to inform Belgian policy makers and other stakeholders.  

Unless stated otherwise, all the results in this paper are defined as changes compared to the values 
for 2030 used in the most recent long-term projections of transport demand in Belgium (Bureau 
fédéral du Plan 2019). This “reference scenario” takes into account all European, Belgian and 
regional policies that were decided at the time of the publication. 

We will not look at the transition dynamics but focus on the impacts of an entirely automated 
(Level 5) and connected fleet – note that these transition dynamics, with AV sharing the road with 
human-driven cars, may be quite different from the final outcomes (Narayanan et al. 2020). 

As explained in detail further in the paper, the only source for induced demand considered in the 
current analysis are changes in the time costs and the monetary costs of car transport. The 
relocation of firms or households falls outside the scope of our modelling work. Induced demand 
by people who are currently not able or allowed to drive will be considered in future work. 

We will only consider private cars. This does not mean that we deny some of the elements in favour 
of the hypothesis that AV will be shared. For instance, sharing automated cars will allow to spread 
the fixed costs over a much higher annual mileage, and full automation will overcome one of the 
key limitations of current carsharing models (the spatial and temporal dimension of matching 
supply and demand). However, shared automated vehicles (automated taxis) and shared rides face 
specific issues (such as the re-positioning of empty vehicles waiting for new clients and changes in 
the size of the fleet that is needed to serve given mobility needs) that are especially challenging in 
countries with an important share of long commutes, such as Belgium. Addressing these issues 
exceeds the scope of the current analysis.  

Automation is also likely to fundamentally modify the operation of public transport modes– for 
instance, it is likely to lead to the optimisation of vehicle size according to the route and the time 
of the day. In general, one can expect the boundary between shared modes and public transport to 
become increasingly blurred. A similar point applies to freight transport: how automation will 
affect the overall personnel costs of freight operators cannot be separated from other aspects of the 
logistical chain that will be affected by automation, such as the operation of warehouses. Therefore, 
we keep those issues as a topic for further research and keep the public transport and freight 
modules as used in the reference scenario.  

The analysis in this paper focuses on the impact on overall traffic levels, road speed, modal split, 
and energy consumption. Safety aspects and accessibility fall outside the scope of the paper. 

To the best of our knowledge, this is the first paper that addresses the impact of automated cars on 
the national transport system, using a model with endogenous modal and time choice, and that 
considers differentiated impacts according to the travel motive.  

The paper is structured as follows. 
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We first review the relevant literature. We discuss the different assumptions that are used in the 
literature, for key values such as the impact of full automation on speed-flow relations, on the value 
of time spent traveling, and on the financial costs of private cars. We then address the key impacts 
on the transport system that are reported. 

Next, we introduce the model that has been used for the analysis in this paper, highlighting the 
features that are essential for understanding the key drivers behind our results.  

Based on the key findings of the literature, we define the scenarios that are used in this paper. More 
specifically, we assume that the automation of the car stock may lead to changes in: (a) the speed-
flow relations on the road network (b) the monetary costs of owning and operating a car (c) the 
value of travel time.  

Next, we present the results of the simulations with the PLANET model. We consider the impact 
on passenger kilometres (pkm) for each mode, on the kilometres travelled by car (vkm), on the 
average road speeds, on the average travel time, on total fuel consumption and on the generalized 
costs. 

The key result of the paper is that full automation without trip sharing leads to an important 
increase in car traffic (by around 21 up to 26%) and could also lead to a significant increase in fuel 
consumption, mainly as the result of the decrease in the value of travel time.  

Given that the key parameters of the model are subject to substantial uncertainty, we perform a 
sensitivity analysis on the impact of full automation on fuel consumption and on the acquisition 
costs. 

The negative impacts of car automation on congestion and fuel consumption raise the question of 
the policy measures that could counteract them. We therefore give an indication of the magnitude 
of a distance-based road charge that would be needed for this purpose. 

Finally, we summarize the results and identify the needs for further research - mostly the inclusion 
of several sources of induced demand that are currently omitted from the analysis.  

2. Overview of the literature 

Recent extensive literature reviews of self-driving cars and their impacts include Cohen and Cavoli 
(2019), Milakis et al. (2017b), Milakis et al. (eds, 2020), Soteropoulos et al. 2019, Taiebat et al., 2018, 
and Wadud et al. (2016). We refer the interested reader to those papers for the aspects we do not 
cover here, such as the purely technological aspects, privacy and traffic safety issues, the impact 
on urban planning and road design, the impact on employment in the transport sector or the 
market structure of AV provision (as in van den Berg and Verhoef 2016). In this review, we limit 
ourselves to the aspects that are directly relevant to the current paper: the impact of full automation 
on speed-flow relations, on the value of time spent traveling, and on the financial costs of private 
cars. 

First, self-driving cars are expected to improve traffic throughput, for instance thanks to the shorter 

reaction time of AVs2, shorter headways between vehicles, a reduction in the number of accidents, 
a better distribution of the traffic over the network and a better synchronization with traffic lights 
(Cohen and Cavoli 2019, Milakis et al. 2017b, Narayanan et al. 2020). Most studies seem to agree 
that CAVs could lead to improvements in road capacity ranging from 200 to 300% - even though 
all results are in the same order of magnitude, this is still a wide range.  

                                                        
2 Throughout the paper, we refer to automated vehicles as AVs and to connected and automated vehicles as CAVs. 
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Second, with full automation, the driver will no longer be required to pay attention to the road and 
will thus be able to devote his travel time to work or to leisure activities. This will affect the value 
of time (VOT) for traveling by car.  

On top of this direct effect, the ability to hold (for instance) work meetings in the car will make it 
easier to comply with coupling constraints for those activities where a physical presence at a given 
location remains essential (think for instance of getting children at school or day-care, as in 
Schwanen 2008). Given that this type of benefit is highly situation-specific, traditional 
measurements of the VOT are likely to underestimate this type of benefit.  

Estimated values for the VOT spent traveling for commuting purposes in CAVs range from around 
60% to 100% of the current value of the VOT for driving a car (see De Ameida Correia et al. 2019, 
Kolarova et al. 2019, Milakis et al. 2017a). For other travel motives, the impact of automation on 
VOT is estimated to be very small, and some authors even argue that the VOT may increase with 
full automation.  

Third, automation will affect private financial costs and benefits. When estimating the financial 
costs of full automation, it is not always clear what features should be considered as being 
additional to existing technologies. Indeed, several of the features needed for automation and 
connectivity (certainly GPS systems) have been present in new cars for a while. In the premium 
market, cars are already equipped with features such as adaptive cruise control. 

Moreover, the costs of those technologies have decreased rapidly in the last few years. Between 

2013 and 2017, the costs of LIDAR3 technologies have decreased by 90%. Costs are expected to fall 
further in the coming years (Nieuwenhuijsen et al. 2017). Not surprisingly, there is a wide range of 
projections for the cost of future additional equipment: from 3,000 to 10,000 EUR (Compostella et 
al. 2020, Wadud 2017), with some sensitivity analysis considering a cost of 30,000 EUR. 

There are also several channels through which vehicle automation and connectivity could lead to 
decreases in the fuel consumption per km (Lee and Kockelman 2019, Milakis et al. 2017b, Taiebat et 
al 2018, Wadud et al. 2016), such as more efficient driving thanks to congestion mitigation and 
automated eco-driving. However, the additional equipment needed for autonomy and 
connectivity also requires higher auxiliary power from vehicles and could alter vehicle 
aerodynamics, which could contribute to a higher fuel consumption. In the recent literature, the 
net effect of vehicle automation on fuel consumption per km is estimated to be a reduction by 5 to 
40%. 

The effects on maintenance costs are too speculative to have a meaningful discussion about them - 
see Wadud (2017) and Bösch et al. (2018). 

Fourth, concerning the potential impacts of CAVs, a reduction in the generalized costs of driving 
by car will lead to more or longer trips, for instance as the result of an increase in discretionary 
trips and less trip chaining (Rodier 2018). Indirectly, this could also lead to relocation of households 
and firms (Milakis et al. 2017b), resulting in urban sprawl and/or the creation of new urban centres. 

Self-driving cars can also lead to induced demand by segments of the population that are not able 
to drive, such as children and mobility impaired people (Harper et al. 2016, Milakis et al. 2017b, 
Soteropoulos et al. 2019). Estimates of the impact of those groups on vehicle kilometres mostly lie 
between 2 and 10%, with an upper bound of 40% (Milakis et al. 2017b, Rodier 2018). 

One issue that has drawn a lot of attention over the last few years is the relation between 
automation and car sharing. As pointed out by Wadud et al. (2016), vehicle automation may make 
car-sharing more attractive “by allowing vehicles to deliver themselves to the user on-demand, 
reducing the need for geographic concentration of vehicles”. Sharing of automated vehicles would 

                                                        
3 LIDAR (Light Detection and Ranging) sensors use infrared light to create three-dimensional maps of a car’s 
environment. Note that while Tesla reckons that improved cameras in combination with radars will render LIDAR 
obsolete, most car manufacturers see LIDAR and cameras as complements (Domke and Potts, 2020). 
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also allow to spread the fixed costs over a higher customer base, making CAVs more attractive. 
Hence, automation and car sharing are two forces of mobility innovation that mutually reinforce 
each other. 

“Right-sizing” of vehicles to the requirements of individual trips would also be possible in a system 
of automated car-sharing (see Morrow et al. 2014). Given current occupancy rates, the theoretical 
potential of right-sizing on congestion and fuel consumption is important.  

However, automated car-sharing has also potential drawbacks. For instance, simulations of the 
situation in Lisbon by the International Transport Forum (2015) have shown that, with a 100% 
shared automated vehicle fleet, the relocation travel needed to serve new clients could lead to an 
important increase in car kilometres travelled.  

Moreover, even without formal car sharing, full automation could lead to more relocation travel, 
for instance because automation creates the possibility to reposition to serve multiple family trips 
simultaneously (De Ameida Correia and van Arem 2017). Also, in areas with little (or only 
expensive) parking facilities, owners could send their car to a free parking space within a given 
perimeter or to drive around until called. Given that we do not model car-sharing in this paper, we 
will not elaborate on this specific subject, but it remains an important topic for further research. 

Fifth, the reduced generalized cost of AV is also expected to lead to a modal shift away from 
conventional cars and bus (Malokin et al. 2019, Truong et al. 2017, Zhao and Kockelman 2018). 
However, this needs not be the case: AV can also act as complements to public transport (Kolarova 
et al. 2019, Taiebat et al. 2018). Besides the “conventional” modal shift from regular public transport 
to private modes, the automation of public transport could also lead to the growth of semi-
collective transport, which smaller buses operating on flexible schedules (Milakis et al. 2017b). 
Some long-distance travellers could also shift to ground transport, causing a decrease in air travel. 
CAVs could serve as mobile overnight sleeping compartments, decreasing demand for hotels for 
long-distance trips (La Mondia et al. 2016). 

Sixth, additional travel induced by lower generalized costs could lead to a net increase in 
congestion and fuel consumption (the “rebound effect”). The magnitude of this effect depends on 
factors such as whether rides are shared - in the most extreme case, fuel consumption could 
increase by 200 % (Stephens et al. 2016). 

3. Description of the PLANET model  

In short, PLANET is a multimodal transport model, that covers both passenger and freight 

transport4. It considers the following modes for passenger transport: “car alone”, “car with a 
passenger”, bus, metro, moto, “slow” (walking and cycling), train and tram. Air travel and semi-
collective transport fall outside its scope. Driving with a passenger includes all instances where 
more than one person travels by car and is not restricted to organized forms of carpooling - it also 
includes parents driving their children to school or to a hobby activity. 

PLANET distinguishes a peak period (which corresponds, on weekdays, to the time slots from 7:00 
to 9:00 and from 16:00 to 19:00) and an off-peak period, which encompasses the rest of the time, 
including the whole weekend. PLANET covers the entire territory of Belgium.  

The PLANET model is inspired by the approach used for four step transport models. It produces 
passenger kilometres per origin-destination pair, travel motive, travel mode and period of the day 
in the following steps: 

                                                        
4 A detailed description of PLANET (including of the data sources) can be found in Daubresse and Laine (2020). 
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 In the trip generation and distribution module5, we determine the number of passenger 
trips for each origin-destination pair and travel motive, all modes and periods of the day 
combined. 

 In the modal and time choice module, we allocate the output from the trip generation and 
distribution module to the individual travel modes and periods of the day. 

 

 

Figure 1. The general structure of the PLANET model 

Given the high level of geographic aggregation of the origin-destination (OD) zones (NUTS3 
zones), PLANET does not contain an explicit traffic assignment module, but the network models 

                                                        
5 In PLANET, trip generation and distribution are thus combined in one step. 
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used by the Flemish and Brussels regional administrations have been used to approximate the 
speed-flow relationships.  

A key driver in each step is the generalised cost (GC) of transport. For a given origin-destination 
pair (O,D), travel mode, travel motive and time of the day (ToD), the generalised cost per km is 
given by: 

𝐺𝐶(.)

𝑝𝑘𝑚(.)
=

𝑀𝑜𝑛𝐶𝑜𝑠𝑡(.)

𝑝𝑘𝑚(.)
+ 𝑉𝑂𝑇(. ) ∗  

𝑇𝑟 𝑇(.)

𝑝𝑘𝑚(.)
       (1) 

Where MonCost(O,D,mode, TOD) is the monetary cost (which can depend on the time of the day if 
prices vary between peak and off-peak), pkm(O,D) is the average distance expressed in passenger 
kilometres between zone O and zone D, VOT(mode, motive) is the value of time (expressed in EUR 
per unit of time) and TrT(O,D,mode,ToD) is the average travel time between zone O and zone D. 
Given that total travel time depends on congestion levels, and that congestion itself depends on 
traffic volumes, the GC is endogenous for all road modes.  

Let us look in some more detail at each step.  

3.1 Trip generation and distribution 
For passenger transport, the trip generation and distribution modules distinguish the following 

travel motives6: 

 commuting to work 

 commuting to school or establishments of higher education 

 business trips: work-related trips, outside commuting and the transportation of goods 

 ‘other’ motives: private trips such as shopping, leisure, drop off/pick someone up, family 
visits, walking around. 

The detail of the data available for the estimation of transport activity in the base year of the model 
(2015) is highly variable. As a result, the details of the procedure vary from travel motive to travel 
motive. The key common elements are:  

 We identify exogenous economic and demographic variables (number of inhabitants per 
age category, employment, number of students, etc) in each zone to forecast the production 
and attraction of trips for each zone in each projection year t.  

 The number of trips per year between an origin-destination pair (O,D) for a given travel 
motive is given by: Trips(O,D,Motive) = TRt(O,D,motive) * N(O,D,motive) where 
TRt(O,D,motive) is the trip rate between (O,D) and N(O,D,motive) is the number of people 
travelling between (O,D) for this travel motive. We assume that each outward journey is 
followed by a return trip and thus that, on average, the number of people travelling from 
O to D per year equals the number of people travelling from D to O.  

 For each origin-destination pair (O,D) and travel motive, an initial estimate for the trip rate 

in year t, 𝑇𝑅𝑡
𝑖𝑛𝑖𝑡(𝑂, 𝐷, 𝑚𝑜𝑡𝑖𝑣𝑒) is obtained from an econometric model, using the following 

exogenous variables: region of residence, age, sex, socio-economic status, household size, 
an index of urbanisation, education level and available income. This initial estimate for the 
trip rate is updated to take into account the evolution of the average generalised cost of 

transport in the previous year7, 𝐺𝐶𝑡−1 compared to the average generalised cost of transport 

                                                        
6 Given that the paper focuses on passenger transport, we omit a detailed description of the freight modules for the 
sake of conciseness. However, the general approach for freight is very similar to the approach for passenger 
transport.  
7 The average generalised cost of transport is calculated as the average across all modes. It is the output of the modal 
and time choice module of the previous year – see further. It is also possible to create an iterative procedure in year 
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in the reference year, 𝐺𝐶0 (where ∈𝑔𝑐 is the (exogenous) overall elasticity8 of trip rates to 

the generalised costs of transport):  

𝑇𝑅𝑡(. ) =  𝑇𝑅𝑡
𝑖𝑛𝑖𝑡(. ). (1 + ∈𝑔𝑐 (𝑚𝑜𝑡𝑖𝑣𝑒).

𝐺𝐶𝑡−1(.)−𝐺𝐶0(.)

𝐺𝐶0(.)
)        (2) 

In each projection year, the number of persons originating trips in zone O and the number of 
persons with destination in zone D are imposed exogenously (based on extrapolations of historical 
observations). These totals act as constraints in the calculation of N(O,D,motive). The calculation 
method used depends on the availability of data, which varies a lot from travel motive to travel 
motive. We have used two approaches:  

 In doubly constrained gravity models9, the number of people that commute from zone O 
to zone D is a decreasing function (the “gravity” function) of the generalised cost of 
transport between zone O and zone D: N(O,D,motive) = f(A(O),B(D),gct(O,D))  where A(O) 
and B(D) are the elements that affect departures and arrivals in zone O and D respectively, 
and gct(O,D) represents the average generalised cost of transport between zone O and D. 
The gravity function is estimated using observations in the base year. 

 In Iteratively Proportional Fitting Procedure (or RAS) procedures, the number of persons 
in each cell of the origin-destination matrix is determined so as to obtain the values that are 
the “closest” to the origin-destination matrix in the base year, but adjusted to respect the 

new row and column totals for the projection years10. We have used RAS procedures for 
the travel motive “school”, where the level of detail of the available data did not allow an 
estimation of a gravity function.   

Note that the only source of induced travel demand that is endogenous in the model follows from 
the dependency of the trip rate on the generalised cost of transport. Modelling the impact of 
household or firm relocation requires changing the exogenous scenarios for the economic and 
demographic variables per NUTS3 zone.  

As output of the trip generation and distribution module we obtain the number of passenger trips 
for each OD-pair and travel motive. For each travel motive, the passenger kilometres 
(pkm(O,D,motive)) between origin-destination pair O,D for each period of the day are then given 
by: 

𝑝𝑘𝑚(. ) = 𝑇𝑟𝑖𝑝𝑠(. ) . 𝐷𝑖𝑠𝑡(. )          (3) 

where Trips(O,D,motive) is the number of trips between O and D and Dist(O,D) is the average 
distance between O and D. In the Modal and Time Choice module, these pkm will be allocated to 
individual modes and periods of the day.  

3.2  Modal and time choice 
We will first summarize the Nested Constant Elasticity of Substitution (NCES) approach to 
representing consumer preferences for different modes, and then explain how we use it to 
determine the shares of the different travel modes, given the output of the trip generation and 
distribution module.  

Informally, we will follow the nest structure function for passenger transport represented in Figure 
2, which can be interpreted as follows. Let us first consider the bottom branches of the tree: these 
are “composite” modes (for instance, car) that end in “leaves” that represent a “real” mode - for 
instance “solo” (= driving a car without passengers). Each composite mode in the tree is composed 

                                                        
t between the trip generation module and the modal and time choice module. Such a full endogenization of the trip 
rate and the generalised cost of transport slows down the model a lot without changing the results substantially 
compared to the approach taken here. 
8 The values of the elasticities reflect expert opinions based on the relevant literature.   
9 See Ortuzar and Willumsen (2011) for more details 
10 See Norman (1999) for a rigorous mathematical definition. 
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of several (composite or real) modes, and if we climb up the tree, we reach the root of the tree, 
which gives us total pkm for a given OD-pair and travel motive. The NCES approach sequentially 
allocates the pkm for each composite mode (starting from the root of the tree) to the composing 
modes, until we reach the leaves of the tree.  

For the mathematical derivation, we consider a representative consumer whose utility is 

determined by the number of passenger kilometre undertaken per mode11 and assume that the 
utility function follows a Nested Constant Elasticity of Substitution (NCES) function. As discussed 
by Proost and Van Dender (1999), the NCES function has as key advantage that it is easy to calibrate 
and requires a minimum of behavioural information, certainly compared to nested logit discrete 
choice models. Moreover, Verboven (1996) has shown the equivalence between the demand 
functions derived from NCES utility functions and those obtained from nested logit discrete choice 
models. We refer to Keller (1976) for a formal derivation of the results that we discuss here at an 
intuitive level. 

 
Figure 2. The CES tree for passenger transport 

The utility of a “composite mode” JI at the bottom of the tree depends on the pkm of the composing 
“leave” modes according to a constant elasticity of substitution function:   

𝑈( 𝐽𝐼)  =   (∑ 𝛼
𝑖

1

𝜎  𝐼
𝑖 . 𝑝𝑘𝑚𝑖

𝜎−1

𝜎 )

𝜎

𝜎−1

         (4) 

Where 𝑈(𝐽𝐼)  is the utility of the composite mode; pkmi is the pkm of each composing mode i;  is 
the (constant) elasticity of substitution between the composing modes, and 𝛼𝑖 are parameters such 

that ∑ 𝛼𝑖 = 1 𝐼
𝑖

12.  

Now suppose that the representative consumer maximizes his utility under the budget constraint 

𝑌 =  ∑ 𝑝𝑘𝑚𝑖. 𝑔𝑐𝑖
𝐼
𝑖 , where 𝑔𝑐𝑖 is the generalised cost per pkm of mode i, and Y is the budget 

                                                        
11 Alternatively, we could assume that utility depends on the number of trips. Given that Dist(O,D) is a constant for 
any given (O, D) pair, the two approaches are equivalent.  
12 The elasticities of substitution used in PLANET combine values found in literature surveys (such as Litman 2019) 

with expert judgement The  parameters, however, have been chosen to reproduce the observed modal shares in 
the base year exactly. They thus depend on the value of the 𝑔𝑐𝑖. 
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constraint. It can then be shown (see Keller 1976) that, for each mode i of which JI is composed, the 
utility maximizing number of pkm is:  

𝑝𝑘𝑚𝑖 = 𝑝𝑘𝑚𝐽.
𝛼𝑖  .  𝑔𝑐𝑖

−𝜎

 ∑ 𝛼𝑖   𝐼
𝑖 .𝑔𝑐𝑖

−𝜎 
.          (5) 

where 𝑝𝑘𝑚𝐽 is the total pkm for a given zone-pair and travel motive by the composite mode (𝑝𝑘𝑚𝐽 =

∑  𝑝𝑘𝑚𝑖
𝐼
𝑖  ). In other words, if we know the total pkm travelled by the composite mode and the 

generalized costs of the composing modes, Equation (5) allocates these pkm to the composite 
modes.  

When we further climb up the CES tree, the utility of each composite mode is a CES function of the 
(real or composite) modes of which it is composed. Equations (4) and (5) generalize to all levels 
until we reach the top node, where the choice is between travelling during the peak or the off-peak 
period.  

To allocate the total 𝑝𝑘𝑚(𝑂, 𝐷, 𝑚𝑜𝑡𝑖𝑣𝑒) per day obtained from the trip generation and distribution 
module, we use equation Error! Reference source not found. to obtain pkm for all “real” modes by 
following the tree from the root to the leaves. The pkm at the root of the tree is first allocated to 
“peak” and “off-peak”. Then, for each time period, the pkm are allocated to “fast” and “slow” 
modes; the pkm for the “fast” modes are allocated to “train” and “private” modes, etc, until all pkm 
are allocated to “real” modes.  

The tree structure is used to represent that some modes are more “alike” than others. Indeed, if all 
modes were perfect substitutes to each other and if the population were perfectly homogeneous, 
everybody would use the transport mode with the lowest generalised cost. In reality, all modes 
have some features that affect their utility but that are not captured by their generalised cost: think 
of their comfort and reliability, for instance. Moreover, the population is heterogeneous, and the 
“average” generalised costs of transport may vary from person per person. 

The elasticity of substitution between two modes represents how sensitive the modal share of the 
transport mode is to all elements that affect the utility of a transport mode but are not captured in 
the generalized cost, or that vary across the population. Formally, the elasticity of substitution 
between modes x and y is the percentage change in the ratio of the pkm driven with those modes 
to a percentage change in their generalised costs: 

𝜎 =

𝛥𝑝𝑘𝑚𝑥/𝑝𝑘𝑚𝑥
𝛥𝑝𝑘𝑚𝑦/𝑝𝑘𝑚𝑦

𝛥𝐺𝐶𝑥/𝐺𝐶𝑥
𝛥𝐺𝐶𝑦/𝐺𝐶𝑦

            (6) 

where 𝜎 is the elasticity of substitution, 𝑝𝑘𝑚 are the passenger kilometres and 𝐺𝐶 are the 
generalised costs.  

Now that we have introduced the NCES representation, we can move to the actual procedure that 
is used to determine the modal shares. The key point here is to remember that the generalised cost 
is the sum of the monetary costs and the time costs. For the road modes, the travel time depends 
on the traffic flows – but traffic flows themselves depend on the modal share of road modes!  

In four-step transportation models that include an explicit road network, the relationship between 
speed and transport flows on the road is given by speed-flow functions. Each vehicle type is 

represented by a Passenger Car Equivalent (PCE) to express its impact on road speed13.  

PLANET does not have its own network model. Instead, PLANET uses the output from the 
network models developed by the Flemish and the Brussels regional administrations to estimate 

                                                        
13 For instance, a motorcycle is assumed to be equivalent to 0.75 passenger cars in terms of impact on congestion. 
For buses and trams that do not drive on dedicated lanes, the equivalence factor is 2.5. 
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piecewise linear congestion functions for five geographical zones14 and two road types15. Those 
linear approximations are summarized in the speed flow elasticity, the percentage change in on-
road speed for a given percentage change in traffic flow: 

𝜂𝑆𝐹 =
𝛥𝑉

𝑉
𝛥𝐹

𝐹

            (7) 

where 𝑉 and 𝐹 represent the speed and the road flow (expressed in PCE), respectively. 

Table 1 gives the elasticities used in PLANET, differentiated per period, region and per road type. 
We also report the mean speed in the reference scenario.  

Table 1. Speed flow elasticities used in PLANET 

Period Geographical zone Road type Speed-flow 
elasticity 

Mean speed in the reference 
scenario (km/hr) 

Peak Antwerp tollroad -1.7 57 
Peak Ghent tollroad -0.8 94 
Peak GEN zone tollroad -2.8 57 
Peak Brussels tollroad -0.8 12 
Peak Rest of Belgium tollroad -0.3 94 
Off-peak Antwerp tollroad -0.9 86 
Off-peak Ghent tollroad -0.3 105 
Off-peak GEN zone tollroad -0.5 95 
Off-peak Brussels tollroad -0.7 22 
Off-peak Rest of Belgium tollroad -0.1 99 
Peak Antwerp other -0.7 36 
Peak Ghent other -0.3 50 
Peak GEN zone other -0.5 47 
Peak Rest of Belgium other -0.1 64 
Off-peak Antwerp other -0.4 50 
Off-peak Ghent other -0.2 59 
Off-peak GEN zone other -0.1 60 
Off-peak Rest of Belgium other -0.1 66 

 

Given that the modal and time choice depend on the GC, but that the GC depends on road 
congestion levels (and thus also on the mode choice), an iterative procedure is needed to reach an 
equilibrium:  

 Use the equilibrium road speed from the previous year as initial value tSk, k=0,  

 Compute the generalised costs GCk per km for each road travel mode based on tSk;  

 Apply equation Error! Reference source not found. to the total pkm between O and D 
obtained from the modal and time choice to derive the demand for each road travel mode 
Dk based on GCk;  

 Compute a resulting speed rSk determined by the road congestion corresponding to 
demand Dk using speed-flow relationships;  

 If |𝑡𝑆𝑘 −  𝑟𝑆𝑘 |  >  𝜀 (where  is an exogenous threshold), a new iteration is started with 

𝑡𝑆𝑘+1 =  
1

2
 . (𝑡𝑆𝑘 + 𝑟𝑆𝑘); set k=k+1. 

                                                        
14 Antwerp, Ghent, Brussels, the area surrounding the capital region (the zone delimiting the Regional Express 
Network, or GEN-zone) and the “Rest of Belgium”. 
15 Roads subject to the distance-based road charge for heavy good vehicles (“tollroad”) and “other” roads.  
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3.3 Car stock model  
The car stock is explicitly modelled in a separate module, called CASMO (Car Stock Model) - see 
Franckx (2019) for an extensive discussion.  

The approach to the car stock model can be summarized as follows. 

First, the total desired car stock per capita follows a Gompertz curve: 𝑉𝑡  =  𝑉∗.  𝑒𝛾𝑒𝛽.𝑦𝑡 , where 𝑉𝑡 is 
the desired car stock per capita in year t, 𝑉∗ is the saturation level of vehicle ownership expressed 
as car per capita, and 𝑦𝑡 is GDP per capita in year t.  

Second, we estimate the probability that a car of a given car class16 is scrapped in the current year 
as a function of its age. The outcomes are aggregated to determine the total number of cars that are 
retired from the car stock, and thus also the remaining car stock at the end of each year. The desired 
car stock is then confronted with the remaining car stock to determine total car purchases in a given 
year. 

Third, a discrete choice model17 is used to split these new purchases according to the different car 
classes, which results in a new inventory. 

The interaction between CASMO and the other modules of PLANET goes both ways. On the one 
hand, the modal choices in the transport demand model are affected by the average costs of car 
use, which depend on the composition of the car stock. On the other hand, the activity levels 
predicted by the transport demand models influence the ratio between fixed and variable costs, 
and thus also the demand for specific car types. 

4. Definition of the scenarios 

4.1  Changes in effective road capacity 
The first channel through which self-driving cars can affect the generalized cost of transport is the 
effective road capacity. If CAVs lead to an increase in road capacity, road speed will be higher for 
any given transport volume. We therefore model changes in the effective road capacity as changes 
in the speed-flow elasticities.  

We consider two extreme values for the elasticities 𝜖𝑆𝐹
∗ = 𝛼 . 𝜖𝑆𝐹, with  = 10 or 90%. With 𝛼 < 1, 

the absolute value of the elasticity becomes smaller, which means that the reduction in the average 
speed for a given increase in traffic flows becomes smaller. In other words, the lower 𝛼, the more 
effective road capacity increases. 

4.2 Changes in the generalised costs of transport 
We will analyse the combined impact of the following consequences of full automation: 

 We consider two possible VOT for travelling with a fully automated car: 0.06 and 0.1 EUR 
per minute (Table 2 summarizes the VOT used in the reference scenario). To keep things 
simple, in the alternative scenarios, the VOT is not differentiated according to the travel 
motive. 

 Regarding the monetary costs, we use the scenario reported in Bösch et al. (2018): an 
increase in the acquisition price of cars by 20%, a decrease in insurance costs by 50% and a 
decrease in fuel consumption per km by 10% (or in electricity consumption for electric cars 
or PHEVs).  

                                                        
16 These car classes are differentiated according to the COPERT classification for emission modelling (see 
https://www.emisia.com/utilities/copert/), which takes into account the fuel type and the engine displacement.  
17 The discrete choice model uses a SP model estimated for The Netherlands (Hoen and Koetse 2014), that was 
calibrated to the Belgian context. 
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Table 2. Value of time (EUR per minute) in the reference scenario 

Mode Business 
trips 

Other 
motives 

Commuting to 
school 

Commuting for 
studies 

Commuting for 
work 

Car with 
passenger 

0.42 0.12 0.12 0.12 0.15 

Car alone 0.52 0.15 0.15 0.15 0.18 

5. Results 

5.1  Changes in effective road capacity 
It turns out that the national impact of changes in the speed-flow elasticity 𝛼 is extremely small: 
passenger kilometres (pkm) per mode change at the very most by around 1%. The impact on modal 
shares and on vehicle kilometres are similar. We have also obtained that the improvement in the 
effective road capacity leads to a decrease in average travel time by car by at most 3%.  

However, PLANET allows us to go beyond the average impacts at the national level. Table 3 shows 
the impact on the average road speed per zone, road type and period of the day. For the sake of 
readability, we have only kept the Period-Geographical zone-Road combinations with the most 
important changes compared to the speed in the reference scenario.  

Given that the increase in effective road capacity does not lead to important increases in car traffic, 
the improvement in road capacity dominates the effect of induced traffic, and the net effect of CAVs 
is a (small) increase in road speed, with a maximum of around 10% on the toll roads around 
Antwerp in peak hours. The effect tends to be larger during the peak hour and in heavily congested 
zones (Antwerp, Brussels, GEN zone), even if this tendency is not unequivocal. So, despite the very 
small impact at the aggregate level, we observe some non-negligible (if far from spectacular) 
changes in some geographic zones. 

Table 3. Changes in congestion elasticity: impact on road speed 

Period Geographical 
zone 

Type of 
road 

Speed in reference 
scenario (km/h) 

Percentage changes in 
speed for α = 90 % 

Percentage changes in 
speed for α = 10 % 

Off-peak Antwerp other 50 0.7 5.7 
Off-peak Brussels tollroad 22 0.6 5.4 
Peak Antwerp other 36 0.7 5.4 
Peak Antwerp tollroad 57 1.0 10.0 
Peak GEN zone tollroad 57 0.6 8.6 

All in all, we see that, even if self-driving cars lead to a very important improvement in effective 
road capacity, this effect on its own is unlikely to fundamentally alter the transport system. This 
can be better understood by looking at the geographic and temporal distribution of car traffic in 
Belgium in Figure 3. Both in the “peak” and in the “off peak” period, around 63.5 % of car vehicle 
km (vkm) are driven in the “Rest of Belgium”. In other words, almost two thirds of traffic in Belgium 
is not subject to high levels of congestion in the first place. As pointed out by Alonso Raposo et 
al. (2017), parts of the network that do not operate close to capacity will not benefit from a better 
throughput. Improving traffic flows in these areas is unlikely to change the demand for private 
cars. 
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Figure 3. Vehicle kilometres in the reference scenario (per GEO zone) 

Therefore, in what follows, we will no longer consider this impact and focus on changes in the 
generalized costs. 

5.2 Central scenario: changes in the generalised costs of transport 
We report here the impact of changes in the monetary costs in combination with the changes in the 
VOT. As a reference point, we also report the changes for the VOT used in the reference scenario 
(RefVOT – see Table 2).  

The first variable we consider is the percentage change in generalised costs compared to the 
reference scenario. The impact on the generalized cost varies a lot, depending on travel motive, 
period of the day and mode. Table 4 represents the impact for 3 Period-Mode- Motive combinations 
for the sake of illustration.  

The results in the column with “% Δ(cost) for RefVOT” show that the overall change in the 
generalized costs for RefVOT is very small when full automation only affects the monetary costs. 
However, for VOT = 0.06 EUR/min and VOT = 0.1 EUR/min, the changes are substantial. The impact 
is the largest for the travel motive “business trips”, and the smallest for “commuting for studies”. 
For VOT = 0.1 EUR/min, there is a factor five difference between the smallest and the largest impact. 

Table 4. Impact of changed VOT and monetary costs on the generalised cost 

Per Mode Motive Generalized costs in 
the reference scenario 
(EUR/km) 

% Δ(cost) 
for 
RefVOT 

% Δ(cost) for 
VOT = 0.1 
EUR/min 

% Δ(cost) for 
VOT = 0.06 
EUR/min 

op Car with 
passenger 

Business trips 0.66 -0.79 -62.26 -70.32 

p Car with 
passenger 

Commuting 
for studies 

0.34 -1.95 -11.60 -30.93 

p Car with 
passenger 

Commuting 
for studies 

0.40 -1.18 -22.52 -41.55 

The table represents the impact of the changes in the monetary costs (see Section 4.2) in combination with different values of the VOT. 
RefVOT is the VOT used in the reference scenario.  
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In all cases, the generalised costs decrease. Indeed, all other things being equal, the decrease in the 
VOT and in fuel consumption per km induce an increase in pkm. As a result, the decrease in variable 
costs dominates the increase in fixed costs (which are now spread over a higher annual mileage). 
In the sensitivity analysis (Section 5.4), we shall verify whether this also holds for higher increases 
in the fixed costs.  

We will now consider the following indicators for the impact on the transport system: (a) the 
change in the passenger km (pkm) per mode (b) the change in vehicle km per car (c) the impact on 
fuel consumption (d) the change in pkm per travel motive (e) the impact on road speed per region 
and road type (f) the impact on total travel time. 

Figure 4 represents the absolute change in pkm compared to the reference scenario. We observe an 
unambiguous shift in transport demand away from all modes in favour of travelling by car. As 
expected, this change is larger, the larger the decrease in the VOT.  

This reflects not only a modal shift, as the increase in the pkm travelled by car exceeds the decrease 
in travel by other modes. In other words, there is a significant net increase in overall passenger 
transport demand: 

For RefVOT, the changes are very small, though: it is the combination of changes in the VOT and the 
financial costs that induces important modal changes.  

  

Figure 4. Absolute changes in pkm per mode compared to the reference scenario 

For VOT = 0.06 EUR/min, there is a small decrease in travelling by car with passenger, which is 
however completely overwhelmed by the increase in travelling by car on one’s own.  

The decrease in travelling with passenger can be explained as follows. In the reference scenario, 
the VOT for driving with passengers is lower than for driving alone (Table 1), reflecting that the 
interaction between passenger(s) and driver is seen as valuable. In Level 5 self-driving cars, the 
distinction between driver and passenger disappears. Hence, we observe two types of substitution 
effects. First, due to the decrease of the VOT, there is a substitution towards driving by car, away 
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from the active modes and public transport. Second, there is a substitution effect away from driving 
with passengers to driving alone, given that the decrease in the VOT is much larger when driving 
alone. Figure 4 illustrates that the second effect dominates for small changes in the VOT, but not 
for larger changes. 

The overall impact on the transport system (congestion, emissions) is however not determined by 
the changes in the pkm, but by the vkm. Figure 5 summarizes the overall impact for cars (covering 
both cars with and without passengers). Again, the impact for RefVOT is small, but for VOT= 10 
and 0.06 EUR/min, the increase in overall car vkm lies between 20 and 25%.  

 
Figure 5. Percentage changes in car km compared to the reference scenario 

Now remember that one of the drivers for this result is a decrease in fuel consumption per km by 
10%. Figure 6 summarizes the overall change in gasoline and diesel consumption (including from 
hybrid cars). With RefVOT, the improvement in fuel efficiency dominates the increase in vkm and 
overall fuel consumption decreases. However, this is not true for VOT ≤ 0.1 EUR/min: there is a net 
rebound effect and the increase in vkm dominates the increase in fuel efficiency.  

 
Figure 6. Percentage changes in total fuel consumption compared to the reference scenario 
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The impacts on the passenger km per travel motive is summarized in Figure 7 for VOT = 0.06 
EUR/min (the effects for the other VOT are similar). For the travel motives “commuting to school” 
and “commuting for studies”, the small increase in travel by car is completely compensated by a 
decrease in the pkm or the other modes: this is purely a modal shift, without any induced travel. 
There is a small net increase in travel for the motives “commuting for work” and “business trips”, 
but most of the induced travel is for “other” motives, where the increase in car travel is much larger 
than the decrease in travel by other modes.  

 
Figure 7. Absolute changes in pkm per travel motive compared to the reference scenario (for VOT = 
0.06 EUR/min)  

Given that national averages can hide important differences at the local level, Table 3 shows the 
impact on the average road speed per zone, road type and period of the day. For the sake of 
readability, we have only kept the Period-Geographical zone-Road combinations with the most 
important changes compared to RefSpeed, the speed in the reference scenario. In the Brussels 
Region, the decrease in the speed of road modes is important, both in peak and off peak, even 
though the baseline speed in this region is already very low (22 km per hour during off peak hours 
and 12 km per hour in peak hours). During peak hours, the decrease in speed is also important in 
the GEN zone, albeit from a higher baseline speed. In Antwerp, there is an important decrease in 
speed, both during peak hours and during of peak hours, but also starting from a higher baseline 
than in the Brussels region. 

While Table 5reports the impact on the road speed in specific geographical zones and on specific 
road types, summarizes the impact on the overall travel time per mode and time the day, where 
the national average Table 6 has been obtained as the weighted average of travel times between all 
OD-pairs, with the passenger kilometres as weighting factor. 
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Table 5. Impact of changed VOT and monetary cost on road speed 

Per Geo Road RefSpeed 
(km/hour) 

% Δ(speed) 
for RefVOT 

% Δ(speed) for VOT 
= 0.1 EUR/min 

% Δ(speed) for VOT 
= 0.06 EUR/min 

Off-
peak 

Antwerp other 50 -1 -12 -18 

Off-
peak 

Antwerp tollroad 86 -2 -9 -10 

Off-
peak 

Brussels tollroad 22 -1 -20 -33 

Off-
peak 

GEN 
zone 

tollroad 95 -1 -8 -9 

Peak Antwerp other 36 -1 -16 -25 
Peak Antwerp tollroad 57 -2 -14 -16 
Peak Brussels tollroad 12 -1 -22 -36 
Peak GEN 

zone 
other 47 -1 -10 -15 

Peak GEN 
zone 

tollroad 57 -3 -28 -39 

The table represents the impact of the changes in the monetary costs (see Section 5.2) in combination with different values of 
the VOT. RefVOT is the VOT used in the reference scenario 

 

Again, we only report the largest changes compared to the reference scenario. As expected, the 
decrease in the VOT has a strong impact on the travel time by car. For a VOT of 0.06 EUR/min, the 
time travelled by “car alone” could increase by close to 25% in peak hours. But the increase in road 
congestion also affects public transport modes that are exposed to road congestion. All in all, one 
can conclude that the decrease in the cost of time (or, alternatively, of the perceived time) implies 
that the budget for physical travel time has gone up.  

Table 6. % Changes in travel time for changes in VOT 

Mode Per RefTravelTime 
(minutes) 

% Δ(travel time) 
for RefVOT 

% Δ(travel time) for 
VOT = 0.1 EUR/min 

% Δ(travel time) for 
VOT = 0.06 EUR/min 

bus op 35.20 0.34 4.42 7.01 
bus p 47.14 0.54 8.38 13.78 
car with 
passenger 

p 28.56 0.05 4.52 12.82 

car alone p 42.38 0.80 11.80 23.51 
tram p 28.49 0.00 4.10 8.00 
The table represents the impact of the changes in the monetary costs (see Section 5.2) in combination with different values of 
the VOT. RefVOT is the VOT used in the reference scenario 

 

To summarize, full automation leads to: 

 an overall increase in car travel 

 an increase in fuel consumption 

 a further slowdown of road traffic in the most congested zones 

 an increase in overall fuel consumption  

 an increase in overall travel time for road modes.  

The key driver for those changes is the reduction in the VOT, which strongly amplifies the 
immediate impact of the higher fuel efficiency. 
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5.3 Sensitivity analysis: higher fuel efficiency 
We now explore what happens if we consider a reduction in fuel consumption per kilometre by 
40% rather than 10%. Changes are calculated compared to both the scenario discussed in Section 
5.2 (the “central scenario”) and to the reference scenario. 

 
Figure 8. Sensitivity scenario for fuel consumption : impact on generalised cost and car vkm 

Compared to the central scenario, the generalized costs decrease (Figure 8) as the result of a higher 
fuel efficiency. The impact on car vkm is almost a mirror image of the impact on generalised costs. 
The effects are stronger, the lower the VOT: the lower the VOT, the more important changes in the 
monetary variable costs are compared to the time costs of travel, and the higher the increase in the 
vkm. However, the differences are not very large. 

The changes compared to the reference scenario are much larger and much more sensitive to 
differences in the VOT. In other words, the effect of a decrease in fuel consumption by 10% (as in 
the “central” scenario) is much higher than the additional effect of a decrease by a further 30% 
point. For RefVOT, the differences are even minimal: the driver behind the changes in the 
generalised cost is the improvement in the VOT, and the improvements in fuel efficiency mostly 
reinforce this channel. 

Figure 9 illustrates that, with a reduction in fuel consumption per vkm by 40%, this higher fuel 
efficiency dominates the increase in vkm, and total fuel consumption (and emissions) decreases, 
even for RefVOT. There is thus some threshold improvement in fuel efficiency for which the impact 
of full automation on total fuel consumption is neutral. 
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Figure 9. Sensitivity scenario for fuel consumption : impact on total fuel consumption 

5.4 Sensitivity analysis: Higher acquisition costs 
If the fixed costs increase in combination with a decrease in the variable costs, the net impact of 
monetary costs per km is not determined a priori. We therefore consider an alternative scenario 
with an increase in the acquisition costs by 40%, compared to what is used in the reference scenario. 

Changes are again calculated compared to both the scenario discussed in Section 5.2 (the “central 
scenario”) and to the reference scenario - remember that, in the “central scenario”, we assumed a 
decrease in acquisition costs by 20%.  

As can be seen from Figure 9, compared to the “central scenario”, the generalized costs increase, 
and the vehicle km travelled by car decrease. Moreover, the lower the VOT, the more important 
changes in the monetary variable costs are compared to the time costs of travel.  

However, for VOT = 0.1 or 0.06 EUR/min, the changes compared to the central scenario are much 

smaller in absolute value than the changes compared to the reference scenario18. This confirms the 
robustness of the central scenario.  

                                                        
18 Note that for VOT = RefVOT, the net effect is an (small) increase in the generalised cost and a (minimal) decrease 
in vkm compared to the reference scenario. 
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Figure 10. Sensitivity scenario for acquisition costs : impact on car vkm and generalised costs 

6. Policy instruments 

The previous sections have shown that full automation of the car fleet is likely to lead to a 
substantial increase in road traffic volumes and fuel consumption in Belgium, even if there is 
considerable uncertainty regarding the exact magnitude of this increase. 

We therefore consider the possibility to use a price instrument to counteract these effects. We 
explore the effect of a uniform road tax, for all periods, zones and road types. We consider the 
following values: 8 and 20 EUR cent per km. Public transport modes are exempted and road freight 
modes are already subject to a road charge. 

As expected, the introduction of a road charge always leads to an increase in generalized costs 
compared to the scenario of Section 5.2 (Figure 11). However, compared to the reference scenario, 
a road charge of 8 EUR cent per km is not sufficient to counteract the decrease in the VOT following 
automation: there is still a substantial increase in vkm except for RefVOT (Figure 12). A road charge 
of 20 EUR cent per km is enough to counteract the effect of full automation for all the values of the 
VOT we have considered here, though. 

To give some perspective: in a recent study performed on behalf of the Flemish Government 
(Heyndrickx et al. 2019), several scenarios for road charges were considered, with average tariffs 
ranging from 3 to 8.5 EUR cent per km. In most of those scenarios, the charges were differentiated 
in time and space, with maximum values of around 19 EUR cent per km in highly congested areas 
during peak hours. The road charge that would be needed to counteract the impact of full 
automation would thus lie far above the average tariffs considered in the study by Heyndrickx et 
al. 
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Figure 11. Road charge : changes in generalised cost compared to central scenario 

 
Figure 12. Road charge : changes in pkm compared to central and reference scenario 

7. Conclusion 

Under a wide range of assumptions, self-driving cars are likely to induce a significant increase in 
the car by travel (possibly up to 26%), and a shift away from public transport modes. The main 
driver behind this is the decrease in the value of travel time, rather than the improved fluency of 
road transport or changes in the monetary costs.   

Most of the induced travel as the result of full automation is for “other” motives, where the increase 
in car travel is much larger than the decrease in travel by other modes. 
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The impact on the speed of road modes is highly variable. In the most congested zones (Brussels, 
the GEN zone, Antwerp), the decrease in the speed of road modes is important, even though the 
baseline speed in those regions is already very low.  

The decrease in the cost of time (or, alternatively, of the perceived time) implies that the budget for 
physical travel time has gone up – by up to 25% on average for car travel.  

The literature review has revealed that there is a wide range of estimates for the impact of CAVs 
on induced traffic. This is partly due to differences in modelling approaches, but also to objective 
differences in the areas of study. Probably the most relevant benchmark in the existing literature 
are the scenarios for AV development that Milakis et al. (2017a) developed, based on the feedback 
they received during an expert consultation in The Netherlands, a country that is comparable to 
Belgium in terms of size and population density. Our central results are in line with these scenarios.   

To counteract those effects, a road charge of close to 20 EUR cent per km would be needed, which 
is high in comparison to tariffs that have recently been discussed as policy proposals.  

Many elements that are not accounted for in the analysis point to the conclusion that the increase 
in traffic volumes could even be higher.  

For instance, self-driving cars can lead to induced demand by segments of the population that are 
not able to drive, such as children and mobility impaired people. The lower cost of driving is also 
likely to lead to the relocation of households and firms, resulting in urban sprawl or the creation 
of new centres. 

Also, the current paper has only considered privately owned cars, while automation and car 
sharing are two forces of mobility innovation that are likely to mutually reinforce each other. It has 
been argued in the literature that, unless combined with an important uptake of ridesharing, 
shared CAVs might lead to even more additional trips, as empty vehicles waiting for new clients 
will reposition themselves. 

Given that a generalised adoption of ridesharing would require major behavioural changes, a 
charge of 20 EUR cent per km should thus be considered as the lower bound to what would be 
needed to counter all sources of induced traffic. This will be considered in future work. 
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