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Nowadays, mobility modelling at individual level is receiving significant attention. Moreover, 
the technological advances in the field of travel behaviour analysis have supported and promoted 
the modelling paradigm shift to disaggregate methods such as agent/activity-based modelling 
Nonetheless, such approaches usually require significant amounts of detailed and fine-grained 
data which are not always easily accessible. The methodology presented in this paper aims to 
generate individual home-based trip-chains (i.e. tours) utilising aggregated sources of information, 
primarily, typical Origin-Destination matrices (ODs) and secondarily travel surveys. A suitable 
framework able to optimally identify ‘hidden’ tours in typical ODs is proposed and evaluated 
through its application on a set of multi-period OD matrices, covering an urban area of realistic 
size. This novel methodological framework synthesises the individual tours by combining and 
elevating advanced graph theory and integer programming concepts. The performance of the 
proposed methodology proves particularly encouraging since high estimation accuracy (greater 
than 85%) was achieved even for the most challenging examined test-case. The presented results 
provide positive evidence that information regarding travel behaviour on an individual level can 
be produced based on aggregated data sources such as OD matrices. This element is particularly 
valuable towards the analysis of mobility at the person-level, especially within the framework of 
agent-based modelling. 
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1. Introduction 

1.1 Motivation 
In the current era of information availability and the emergence of new modelling paradigms (e.g. 
agent-based, activity-based, data-driven modelling), travel demand modelling faces new 
opportunities. Moreover, advances in transport modelling, have enabled modelers to develop 
realistic and detailed representations of the mobility landscape accounting for the complex and 
dynamic interrelationships between people, activities, and the supply of transport services 
(Matthews et al., 2007; Vogel and Nagel, 2013; Huynh et al., 2014; Adnan et al., 2016). Nonetheless, 
these emerging transport modelling approaches often require fine-grained information such as 
very detailed and extensive travel behaviour surveys (Bhat and Koppelman, 1999; Castiglione, 
Bradley and Gliebe, 2015) or extended location traces which may not be always accessible. 

The traditional mean to organise travel demand information takes the form of Origin-Destination 
(OD) matrices. These matrices represent mobility as the total volume of trips between pairs of 
locations or areas, often referred as zones. Moreover, in many applications, OD matrices segregate 
trips according to their characteristics such as the time period of trip departure (e.g.  AM-peak, 
PM-peak) or their trip-purpose (Home-Based-Work, Non-Home-Based-Shopping, etc.). Over the 
years, transport authorities and operators have allocated significant resources to develop and 
maintain similar matrices to support a plethora of decisions, related to urban planning, policy 
evaluation and transport infrastructure investments amongst others. Despite their extensive use, 
ODs face a serious limitation with regards to the representation of the interdependence between 
trips. This limitation, hinders their ability to capture travel behaviour in its full context and 
consequently limits the ODs’ usefulness to relevant studies (Mcnally and Rindt, 2008). Transport 
modelling paradigms such activity-based modelling attempt to counter this limitation by 
expressing travel demand as sequences of activities linked by sequences of trips , often referred to 
as trip-chains (Bhat et al., 2004; Pinjari and Bhat, 2011; Chu, Cheng and Chen, 2012). Although this 
data representation format is more flexible and better suited for the purposes of agent-based 
modelling (Ben-Akiva et al., 2007), the capturing of the relevant information can prove an 
expensive, tedious and complex task (Gu, 2004; Ben-Akiva et al., 2007). Advances in Information 
and Communications Technology (ICT) such as Mobile Network Data (MND) and GPS tracking 
has paved the way for more efficient and less expensive (passive) observation of individuals’ travel 
behaviour (Gong et al., 2014; Toole et al., 2015; Anda, Fourie and Erath, 2016). Passively observed 
data, able to capture the trip-chains of individuals, are becoming abundant. Nowadays, the use of 
similar data sources in the field of transport modelling is gaining considerable ground.  On the 
other hand, significant concerns have been raised regarding aspects such as ‘anonymity preservation’ 
in cases where disaggregate personal data are used for similar studies. The proposed methodology 
can be utilised as a mechanism to eliminate data privacy concerns by reverse-engineering 
aggregate ODs to realistic individual tours. 

Although, technological advances have enabled the observation and the expression of travel 
demand at a disaggregate level, the value of aggregated sources such as OD matrices should not 
be disregarded. Standard OD matrices can still provide a wide range of valuable information 
ranging from trip distribution patterns and estimates of total transport demand, to insights 
regarding the mobility motif. Moreover, typical OD matrices are still considered the most 
straightforward and widely used means to express travel patterns with no sign suggesting their 
complete replacement by other approaches. On the contrary, their wide use, in conjunction with 
their continuous development (Zhao, Rahbee and Wilson, 2007; Iqbal et al., 2014; Bonnel et al., 2015; 
Toole et al., 2015; Tolouei, Psarras and Prince, 2017) indicates that their usability and value will not 
diminish in the foreseeable future. Despite their wide adoption and use, the aggregate nature of 
ODs hinders their use for the studying of trip-chaining and trip interdependency phenomena. 
However, the enhancement of OD matrices to include trip-chaining information could enable their 
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use in a wider range of applications and could considerably boost their value. Some of the potential 
use cases for the suggested methodology are presented below: 

• Preparation of relevant input for agent-based/microsimulation models. For instance, trip-
chaining information including the duration of stay between trips, stands for an essential 
input for microscopic agent-based simulation platforms as well as traffic assignment 
models (Kemper, 1990; Maerivoet, Sven; De Moor, 2006). 

• Anonymisation of tours deriving from observable data sources (mobile phone/GPS traces). 
Aggregating these traces, to create ODs and subsequently use them as input to estimate 
tours could introduce randomness in the dataset without affecting the demand patterns as 
captured in the original ODs. 

• Validation of OD matrices. Poor performance of the here suggested methodology on a set 
of ODs could be an indicator of inconsistencies related to trip-chaining. 

1.2 Literature review 
The significance of trip-chaining for travel behaviour analysis has drawn considerable attention 
over the years (Thill and Thomas, 1987; Goulias and Kitamura, 1991; McGuckin and Murakami, 
1999; Yue et al., 2014). Although, the majority of the relevant studies has been based on detailed 
micro-samples (i.e. travel diaries), more recently urban sensing data sources (e.g. Mobile Network 
Data, GPS traces, smart card data etc.) have been also utilised for such purposes. As an example, 
Mobile Network Data (MND) have been utilized to observe daily trips-chains which were 
subsequently transformed into activity-sequences (Liu et al., 2014). Similarly, smart-card data has 
been coupled with land-use information to impute activity sequences using continuous hidden 
Markov models (Han and Sohn, 2016).  The use of hidden Markov chain methodologies to assign 
activity sequences deriving from micro-samples (surveys) to a synthetic populations has been also 
explored in recent studies (Saadi et al., 2016). 

A common factor across travel behaviour related studies is their dependence on fine-grained, 
personal travel behaviour data except for limited cases. For example, Balmer et al. (2006), proposed 
a framework capable of combining multiple sources of information, including OD matrices, to 
generate the demand, in the form of trip-chains, for large scale microsimulation. Preliminary 
approaches to synthesise sequences of typical (home-work-leisure-home) activity-chains, solely 
based on ODs, were firstly suggested by Ballis and Dimitriou (2018; 2019). This study presents a 
complete framework based on advanced graph theory and combinatorial optimisation concepts 
aiming at the conversion of aggregate ODs to fully tractable and disaggregate home-based trip-
chains (i.e. tours). 

The following section (Section 2) describes the methodology suggested by this study while  
Section 3 validates the methodology through a fully realistic case study. The last section of the 
paper (Section 4) discusses the conclusions and the future steps of the study. 

2. Methodology 

2.1 Outline 
This section focuses on the detailed description of a methodological framework aiming to create 
tours, using information obtained from multi-period OD matrices. For the purposes of this study 
and in order to avoid confusion, a tour is defined as a sequence of trips beginning and ending at a 
home location (Cirillo and Axhausen, 2002). Moreover, the individual trips consisting a tour will 
be referred to as legs. In its most basic form, the methodology can be utilised to convert an OD 
matrix, containing the total volume of individual trips between locations into multi-leg tours. 
Every additional dimension in the input OD (e.g. trip-purpose, transport mode, user group, etc.), 
can be exploited so that more detailed tours can be created. In the current study, the focus has been 
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placed on multi-period ODs which allowed for the allocation of departure time-period to each leg 
of the resulting tours. Nonetheless, the framework is generic and flexible enough to exploit every 
available dimension present in the input ODs. 

The main principle behind the proposed tours’ synthesis framework is that accurate OD matrices 
should include all the individual trips taking place in the covered area. Hence, there must exist a 
combination of trips which perfectly recreates the daily tours completed by the population. This 
assumption is supported by the observation that most people begin and end their daily activities 
at their home location (Sicotte, Morency and Farooq, 2017). Therefore, most of the trips in ODs 
should be able to be incorporated into diurnal tours. This assumption holds particularly true in 
cases where the OD matrices have derived from observational data sources (e.g. mobile 
phone/GPS data, etc.). These ODs are usually built by tracking the movements of individual 
people for consecutive days or even months. Therefore, ODs built from such sources are indeed 
formed as the aggregation of the trips within trip-chains and tours. Even in cases where OD flows 
have stemmed from modelling processes (e.g. typical 4-step models), and therefore flows are not 
entirely based on observed measurements, the fact that most trips within ODs should belong to 
tours, still holds true. 

The followed approach to reconstruct multi-period ODs into individual tours is organised in two 
modules. The first module is responsible for the identification of all the plausible tours within ODs 
and is driven by a graph theory-based algorithm. The second module deploys an optimisation 
algorithm to identify the combination between the previously identified plausible tours which 
maximises the utilisation of trips in the input ODs. The two main steps involved in the process of 
tours’ identification are presented in the following sub-sections. 

2.2 Tours’ identification module 
Identifying sequences of nodes (paths) originating and ending at the same node has been 
thoroughly studied in the field of graph theory (Diestel, 2017). These paths are formally known as 
cycles and a plethora of reliable and efficient methodologies has been suggested for their 
identification (Johnson, 1975). Based on their definitions, it can be observed that tours and cycles 
share multiple similarities.  In fact, tours can be considered as a subset of cycles which follow some 
logical, spatial and/or temporal conditions. For instance, tours are considered valid only if they 
originate and end at a home location. Similarly, trips within tours must follow a chronological 
order. However, the previous conditions are irrelevant for the identification of cycles. For the 
purposes of this study, suitable algorithms drawn from the graph-theory context are combined 
with filtering mechanisms to first identify all cycles in an OD matrix and then filter out the non-
valid tours within the identified cycles set. Prior to the application of graph theory algorithms, the 
conversion of the input ODs into a graph (network) is required. This can be straightforwardly 
achieved by expressing the OD zones as the network’s nodes and the trips as the corresponding 
links. The case of converting multiple OD matrices into a single network can be addressed by 
multigraphs (Bollobás, 1999), where multiple links with different attributes can be used to connect 
the same pair of nodes. 

Finally, in order to distinguish the graph-theory context form the transport modelling one, cycles 
will be thereafter referred to as zone-sequences. Based on the above-mentioned, the process of tours’ 
identification can be split into the two following procedures: 

• Identification of the plausible zone-sequences. 

• Identification of the valid tours among all the previously identified zone-sequences. 

Identification of zone-sequences 
As noted earlier, a zone-sequence represents a tour only if the starting and ending zone is a home 
location. In order to avoid the identification of zone-sequences which do not hold this property, 
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the following approach is applied iteratively for all the origin zones. The network is stripped away 
of (a) Home-Based trips not linked to the origin zone and (b) Non-Home-Based trips linked to the 
origin zone. This renders the formation of invalid zone-sequences impossible and allows for a 
significant reduction in the number of the valid zone-sequences. The process is repeated iteratively 
until all the zones in the network have been traversed and consequently all the plausible zone-
sequences have been identified. The procedure is illustrated in Figure 1. 

 
Figure 1. Network filtering to ensure that only Home-Based zone-sequences originating from Z can 

be formed. 

Identification of valid tours 
The outcome of the process described above is a set containing all the plausible zone-sequences 
which originate and end at a home location. Nonetheless, depending on the number and type of 
the available ODs, the same zone-pairs can be possibly connected by multiple trips, differentiated 
by aspects such as trip-purpose, time of departure, transport mode, etc. Therefore, each zone-
sequence can result due to the possible permutations of trip attributes, into numerous tours which 
are not all sensible from a chronological and/or a travel behaviour perspective. Depending on the 
available information and the particularities of each case, a plethora of tour plausibility checks can 
be applied. For the purposes of this study, the focus has been placed on assuring the temporal 
consistency of tours. In simple terms, this is translated to the verification of the chronological order 
of the trips consisting a tour. As an example, if the initial leg of a tour takes place in the evening, 
none of the following trips can take place earlier in time (e.g. during the morning). This 
straightforward and reasonable validation check can significantly reduce the number of valid 
tours. In general, the methodology is flexible enough to allow for the application of any validation 
check. As an example, a validation check can be enforced to verify that tours initiated with a private 
car will also be terminated with the same mode. Similar rules can be examined in cases where 
certain types of activities (e.g. shopping or education) are not available during certain hours of the 
day. In general, the framework allows the introduction of any consistency check. The final set of 
tours surviving these validity checks is referred to as the candidate tours set and forms the input to 
the optimisation process. 

2.3 Optimisation module 

Mathematical formulation 
The following section presents the module responsible for the identification of the combination of 
candidate tours which maximises the use of the available trips in the input ODs. Equivalently, the 
module is responsible for the identification of the tours’ combination which minimises the number 
of non-utilised trips. The mathematical formulation as well as insights regarding the theoretical 
extent of the problem domain are presented next. 
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Let 𝐶𝐶 be the set of candidate tours as identified in the previous step. The optimisation objective Eq. 
(1) aims to identify the utilisation of each tour in 𝐶𝐶 so that the number of unused trips as expressed 
in the input ODs is minimised. Inequality Eq. (2) guarantees that trips are not used more than what 
is described in the input ODs and Eq. (3) that the frequency of use for tours is non-negative. To 
sum up, the optimisation problem can be formulated as follows: 

min𝑍𝑍 =  �������𝑁𝑁𝑐𝑐𝐷𝐷𝑐𝑐
𝑝𝑝𝑜𝑜� − 𝑇𝑇𝑝𝑝𝑜𝑜

𝑐𝑐

��
𝑝𝑝𝑜𝑜

�
𝑜𝑜

(1) 

subject to: 
��𝑁𝑁𝑐𝑐𝐷𝐷𝑐𝑐

𝑝𝑝𝑜𝑜�
𝑐𝑐

−  𝑇𝑇𝑝𝑝𝑜𝑜 ≤ 0  ∀ 𝑜𝑜 ∈ O,𝑝𝑝𝑜𝑜 ∈ 𝑃𝑃𝑜𝑜 (2) 

𝑁𝑁𝑐𝑐 ≥ 0,∀ c ∈ C (3) 

𝑏𝑏𝑐𝑐𝑖𝑖 =
𝑁𝑁𝑐𝑐𝐺𝐺𝑐𝑐𝑖𝑖

∑ 𝑁𝑁𝑐𝑐𝑐𝑐
  ≤ 𝛿𝛿𝑖𝑖   ∀ c ∈ C, 𝑖𝑖 ∈ 𝐼𝐼 (4) 

Nomenclature: 
𝑂𝑂 Set of multi-period ODs (𝑜𝑜 ∈ 𝑂𝑂) 
𝑃𝑃𝑜𝑜 Set of zone-pairs in each 𝑜𝑜 (𝑝𝑝𝑜𝑜 ∈ 𝑃𝑃𝑜𝑜) 
𝐶𝐶 Set of candidate tours (𝑐𝑐 ∈ C) 
𝐼𝐼 Set of distribution groups (𝑖𝑖 ∈ 𝐼𝐼) 
𝑁𝑁𝑐𝑐 number of times each 𝑐𝑐 is utilised 
𝐷𝐷𝑐𝑐
𝑝𝑝𝑜𝑜 binary variable indicating whether 𝑝𝑝𝑜𝑜 is part of 𝑐𝑐 
𝑇𝑇𝑝𝑝0 the number of trips between each 𝑝𝑝𝑜𝑜 
𝐺𝐺𝑐𝑐𝑖𝑖 binary variable indicating whether 𝑐𝑐 belongs in 𝑖𝑖 
𝑏𝑏𝑐𝑐𝑖𝑖  the probability of 𝑐𝑐 belonging in 𝑖𝑖 
𝛿𝛿𝑖𝑖 accepted error between the input and the modelled probability for each 𝑖𝑖 

The above-mentioned optimisation problem is expressed as an integer linear program (ILP) and 
solved by the CPLEX Branch-and-Bound optimiser (IBM, 2020). Due to the modular nature of the 
methodology the currently used Branch-and-Bound algorithm can be substituted by other suitable 
optimisation techniques (e.g. Genetic Algorithms, Simulated Annealing, etc.). 

Optimality of solution 
It is acknowledged that the execution of the previously presented methodology can potentially 
return multiple combinations of tours which satisfy equally well the objective function. As with 
many other problems of combinatorial nature (e.g. OD estimation based on network loading 
information), no uniqueness criteria can be guaranteed. Nonetheless, the enhancement of the 
problem setting with information regarding the solution properties can guide the estimation 
towards the desirable direction. In the proposed estimation framework, such information can be 
incorporated both in the generalized error term used in the objective function as well as in the 
constraints set. The more detailed the constraints set, the more likely is to obtain a solution which 
best describes reality. 

More specifically, in cases where additional information regarding the distribution of tours’ 
characteristics is available (e.g. tours’ length distribution), then this information can be included to 
refine the output. The introduction of distribution constraints is enabled by assigning to each of 
the candidate tours the corresponding distribution group (𝑖𝑖) which best describes them. The 
application of Eq. (4) assures that the resulting combination of tours will follow the desired 
distribution and therefore the resulting solution will match more closely the expected one. 
Although the problem is relatively simple in its formulation, the identification of an optimal 
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solution can be hindered by the size of the search space (i.e. number of candidate tours). The 
relevant complexities and potential approaches to restrict the size of the candidate tours set are 
discussed in the following section. 

2.4 Search space 
According to the characteristics of the current problem setting in terms of its properties as an 
integer programming problem, the size of the candidate tours (i.e. search space) mainly depends 
on two factors, namely:  

1. the spatial resolution of the zoning system used to develop the OD matrices, and  

2. the length of the tours defined as the maximum number of legs allowed in each tour. 

Effect of spatial resolution 
In order to quantify the above-mentioned spatial resolution, the concept of network density (𝑔𝑔) is 
used as a proxy. In graph theory, network density, also known as gamma index (Rodrigue, Comtois 
and Slack, 2017), is defined as the fraction between the actual connections in the network and the 
possible ones. The arithmetic value of network density typically ranges from 0% to 100% but it can 
grow larger for the cases of multigraphs. The formula to calculate network density for directed 
graphs is presented in Eq. (5) where 𝑙𝑙 is the number of links and 𝑛𝑛 the number of nodes present in 
the network. 

𝑔𝑔 =  
𝑙𝑙

𝑛𝑛 (𝑛𝑛 − 1)  (5) 

A dense network allows the connection between multiple pairs of nodes, leading potentially to a 
significant increase in the number of plausible tours. As a result, this has a negative effect on the 
performance of the tours’ identification process. To illustrate the effect of spatial resolution to the 
methodology, two simplified networks, characterised by resolutions (densities) along with their 
attributes are depicted in Figure 2 and Table 2. 

 
Figure 2. Representation of the same OD matrix using a high-resolution (left) and low-resolution 

(right) network. 

Table 1. Effect of network density on tours’ identification process 

Network resolution Zones Links Density Tours 
High 5 6 30% (1) [Z, A, Z] (2) [Z, A, C, Z] 
Low 4 6 50% (1) [Z, A, Z] (2) [Z, A, C, Z] (3) [Z, BD, C, Z] 
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For this example, a low-resolution network is created by aggregating the zones of a high-resolution 
one. Although, the number of trips between these two cases remains the same, the effect of the 
spatial tessellation in the low-resolution scenario is significant. The network densities for the high- 
and low-resolution networks are 30% and 50% respectively. The most notable effect is that the 
reduction of spatial resolution (i.e. increase in density) enables the formation of tours which were 
impossible in the high-resolution case. For instance, in Table 1 it can be observed that the number 
of tours originating from zone Z increases from two to three. For large-scale networks the 
implications of using a low-resolution zoning system can be even more significant, leading to a 
many-fold increase of the number of plausible tours. The effect of network density will be 
evaluated at a greater extent at the case study section (Section 3). 

Effect of tours’ length 
In the case of dense networks and/or of tours consisting of numerous legs (i.e. long tours) the 
number of potential tours and therefore the size of the search space can grow exponentially. As 
with many combinatorial optimisation problems, an exhaustive search for the identification of the 
optimal solution is not always feasible. Attempting to identify all the plausible zone-sequences can 
result in excessive processing times, especially in the case of dense networks. For example, the 
number of all plausible tours in a fully connected network (g=1) is calculated using Eq. (6). An 
example for a network of 140 nodes is also presented in Table 2. 

𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆(t) = �
(𝑝𝑝𝑆𝑆)!

(𝑝𝑝𝑆𝑆 − l)!

𝐿𝐿

𝑙𝑙=1

(6) 

where: 
𝑆𝑆 the number of zones in the network 
𝑝𝑝 the number of available time periods in the network 
𝐿𝐿 the maximum number of legs allowed in tours 

Table 2. Number of possible tours in a fully connected network of 140 nodes 

Maximum tour length (legs) Possible tours Cumulative sum 
2 560 560 
3 313,040 313,600 
4 174,676,320 174,989,360 
5 97,294,710,240 97,469,386,560 

As expected, the number of plausible tours grows rapidly. In order to improve the efficiency of the 
methodology and reduce the required processing times, the function responsible for identification 
of  tours (Johnson, 1975) was modified to include a parameter limiting the maximum number of 
zones within a tour. This modification is also sensible from a travel behaviour perspective since 
relevant travel diaries and studies can verify that most travellers do not complete tours with very 
high number of legs. For instance, in the National Travel Survey of UK (Department for Transport, 
2017) no tour exceeded thirteen legs while the majority (≥ 97%) of tours ranged between two to 
five. 

Search space reduction 
Despite the advances in processing power and in integer programming optimisation algorithms, 
such a vast number of candidate tours cannot be efficiently handled by the currently available 
optimisation tools. Nonetheless, steps can be taken to drastically reduce the number of plausible 
tours, such as the:  
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• exploitation of the connectivity between zones as expressed in the ODs 

• filtering of cycles not originating at a home location and  

• application of chronological consistency checks. 

Based on the results obtained from a relevant test case presented in Section 3, the application of the 
three above-mentioned filters can reduce the 5-leg tours from almost 97.5 billion to approximately 
2 million unique tours. Regardless of this significant reduction, a figure of that size can still prove 
challenging to the currently available optimisation solvers. Nonetheless, the available search space 
can be further reduced by exploiting information regarding the expected characteristics of tours. 
As an example, the maximum expected duration of tours can be utilised to exclude long tours from 
the set of candidates. The same principle can be applied to tours belonging into any distribution 
group with insignificant or small frequency. If for example, a small fraction of tours consists of n 
legs, then this group can be omitted without a considerable effect on the accuracy of the result. In 
real applications, observed data can suggest the exclusion of multiple distribution groups, leading 
to a substantial reduction of the problem domain. 

3. Case study 

3.1 Experimental design 
The objective assessment of the proposed framework’s performance requires a fully observed and 
controlled test-case. For that reason, a realistic set of tours (referred to as original tours) is prepared 
based on information obtained from a relevant travel survey (Department for Transport, 2017). For 
the purposes of this study, the original tours are designed to replicate travel behaviour of 
individuals residing in large urban areas. It is important to stress that the original tours are solely 
developed to form the validation set which will be later used to compare with the methodology’s 
results. After their creation, the original tours are aggregated into a set of multi-period OD matrices 
(referred to as original ODs). At this stage the direct reverse-engineering of the original ODs to the 
original tours is not possible since all the trip-sequencing information is lost due to aggregation. 
The original OD matrices, stripped of trip-chaining information, are fed to the methodology with 
the purpose to estimate a set of modelled tours, able to represent the travel demand as described in 
the original ODs. Ultimately, the individually modelled tours are compared side-by-side with the 
original tours. 
To sum up, the experimental design can be summarised by the following steps: 

1. Preparation of the original tours set (here, based on survey data) 

2. Aggregation of tours into multi-period ODs (referred to as original ODs) 

3. Application of the suggested methodology to the original ODs 

4. Estimation of the modelled tours 

5. Validation between the observed and the modelled results (both for ODs and tours). 

3.2 Evaluation scenarios 

Explored parameters 
This section presents a set of scenarios designed to fully assess the applicability of the methodology 
as well as the accuracy of the results. The scenarios are differentiated by the following parameters: 

• the spatial resolution of the zoning system, and  

• the enforcement or not of distribution constraints 
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The following evaluation scenarios will attempt to quantify this effect by applying the 
methodology to the same set of ODs expressed a) in a high-resolution zoning system and b) in a 
low-resolution zoning system. Another element which can substantially affect the overall process 
is the constraints relevant to the observed tours’ distribution. For this purpose, two additional 
parameters have been included to further enrich the evaluation scenarios, namely: 

1. the enablement of the joint distribution constraints and 

2. the number and type of the joint distribution’s dimensions. 

The inclusion of the first parameter aims to examine the effect of the joint distribution on the 
resulting tours. The focus is to evaluate whether an unconstrained solution, in terms of 
distribution, describes the original OD matrix more accurately at the expense of identifying 
unrealistic tours (e.g. high distribution of long tours). The second parameter examines the potential 
benefits of increasing the information included in the provided distribution by including more 
dimensions to the joint distribution. In the first instance, a distribution describing the tours in terms 
of their number of legs and their total travel time is evaluated. In the second instance, the previous 
joint distribution is enriched with information regarding the time period of departure for each of 
the legs in tours. The purpose is to evaluate the effect of providing additional, in this case temporal, 
information to the solution. 

Summary of the evaluation scenarios  
The parameters forming the exploration space are presented below: 

• Spatial resolution: High and Low 

• Distribution constraints: Enabled or Disabled 

• Joint distribution dimensions: 

1. Legs: Number of legs in tours  

2. Travel time: Tour’s duration grouped in bins of 15-mins 

3. Time periods: Time periods of departure for each tour’s legs 

Based on these dimensions, the defined eight scenarios are presented in Table 3.  

Table 3.  Summary of scenarios’ parameters 

Scenario # Spatial Resolution Distribution dimensions Distribution constraints 
1 High Legs / Travel time Disabled 
2 High Legs / Travel time Enabled 
3 High Legs / Travel time / Time periods Disabled 
4 High Legs / Travel time / Time periods Enabled 
5 Low Legs / Travel time Disabled 
6 Low Legs / Travel time Enabled 
7 Low Legs / Travel time / Time periods Disabled 
8 Low Legs / Travel time / Time periods Enabled 

3.3 Data inputs 

The zoning system 
The first step of the evaluation process entails the definition of a zoning system which will be used 
to express the sequence of zones followed by each tour. As it has already been pointed out, the 
zoning system can significantly affect the tours’ resolution as well as the complexity of the overall 
problem (Section 2.4). To simplify the process, the required for the evaluation zoning systems were 
developed based on UK standard census geographic boundaries. As of 2011 UK is divided in 34,753 
Lower layer Super Output Areas (LSOAs) with an average population of 1,500 in each. The 
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aggregation of LSOAs to larger groups results in a coarser census geographic boundary called 
Middle layer Super Output Areas (MSOAs) with a mean population of around 7,200. Since MSOAs 
emerge as pure aggregation of LSOAs therefore a direct mapping between them does exist. 
For the purposes of our analysis, a high-resolution zoning system was created by sub selecting 470 
LSAOs. Aggregating these 470 LSOAs to the corresponding MSOAs, resulted in a low-resolution 
zoning system of 140 zones. The conversion from the high- to the low-resolution zoning system led 
to a 70% reduction in the number of zones with a subsequent eightfold increase of the network 
density (Table 4). 

Table 4.  Summary of zoning-systems used for the synthesis of the original tours 

Spatial Resolution Based on Zones Links Network density (%) 
High LSOAs 470 7,596 3.20 
Low MSOAs 140 6,474 25.2 

Original tours 
As mentioned before, a set of realistic tours has been used to create the input OD matrices. We refer 
to the respective tours and ODs as original. These original tours were synthesised in accordance to 
relevant information obtained from the UK National Travel Survey (Department for Transport, 
2017). The relevant information in the survey were expanded to create an adequately large number 
of tours, suitable for the creation of considerably sized multi-period ODs. The distributions of the 
produced tours in terms of (a) number of legs (b) total travel-time and (c) time period of departure 
for each leg are presented in Figure 3 and Figure 4. Four The time periods were used for the 
purposes of this analysis are presented in Table 5. 

Table 5.  Definition of available time periods 

Time period Covered period 
AM 07:00 – 10:00 
IP 10:00 – 16:00 
PM 16:00 – 19:00 
OP 19:00 – 07:00 

 

 
Figure 3.  The applied joint distribution for the synthesis of tours by number of legs and total travel 

time. 
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Figure 4.  The applied temporal distribution of legs’ departures of the original tours 

The evaluation of the effect of spatial resolution to the methodology was achieved by expressing 
the original tours in two different sets depending on the resolution used to define them. The first 
set of original tours is based on the high-resolution network zoning system and therefore all zone-
sequences are expressed as sequences of LSOAs. The second set is based on the low-resolution 
zoning system and is formed by replacing the LSOAs in each of the previously identified zone-
sequences by the corresponding MSOAs. Following the previously described methodology returns 
two sets of tours, differentiated by the zoning system used to define them. A summary of these sets 
is presented in Table 6. 

Table 6.  Summary of the original tour sets 

Tour set Spatial Resolution Total tours Unique tours Ratio 
1 (LSOAs) High 3,659 2,864 1.27 
2 (MSOAs) Low  3,323 2,696 1.23 

Original OD matrices 
Aggregating the legs of the original tours results in a set of original OD matrices (Table 7). Due to 
this aggregation, all information regarding trip-chaining is lost. However, the original ODs still 
enclose information regarding the origin, destination, trip-purpose and time period of departure 
for all the individual trips completed in the study area. Two sets of multi-period OD matrices 
differentiated by the underlying zoning system were developed. The previous steps present the 
procedure to obtain the required input to the methodology. The application of the methodology to 
the original OD matrices results in the set of modelled tours. 

Table 7.  Summary of the original OD matrices 

Trip-purpose  Home-Based (HB) Non-Home-Based (NHB) Total 

Time period AM IP PM OP AM IP PM OP  

High-resolution 4,654 4,164 3,574 2,200 450 2,244 1,142 242 18,670 
Low-resolution 3,962 4,000 3,174 2,248 310 1,886 1,038 222 16,840 
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3.4 Validation 

The following section presents the results from the application of the methodology for the 
evaluation scenarios. All scenarios were completed on an 8-core i7@2.6GHz CPU with 16GB RAM 
while the required processing time for each scenario is presented in Table 8. As it can be noticed, 
the use of low spatial resolution (i.e. increase of network density) leads to considerably higher 
identification processing time requirements (tenfold increase). On the other hand, the increase of 
the required optimisation processing time does not exceed 60%. Nonetheless, the overall 
processing time is still reasonable (less than 1.5 days) and can be reduced by using computing 
systems with additional cores. 

Table 8.  Processing time requirements per scenario 

Scenario No Spatial 
Resolution 

Identification 
processing time (sec) 

Optimisation 
processing time (sec) 

Total 
processing time (sec) 

1 High 9,690 1,150 10,840 
2 High 9,690 960 10,650 
3 High 9,690 950 10,640 
4 High 9,690 860 10,550 
5 Low 105,530 1,820 107,350 
6 Low 105,530 1,760 107,290 
7 Low 105,530 1,650 107,180 
8 Low 105,530 1,480 107,010 

The assessment of the methodology is completed based on a series of comparisons between the 
expected (original) and the estimated (modelled) results. Firstly, the evaluation at aggregate level is 
performed by comparing the original and modelled OD matrices, in terms of their overall 
resemblance. Secondly, the comparison of the distributions describing the characteristics of the 
original and the modelled tours is completed. Finally, the individual original and modelled tours are 
compared at a disaggregate level allowing for an in-depth appraisal of the methodology’s accuracy. 

Comparison of ODs 
The first level of assessment is related to the methodology’s ability to accurately reproduce the 
observed OD matrices. As it has already been explained, the original and the modelled OD matrices 
derive from the aggregation of the original and modelled tours respectively. The most 
straightforward way to achieve such an assessment is to compare the total number of trips, possibly 
segmented in different categories (e.g. trip-purpose). A summary of the total trip differences is 
presented in Table 9. Based on these results, it can be observed that the methodology manages to 
perfectly reproduce the original OD matrices in six out of eight scenarios while the difference is less 
than 0.3% for the rest.  

mailto:i7@2.6GHz
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Table 9.  Comparison between the original and the modelled OD total trips’ difference 

Scenario 
No 

Spatial 
Resolution 

Distribution Dimensions Distribution 
Constraints 

Percentage 
Difference 
(HB trips) 

Percentage 
Difference 
(NHB trips) 

1 High Legs/Travel time Disabled 0% 0% 
2 High Legs/Travel time Enabled -0.04% -0.04% 
3 High Legs/Travel time/Time 

periods 
Disabled 0% 0% 

4 High Legs/Travel time/Time 
periods 

Enabled 0% 0% 

5 Low Legs / Travel time Disabled 0% 0% 
6 Low Legs / Travel time Enabled 0% 0% 
7 Low Legs/Travel time/Time 

periods 
Disabled 0% 0% 

8 Low Legs/Travel time/Time 
periods 

Enabled -0.29% -0.29% 

Apart from the comparison concerning the total trips between the original and the modelled OD 
matrices, a pairwise comparison of the ODs’ cells is presented in Figure 5. In this graph a scatter 
plot comparing the original versus the modelled trips for each of the compared ODs’ cells is 
presented. Each point on the graph represents a trip: 

• between two specific zones (e.g. Zone1 to Zone2) 

• with a specific trip-purpose: (e.g. Home-Based) 

• executed in a single time period (e.g. AM). 

As it can be observed, the goodness-of-fit is excellent for all scenarios with the 𝑅𝑅2 ranging from 1 
to 0.99 indicating an almost perfect correlation. This correlation can be explained by the fact that 
the algorithm managed to utilise almost all trips present in the input ODs, therefore the pairwise 
differences between the observed and the modelled OD should be minimal. 

 
Figure 5.  Pairwise comparison of the original and the modelled OD cells 
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Comparison of tours’ distributions 
The next set of comparison focuses on the distribution of attributes between the original and 
modelled tours. Tours are classified into different distribution groups with respect to their attributes. 
For scenarios number 1, 2, 5 and 6 the attributes under consideration were the number of legs as 
well as the total travel time of each tour, while for scenarios number 3, 4, 7 and 8 the dimension of 
legs’ departure time period was also introduced. For each scenario, the share of modelled tours in 
each distribution group was compared with the respective share for the original tours. For brevity, 
only the first set of scenarios (scenarios number 1, 2, 5, 6) and only the groups with a share greater 
than 1% are presented. This is due to the large number of resulting distribution groups (33 for 
scenarios number 1 to 4, and 325 groups for scenarios number 5 to 8). Finally, the comparison 
examines the distribution groups separately for the high-resolution (Figure 6) and low-resolution 
(Figure 7) scenarios. 

The results for the high-resolution scenarios indicate a particularly close fit between the original and 
the modelled distributions even in the cases where the distribution constraints are not enforced. As 
it can be observed, none of the compared distribution groups deviates more than 0.7% from the 
respective distribution of the original tours. The minor differences can be explained by the high-
resolution of the original OD which consequently limits the problem domain. In other words, due to 
the high-resolution of the original ODs, the combinations of tours which can reproduce the initial 
ODs are limited and as a sequence the attributes of the modelled tours are very similar to those of 
the original ones. Therefore, the optimisation routine manages to identify a (near) optimum solution 
both in terms of total trips used as well as in terms of tours’ characteristics without the enforcement 
of additional constraints. 

Similar conclusions can be drawn for the low-resolution scenarios although in this case the benefits 
of enforcing the distribution constraints are more obvious. The solution space in these cases is 
wider and thus the available solutions can deviate more compared to the high-resolution scenarios. 
For instance, the difference for distribution group 8 between the original and modelled results in 
Scenario 5 is 2.2%. Even if the figure is still relatively low, it’s considerably larger than the 
respective figure for the high-resolution scenario (Scenario 1). It is expected that the differences, in 
cases of low-resolution scenarios, will be greater and thus the inclusion of distribution constraints 
to limit the available search space is recommended. 
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Figure 6.  Comparison of distributions between original and modelled tours with a share greater than 

1%. (Scenarios 1-2) 

 
Figure 7.  Comparison of distributions between original and modelled tours with a share greater than 

1%. (Scenarios 5-6) 
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Comparison of tours’ characteristics 
A final stream of analysis entails the comparison between original and modelled tours at an 
individual level. The first type of assessment compares the zone-sequences between the original 
and modelled tours. Each point in Figure 8 represents a unique zone-sequencing (e.g. [Zone-1, Zone-
2, Zone-1]) and the values on x and y axes represent the number of times each zone-sequence has 
been used by the original and the modelled tours respectively. As it can be seen, the correlation is 
high for both the high- and the low-resolution scenarios. Moreover, the effect of network’s spatial 
resolution to the solution is once again noticeable. Although, the correlation is still high for the low-
resolution cases (scenarios numbers 5-8), the respective 𝑅𝑅2 is significantly lower compared to the 
high-resolution cases (scenarios numbers 1-4). Including the distribution constraints seems to have 
a positive outcome since an increase of the resulting goodness-of-fit is noticed. 
The second and final type of assessment compares the time period departure profiles of trips within 
the original and the modelled tours. A time period departure profile is expressed as the sequence of 
the time periods of departure for the trips consisting a tour (e.g. [AM, IP, OP]). The scatter plot 
presented in Figure 9 depicts the number of observations for all the different time period departure 
profiles between the original and modelled tours. As it can be observed, the fit is very close for all 
scenarios, with the 𝑅𝑅2 ranging between 0.999 and 0.960. 
Based on the results obtained from the comparison of both the zone-sequences and the time period 
departure profiles, it can be deducted that the error related to the matching of original and modelled 
tours is mostly influenced by the misalignment of zone-sequences. This is supported by the fact 
that the corresponding goodness-of-fit for the time period of departure profiles (Figure 9) is higher 
compared to the one for zone-sequences (Figure 8). 

 
Figure 8.  Comparison of zones-sequencing between original and modelled tours  
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Figure 9.  Comparison of departures time period between original and modelled tours 

4. Conclusions and future steps 

In this paper, an efficient methodology to convert multi-period Origin-Destination (OD) matrices 
into sequences of trips originating and ending at a home location (tours) is presented. The main 
motivation behind this study is to enhance the abundant information regarding travel behaviour 
in typical OD matrices with information about the interdependency between trips.  

The process to achieve so takes place in two steps. Firstly, a specifically designed module exploits 
the connectivity information between zones in the ODs to retrieve all the plausible tours (candidate 
tours set) within the input (original) ODs. To achieve so the conversion of the ODs into a graph 
(network) is required. The conversion of ODs into a network allows for the application of graph 
theory algorithms, such as cycles identification, which can aid the identification of sequences of 
zones wherein a zone is reachable from itself (i.e. tour). Secondly, an integer linear programming 
program is assigned to identify the optimal combination of tours which maximises the utilisation 
of trips from the original OD matrices. The output of this methodology is a set of tours which once 
aggregated reconstructs the original ODs as accurately as possible. The approach aligns well with 
the data-driven modelling paradigm, where data is placed in the centre of the model development 
(Antoniou, Dimitriou and Pereira, 2019). In an era where information regarding mobility is 
becoming abundant, the authors envisage that the frequent flow of aggregated mobility data could 
be utilised to dynamically infer behavioural information at the person-level. 

In this study, the parameters affecting the complexity of the given problem are thoroughly 
examined and discussed. Namely the explored parameters are (a) the spatial resolution of the 
network (network density) and (b) the maximum allowed number of legs in tours. Since transport 
networks are usually dense, the number of plausible tours can quickly exceed the capabilities of 
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the currently available optimisation solvers, therefore numerous approaches to limit this number 
to practical limits are presented and evaluated. These approaches are mainly based on the 
exploitation of observed information regarding travel behaviour and trip-chaining. 

Finally, this novel tours’ synthesis framework is tested on a set of realistic cases exhibiting its 
performance in preparing tours out of standard multi-period ODs. An extensive number of 
scenarios is prepared and evaluated for the thorough assessment of the accuracy of the presented 
methodology. The test scenarios are differentiated in terms of (a) the spatial resolution of the input 
OD matrices, (b) the presence or not of observed information regarding the expected characteristics 
of the resulting tours and finally (c) the level of detail of this information. The results of the 
evaluation are particularly encouraging since the suggested methodology managed to accurately 
reconstruct the original OD matrices into tours without considerable loss of information. 

Despite the presented accuracy of the suggested framework, a range of enhancements is still 
required to improve the methodology and to make it applicable to fully realistic scenarios. Some 
aspects requiring further research are presented below. 

• Further research is required to assess the additional time-processing requirements when 
more complex travel behaviour patterns are to be included in the solution space (e.g. tours 
with many legs or tours including subtours). 

• Exploration of the possibility to convert tours into activity sequences (i.e. personal activity 
plans) in the case of purpose dependent OD matrices. The resulting activity plans could be 
also coupled with a population synthesiser in order to infuse demographic characteristics 
into the activity sequences. 

Arguably, there are still open questions regarding the performance of the presented ‘mechanistic’ 
approach to combine standard travel information into detailed travel behaviour patterns. 
Nonetheless, the suggested methodology has already yielded encouraging results in terms of 
exploiting aggregated sources of travel demand (i.e. OD matrices) to synthesise travel behaviour 
information at an individual level. 
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